[6] | 1 | /*** Copyright 1989 Norbert Schlenker. All rights reserved. |
---|
| 2 | |
---|
| 3 | *** This software is distributed subject to the following provisions: |
---|
| 4 | *** - this notice may not be removed; |
---|
| 5 | *** - you may modify the source code, as long as redistributed |
---|
| 6 | *** versions have their modifications clearly marked; |
---|
| 7 | *** - no charge, other than a nominal copying fee, may be made |
---|
| 8 | *** when providing copies of this source code to others; |
---|
| 9 | *** - if this source code is used as part of a product which is |
---|
| 10 | *** distributed only as a binary, a copy of this source code |
---|
| 11 | *** must be included in the distribution. |
---|
| 12 | *** |
---|
| 13 | *** Unlike the GNU GPL, use of this code does not obligate you to |
---|
| 14 | *** disclose your own proprietary source code. |
---|
| 15 | |
---|
| 16 | *** The author of this software provides no warranty, express or |
---|
| 17 | *** implied, as to its utility or correctness. That said, reports |
---|
| 18 | *** of bugs or compatibility problems will be gladly received by |
---|
| 19 | *** nfs@princeton.edu, and fixes will be attempted. |
---|
| 20 | ***/ |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | /*** netgen - C version of the standard NETGEN network generator |
---|
| 24 | *** This program is a functional equivalent of the |
---|
| 25 | *** standard network generator NETGEN described in: |
---|
| 26 | *** Klingman, D., A. Napier, and J. Stutz, "NETGEN: A Program |
---|
| 27 | *** for Generating Large Scale Capacitated Assignment, |
---|
| 28 | *** Transportation, and Minimum Cost Flow Network Problems", |
---|
| 29 | *** Management Science 20, 5, 814-821 (1974) |
---|
| 30 | *** |
---|
| 31 | *** This software provides a number of interfaces for use by |
---|
| 32 | *** network solvers. Standard call interfaces are supplied for |
---|
| 33 | *** use by (Unix) C and Fortran solvers, with generation parameters |
---|
| 34 | *** passed into the generator and the flow network passed back to |
---|
| 35 | *** the solver via large external (COMMON in Fortran) arrays. |
---|
| 36 | *** For the DIMACS challenge, this code will produce output files |
---|
| 37 | *** in the appropriate format for later reading by solvers. |
---|
| 38 | *** Undefine the symbol DIMACS when using the call interface. |
---|
| 39 | *** |
---|
| 40 | *** The generator produces exact duplicates of the networks |
---|
| 41 | *** made by the Fortran code (even though that means bugs |
---|
| 42 | *** are being perpetuated). It is faster by orders of magnitude |
---|
| 43 | *** in generating large networks, primarily by imposing the |
---|
| 44 | *** notion of the abstract data type INDEX_LIST and implementing |
---|
| 45 | *** the type operations in a reasonably efficient fashion. |
---|
| 46 | ***/ |
---|
| 47 | |
---|
| 48 | /*** Generates transportation problems if: |
---|
| 49 | *** SOURCES+SINKS == NODES && TSOURCES == TSINKS == 0 |
---|
| 50 | *** |
---|
| 51 | *** Generates assignment problems if above conditions are satisfied, and: |
---|
| 52 | *** SOURCES == SINKS && SUPPLY == SOURCES |
---|
| 53 | *** |
---|
| 54 | *** Generates maximum flow problems if not an assignment problem and: |
---|
| 55 | *** MINCOST == MAXCOST == 1 |
---|
| 56 | |
---|
| 57 | *** Implementation notes: |
---|
| 58 | *** |
---|
| 59 | *** This file contains both a Fortran and a C interface. The |
---|
| 60 | *** Fortran interface is suffixed with an underscore to make it |
---|
| 61 | *** callable in the normal fashion from Fortran (a Unix convention). |
---|
| 62 | *** |
---|
| 63 | *** Because Fortran has no facility for pointers, the common arrays |
---|
| 64 | *** are statically allocated. Static allocation has nothing to recommend |
---|
| 65 | *** it except for the need for a Fortran interface. |
---|
| 66 | *** |
---|
| 67 | *** This software expects input parameters to be long integers |
---|
| 68 | *** (in the sense of C); that means no INTEGER*2 from Fortran callers. |
---|
| 69 | *** |
---|
| 70 | *** Compiling with -DDIMACS produces a program that reads problem |
---|
| 71 | *** parameters, generates the appropriate problem, and prints it. |
---|
| 72 | *** |
---|
| 73 | *** Compiling with -DDEBUG produces code with externally visible |
---|
| 74 | *** procedure names, useful for debugging and profiling. |
---|
| 75 | ***/ |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | /*** System interfaces */ |
---|
| 79 | |
---|
| 80 | #include <stdio.h> |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | /*** Public interfaces */ |
---|
| 84 | |
---|
| 85 | #define ALLOCATE_NETWORK |
---|
| 86 | #include "netgen.h" |
---|
| 87 | |
---|
[7] | 88 | #include "main.h" |
---|
[6] | 89 | |
---|
| 90 | /*** Private interfaces */ |
---|
| 91 | |
---|
| 92 | #ifdef DEBUG |
---|
| 93 | #define PRIVATE |
---|
| 94 | #else |
---|
| 95 | #define PRIVATE static |
---|
| 96 | #endif |
---|
| 97 | |
---|
| 98 | #ifdef __STDC__ |
---|
| 99 | PRIVATE void create_supply(NODE, CAPACITY); /* create supply nodes */ |
---|
| 100 | PRIVATE void create_assignment(long*); /* create assignment problem */ |
---|
| 101 | PRIVATE void sort_skeleton(int); /* sorts skeleton chains */ |
---|
| 102 | PRIVATE void pick_head(long*, int, NODE); /* choose destination nodes for rubbish arcs */ |
---|
| 103 | PRIVATE void error_exit(long); /* print error message and exit */ |
---|
| 104 | #else |
---|
| 105 | PRIVATE void create_supply(); /* create supply nodes */ |
---|
| 106 | PRIVATE void create_assignment(); /* create assignment problem */ |
---|
| 107 | PRIVATE void sort_skeleton(); /* sorts skeleton chains */ |
---|
| 108 | PRIVATE void pick_head(); /* chooses destination nodes for rubbish arcs */ |
---|
| 109 | PRIVATE void error_exit(); /* print error message and exit */ |
---|
| 110 | #endif |
---|
| 111 | |
---|
| 112 | /*** Private variables */ |
---|
| 113 | |
---|
| 114 | static NODE nodes_left; |
---|
| 115 | static ARC arc_count; |
---|
| 116 | static NODE pred[MAXARCS]; |
---|
| 117 | static NODE head[MAXARCS]; |
---|
| 118 | static NODE tail[MAXARCS]; |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | /*** Local macros */ |
---|
| 122 | |
---|
| 123 | #define MIN(x, y) ((x) < (y) ? (x) : (y)) |
---|
| 124 | #define MAX(x, y) ((x) > (y) ? (x) : (y)) |
---|
| 125 | #define SAVE_ARC(tail, head, cost, capacity) /* records an arc where our caller can get it */ \ |
---|
| 126 | { \ |
---|
| 127 | FROM[arc_count] = tail; \ |
---|
| 128 | TO [arc_count] = head; \ |
---|
| 129 | C [arc_count] = cost; \ |
---|
| 130 | U [arc_count] = capacity; \ |
---|
| 131 | arc_count++; \ |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | /*** Fortran callable interface routine */ |
---|
| 136 | |
---|
| 137 | void netgen_(seed, parms, generated_nodes, generated_arcs) |
---|
| 138 | long* seed; /* pointer to random seed */ |
---|
| 139 | long parms[PROBLEM_PARMS]; /* problem parameters */ |
---|
| 140 | long* generated_nodes; /* number of generated nodes */ |
---|
| 141 | long* generated_arcs; /* number of generated arcs */ |
---|
| 142 | { |
---|
| 143 | *generated_nodes = NODES; |
---|
| 144 | if ((*generated_arcs = netgen(*seed, parms)) < 0) |
---|
| 145 | error_exit(*generated_arcs); |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | /*** C callable interface routine */ |
---|
| 150 | |
---|
| 151 | ARC netgen(seed, parms) |
---|
| 152 | long seed; /* random seed */ |
---|
| 153 | long parms[]; /* problem parameters */ |
---|
| 154 | { |
---|
| 155 | register NODE i,j,k; |
---|
| 156 | NODE source; |
---|
| 157 | NODE node; |
---|
| 158 | NODE sinks_per_source; |
---|
| 159 | NODE* sinks; |
---|
| 160 | NODE it; |
---|
| 161 | int chain_length; |
---|
| 162 | COST cost; |
---|
| 163 | CAPACITY cap; |
---|
| 164 | INDEX_LIST handle; |
---|
| 165 | int supply_per_sink; |
---|
| 166 | int partial_supply; |
---|
| 167 | int sort_count; |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | /*** Perform sanity checks on the input */ |
---|
| 171 | |
---|
| 172 | if (seed <= 0) |
---|
| 173 | return BAD_SEED; |
---|
| 174 | if (NODES > MAXNODES || DENSITY > MAXARCS) |
---|
| 175 | return TOO_BIG; |
---|
| 176 | if ((NODES <= 0) || |
---|
| 177 | (NODES > DENSITY) || |
---|
| 178 | (SOURCES <= 0) || |
---|
| 179 | (SINKS <= 0) || |
---|
| 180 | (SOURCES + SINKS > NODES) || |
---|
| 181 | (MINCOST > MAXCOST) || |
---|
| 182 | (SUPPLY < SOURCES) || |
---|
| 183 | (TSOURCES > SOURCES) || |
---|
| 184 | (TSINKS > SINKS) || |
---|
| 185 | (HICOST < 0 || HICOST > 100) || |
---|
| 186 | (CAPACITATED < 0 || CAPACITATED > 100) || |
---|
| 187 | (MINCAP > MAXCAP)) |
---|
| 188 | return BAD_PARMS; |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | /*** Do a little bit of setting up. */ |
---|
| 192 | |
---|
| 193 | set_random(seed); |
---|
| 194 | |
---|
| 195 | arc_count = 0; |
---|
| 196 | nodes_left = NODES - SINKS + TSINKS; |
---|
| 197 | |
---|
| 198 | if ((SOURCES-TSOURCES)+(SINKS-TSINKS) == NODES && |
---|
| 199 | (SOURCES-TSOURCES) == (SINKS-TSINKS) && |
---|
| 200 | SOURCES == SUPPLY) { |
---|
| 201 | create_assignment(parms); |
---|
| 202 | return arc_count; |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | (void)memset((void *)B, 0, sizeof(B));/* set supplies and demands to zero */ |
---|
| 206 | |
---|
| 207 | create_supply((NODE)SOURCES, (CAPACITY)SUPPLY); |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | /*** Form most of the network skeleton. First, 60% of the transshipment |
---|
| 211 | *** nodes are divided evenly among the various sources; the remainder |
---|
| 212 | *** are chained onto the end of the chains belonging to random sources. |
---|
| 213 | ***/ |
---|
| 214 | |
---|
| 215 | for (i = 1; i <= SOURCES; i++) /* point SOURCES at themselves */ |
---|
| 216 | pred[i] = i; |
---|
| 217 | handle = make_index_list((INDEX)(SOURCES + 1), (INDEX)(NODES - SINKS)); |
---|
| 218 | source = 1; |
---|
| 219 | for (i = NODES-SOURCES-SINKS; i > (4*(NODES-SOURCES-SINKS)+9)/10; i--) { |
---|
| 220 | node = choose_index(handle, (INDEX)ng_random(1L, (long)index_size(handle))); |
---|
| 221 | pred[node] = pred[source]; |
---|
| 222 | pred[source] = node; |
---|
| 223 | if (++source > SOURCES) |
---|
| 224 | source = 1; |
---|
| 225 | } |
---|
| 226 | for ( ; i > 0; --i) { |
---|
| 227 | node = choose_index(handle, (INDEX)ng_random(1L, (long)index_size(handle))); |
---|
| 228 | source = ng_random(1L, SOURCES); |
---|
| 229 | pred[node] = pred[source]; |
---|
| 230 | pred[source] = node; |
---|
| 231 | } |
---|
| 232 | free_index_list(handle); |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | /*** For each source chain, hook it to an "appropriate" number of sinks, |
---|
| 236 | *** place capacities and costs on the skeleton edges, and then call |
---|
| 237 | *** pick_head to add a bunch of rubbish edges at each node on the chain. |
---|
| 238 | ***/ |
---|
| 239 | |
---|
| 240 | for (source = 1; source <= SOURCES; source++) { |
---|
| 241 | sort_count = 0; |
---|
| 242 | node = pred[source]; |
---|
| 243 | while (node != source) { |
---|
| 244 | sort_count++; |
---|
| 245 | head[sort_count] = node; |
---|
| 246 | node = tail[sort_count] = pred[node]; |
---|
| 247 | } |
---|
| 248 | if ((NODES-SOURCES-SINKS) == 0) |
---|
| 249 | sinks_per_source = SINKS/SOURCES + 1; |
---|
| 250 | else |
---|
| 251 | /* changing to handle overflows with large n; Mar 18 -- jc */ |
---|
| 252 | sinks_per_source = ((double) 2*sort_count*SINKS) / ((double) NODES-SOURCES-SINKS); |
---|
| 253 | sinks_per_source = MAX(2, MIN(sinks_per_source, SINKS)); |
---|
| 254 | sinks = (NODE*) malloc(sinks_per_source * sizeof(NODE)); |
---|
| 255 | handle = make_index_list((INDEX)(NODES - SINKS), (INDEX)(NODES - 1)); |
---|
| 256 | for (i = 0; i < sinks_per_source; i++) { |
---|
| 257 | sinks[i] = choose_index(handle, (INDEX)ng_random(1L, (long)index_size(handle))); |
---|
| 258 | } |
---|
| 259 | if (source == SOURCES && index_size(handle) > 0) { |
---|
| 260 | sinks = (NODE*) realloc((void *)sinks, (sinks_per_source + index_size(handle)) * sizeof(NODE)); |
---|
| 261 | while (index_size(handle) > 0) { |
---|
| 262 | j = choose_index(handle, 1); |
---|
| 263 | if (B[j] == 0) |
---|
| 264 | sinks[sinks_per_source++] = j; |
---|
| 265 | } |
---|
| 266 | } |
---|
| 267 | free_index_list(handle); |
---|
| 268 | |
---|
| 269 | chain_length = sort_count; |
---|
| 270 | supply_per_sink = B[source-1] / sinks_per_source; |
---|
| 271 | k = pred[source]; |
---|
| 272 | for (i = 0; i < sinks_per_source; i++) { |
---|
| 273 | sort_count++; |
---|
| 274 | partial_supply = ng_random(1L, (long)supply_per_sink); |
---|
| 275 | j = ng_random(0L, (long)sinks_per_source - 1); |
---|
| 276 | tail[sort_count] = k; |
---|
| 277 | head[sort_count] = sinks[i] + 1; |
---|
| 278 | B[sinks[i]] -= partial_supply; |
---|
| 279 | B[sinks[j]] -= (supply_per_sink - partial_supply); |
---|
| 280 | k = source; |
---|
| 281 | for (j = ng_random(1L, (long)chain_length); j > 0; j--) |
---|
| 282 | k = pred[k]; |
---|
| 283 | } |
---|
| 284 | B[sinks[0]] -= (B[source-1] % sinks_per_source); |
---|
| 285 | free((void *)sinks); |
---|
| 286 | |
---|
| 287 | sort_skeleton(sort_count); |
---|
| 288 | tail[sort_count+1] = 0; |
---|
| 289 | for (i = 1; i <= sort_count; ) { |
---|
| 290 | handle = make_index_list((INDEX)(SOURCES - TSOURCES + 1), (INDEX)NODES); |
---|
| 291 | remove_index(handle, (INDEX)tail[i]); |
---|
| 292 | it = tail[i]; |
---|
| 293 | while (it == tail[i]) { |
---|
| 294 | remove_index(handle, (INDEX)head[i]); |
---|
| 295 | cap = SUPPLY; |
---|
| 296 | if (ng_random(1L, 100L) <= CAPACITATED) |
---|
| 297 | cap = MAX(B[source-1], MINCAP); |
---|
| 298 | cost = MAXCOST; |
---|
| 299 | if (ng_random(1L, 100L) > HICOST) |
---|
| 300 | cost = ng_random(MINCOST, MAXCOST); |
---|
| 301 | SAVE_ARC(it,head[i],cost,cap); |
---|
| 302 | i++; |
---|
| 303 | } |
---|
| 304 | pick_head(parms, handle, it); |
---|
| 305 | free_index_list(handle); |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | /*** Add more rubbish edges out of the transshipment sinks. */ |
---|
| 311 | |
---|
| 312 | for (i = NODES - SINKS + 1; i <= NODES - SINKS + TSINKS; i++) { |
---|
| 313 | handle = make_index_list((INDEX)(SOURCES - TSOURCES + 1), (INDEX)NODES); |
---|
| 314 | remove_index(handle, (INDEX)i); |
---|
| 315 | pick_head(parms, handle, i); |
---|
| 316 | free_index_list(handle); |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | return arc_count; |
---|
| 320 | } |
---|
| 321 | |
---|
| 322 | |
---|
| 323 | PRIVATE void create_supply(sources, supply) |
---|
| 324 | NODE sources; |
---|
| 325 | CAPACITY supply; |
---|
| 326 | { |
---|
| 327 | CAPACITY supply_per_source = supply / sources; |
---|
| 328 | CAPACITY partial_supply; |
---|
| 329 | NODE i; |
---|
| 330 | |
---|
| 331 | for (i = 0; i < sources; i++) { |
---|
| 332 | B[i] += (partial_supply = ng_random(1L, (long)supply_per_source)); |
---|
| 333 | B[ng_random(0L, (long)(sources - 1))] += supply_per_source - partial_supply; |
---|
| 334 | } |
---|
| 335 | B[ng_random(0L, (long)(sources - 1))] += supply % sources; |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | |
---|
| 339 | PRIVATE void create_assignment(parms) |
---|
| 340 | long parms[]; |
---|
| 341 | { |
---|
| 342 | INDEX_LIST skeleton, handle; |
---|
| 343 | INDEX index; |
---|
| 344 | NODE source; |
---|
| 345 | |
---|
| 346 | for (source = 0; source < NODES/2; source++) |
---|
| 347 | B[source] = 1; |
---|
| 348 | for ( ; source < NODES; source++) |
---|
| 349 | B[source] = -1; |
---|
| 350 | |
---|
| 351 | skeleton = make_index_list((INDEX)(SOURCES + 1), (INDEX)NODES); |
---|
| 352 | for (source = 1; source <= NODES/2; source++) { |
---|
| 353 | index = choose_index(skeleton, (INDEX)ng_random(1L, (long)index_size(skeleton))); |
---|
| 354 | SAVE_ARC(source, index, ng_random(MINCOST, MAXCOST), 1); |
---|
| 355 | handle = make_index_list((INDEX)(SOURCES + 1), (INDEX)NODES); |
---|
| 356 | remove_index(handle, index); |
---|
| 357 | pick_head(parms, handle, source); |
---|
| 358 | free_index_list(handle); |
---|
| 359 | } |
---|
| 360 | free_index_list(skeleton); |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | PRIVATE void sort_skeleton(sort_count) /* Shell sort */ |
---|
| 365 | int sort_count; |
---|
| 366 | { |
---|
| 367 | int m,i,j,k; |
---|
| 368 | int temp; |
---|
| 369 | |
---|
| 370 | m = sort_count; |
---|
| 371 | while ((m /= 2) != 0) { |
---|
| 372 | k = sort_count - m; |
---|
| 373 | for (j = 1; j <= k; j++) { |
---|
| 374 | i = j; |
---|
| 375 | while (i >= 1 && tail[i] > tail[i+m]) { |
---|
| 376 | temp = tail[i]; |
---|
| 377 | tail[i] = tail[i+m]; |
---|
| 378 | tail[i+m] = temp; |
---|
| 379 | temp = head[i]; |
---|
| 380 | head[i] = head[i+m]; |
---|
| 381 | head[i+m] = temp; |
---|
| 382 | i -= m; |
---|
| 383 | } |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | PRIVATE void pick_head(parms, handle, desired_tail) |
---|
| 390 | long parms[]; |
---|
| 391 | INDEX_LIST handle; |
---|
| 392 | NODE desired_tail; |
---|
| 393 | { |
---|
| 394 | NODE non_sources = NODES - SOURCES + TSOURCES; |
---|
| 395 | |
---|
| 396 | /* changing Aug 29 -- jc |
---|
| 397 | ARC remaining_arcs = DENSITY - arc_count; |
---|
| 398 | */ |
---|
| 399 | int remaining_arcs = (int) DENSITY - (int) arc_count; |
---|
| 400 | |
---|
| 401 | INDEX index; |
---|
| 402 | int limit; |
---|
| 403 | long upper_bound; |
---|
| 404 | CAPACITY cap; |
---|
| 405 | |
---|
| 406 | /* changing Aug 29 -- jc |
---|
| 407 | */ |
---|
| 408 | nodes_left--; |
---|
| 409 | if ((2 * (int) nodes_left) >= (int) remaining_arcs) |
---|
| 410 | return; |
---|
| 411 | |
---|
| 412 | if ((remaining_arcs + non_sources - pseudo_size(handle) - 1) / (nodes_left + 1) >= non_sources - 1) { |
---|
| 413 | limit = non_sources; |
---|
| 414 | } else { |
---|
| 415 | upper_bound = 2 * (remaining_arcs / (nodes_left + 1) - 1); |
---|
| 416 | do { |
---|
| 417 | limit = ng_random(1L, upper_bound); |
---|
| 418 | if (nodes_left == 0) |
---|
| 419 | limit = remaining_arcs; |
---|
| 420 | /* changing to handle overflows with large n; Mar 18 -- jc */ |
---|
| 421 | } while ( ((double) nodes_left * (non_sources - 1)) < ((double) remaining_arcs - limit)); |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | for ( ; limit > 0; limit--) { |
---|
| 425 | index = choose_index(handle, (INDEX)ng_random(1L, (long)pseudo_size(handle))); |
---|
| 426 | cap = SUPPLY; |
---|
| 427 | if (ng_random(1L, 100L) <= CAPACITATED) |
---|
| 428 | cap = ng_random(MINCAP, MAXCAP); |
---|
| 429 | |
---|
| 430 | /* adding Aug 29 -- jc */ |
---|
| 431 | if ((1 <= index) && (index <= NODES)) { |
---|
| 432 | SAVE_ARC(desired_tail, index, ng_random(MINCOST, MAXCOST), cap); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | } |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | /*** Print an appropriate error message and then exit with a nonzero code. */ |
---|
| 440 | |
---|
| 441 | PRIVATE void error_exit(rc) |
---|
| 442 | long rc; |
---|
| 443 | { |
---|
| 444 | switch (rc) { |
---|
| 445 | case BAD_SEED: |
---|
| 446 | fprintf(stderr, "NETGEN requires a positive random seed\n"); |
---|
| 447 | break; |
---|
| 448 | case TOO_BIG: |
---|
| 449 | fprintf(stderr, "Problem too large for generator\n"); |
---|
| 450 | break; |
---|
| 451 | case BAD_PARMS: |
---|
| 452 | fprintf(stderr, "Inconsistent parameter settings - check the input\n"); |
---|
| 453 | break; |
---|
| 454 | case ALLOCATION_FAILURE: |
---|
| 455 | fprintf(stderr, "Memory allocation failure\n"); |
---|
| 456 | break; |
---|
| 457 | default: |
---|
| 458 | fprintf(stderr, "Internal error\n"); |
---|
| 459 | break; |
---|
| 460 | } |
---|
| 461 | exit(1000 - (int)rc); |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | #ifdef DIMACS /* generates network on standard output */ |
---|
| 465 | |
---|
| 466 | #define READ(v) /* read one variable using scanf */ \ |
---|
| 467 | switch( scanf("%ld", &v) ) { \ |
---|
| 468 | case 1: \ |
---|
| 469 | break; \ |
---|
| 470 | default: \ |
---|
| 471 | exit(0); \ |
---|
| 472 | } |
---|
| 473 | |
---|
[7] | 474 | int orig_main(long seed,long problem,long *parms) |
---|
[6] | 475 | { |
---|
| 476 | long arcs; |
---|
| 477 | int i; |
---|
| 478 | |
---|
| 479 | /*** Read problem parameters and generate networks */ |
---|
[7] | 480 | { |
---|
[6] | 481 | printf("c NETGEN flow network generator (C version)\n"); |
---|
| 482 | printf("c Problem %2ld input parameters\n", problem); |
---|
| 483 | printf("c ---------------------------\n"); |
---|
| 484 | printf("c Random seed: %10ld\n", seed); |
---|
| 485 | printf("c Number of nodes: %10ld\n", NODES); |
---|
| 486 | printf("c Source nodes: %10ld\n", SOURCES); |
---|
| 487 | printf("c Sink nodes: %10ld\n", SINKS); |
---|
| 488 | printf("c Number of arcs: %10ld\n", DENSITY); |
---|
| 489 | printf("c Minimum arc cost: %10ld\n", MINCOST); |
---|
| 490 | printf("c Maximum arc cost: %10ld\n", MAXCOST); |
---|
| 491 | printf("c Total supply: %10ld\n", SUPPLY); |
---|
| 492 | printf("c Transshipment -\n"); |
---|
| 493 | printf("c Sources: %10ld\n", TSOURCES); |
---|
| 494 | printf("c Sinks: %10ld\n", TSINKS); |
---|
| 495 | printf("c Skeleton arcs -\n"); |
---|
| 496 | printf("c With max cost: %10ld%%\n", HICOST); |
---|
| 497 | printf("c Capacitated: %10ld%%\n", CAPACITATED); |
---|
| 498 | printf("c Minimum arc capacity: %10ld\n", MINCAP); |
---|
| 499 | printf("c Maximum arc capacity: %10ld\n", MAXCAP); |
---|
| 500 | |
---|
| 501 | if ((arcs = netgen(seed, parms)) < 0) |
---|
| 502 | error_exit(arcs); |
---|
| 503 | if ((SOURCES-TSOURCES)+(SINKS-TSINKS) == NODES && |
---|
| 504 | (SOURCES-TSOURCES) == (SINKS-TSINKS) && |
---|
| 505 | SOURCES == SUPPLY) { |
---|
| 506 | printf("c\n"); |
---|
| 507 | printf("c *** Assignment ***\n"); |
---|
| 508 | printf("c\n"); |
---|
| 509 | printf("p asn %ld %ld\n", NODES, arcs); |
---|
| 510 | for (i = 0; i < NODES; i++) { |
---|
| 511 | if (B[i] > 0) |
---|
| 512 | printf("n %ld\n", i + 1); |
---|
| 513 | } |
---|
| 514 | for (i = 0; i < arcs; i++) { |
---|
| 515 | printf("a %ld %ld %ld\n", FROM[i], TO[i], C[i]); |
---|
| 516 | } |
---|
| 517 | } else |
---|
| 518 | if (MINCOST == 1 && MAXCOST == 1) { |
---|
| 519 | printf("c\n"); |
---|
| 520 | printf("c *** Maximum flow ***\n"); |
---|
| 521 | printf("c\n"); |
---|
| 522 | printf("p max %ld %ld\n", NODES, arcs); |
---|
| 523 | for (i = 0; i < NODES; i++) { |
---|
| 524 | if (B[i] > 0) |
---|
| 525 | printf("n %ld s\n", i + 1); |
---|
| 526 | else |
---|
| 527 | if (B[i] < 0) |
---|
| 528 | printf("n %ld t\n", i + 1); |
---|
| 529 | } |
---|
| 530 | for (i = 0; i < arcs; i++) { |
---|
| 531 | printf("a %ld %ld %ld\n", FROM[i], TO[i], U[i]); |
---|
| 532 | } |
---|
| 533 | } else { |
---|
| 534 | printf("c\n"); |
---|
| 535 | printf("c *** Minimum cost flow ***\n"); |
---|
| 536 | printf("c\n"); |
---|
| 537 | printf("p min %ld %ld\n", NODES, arcs); |
---|
| 538 | for (i = 0; i < NODES; i++) { |
---|
| 539 | if (B[i] != 0) |
---|
| 540 | printf("n %ld %ld\n", i + 1, B[i]); |
---|
| 541 | } |
---|
| 542 | for (i = 0; i < arcs; i++) { |
---|
| 543 | printf("a %ld %ld %ld %ld %ld\n", FROM[i], TO[i], 0, U[i], C[i]); |
---|
| 544 | } |
---|
| 545 | } |
---|
| 546 | } |
---|
| 547 | return 0; |
---|
| 548 | } |
---|
| 549 | |
---|
| 550 | #endif |
---|