1 | /*** Copyright 1989 Norbert Schlenker. All rights reserved. |
---|
2 | |
---|
3 | *** This software is distributed subject to the following provisions: |
---|
4 | *** - this notice may not be removed; |
---|
5 | *** - you may modify the source code, as long as redistributed |
---|
6 | *** versions have their modifications clearly marked; |
---|
7 | *** - no charge, other than a nominal copying fee, may be made |
---|
8 | *** when providing copies of this source code to others; |
---|
9 | *** - if this source code is used as part of a product which is |
---|
10 | *** distributed only as a binary, a copy of this source code |
---|
11 | *** must be included in the distribution. |
---|
12 | *** |
---|
13 | *** Unlike the GNU GPL, use of this code does not obligate you to |
---|
14 | *** disclose your own proprietary source code. |
---|
15 | |
---|
16 | *** The author of this software provides no warranty, express or |
---|
17 | *** implied, as to its utility or correctness. That said, reports |
---|
18 | *** of bugs or compatibility problems will be gladly received by |
---|
19 | *** nfs@princeton.edu, and fixes will be attempted. |
---|
20 | ***/ |
---|
21 | |
---|
22 | |
---|
23 | /*** netgen - C version of the standard NETGEN network generator |
---|
24 | *** This program is a functional equivalent of the |
---|
25 | *** standard network generator NETGEN described in: |
---|
26 | *** Klingman, D., A. Napier, and J. Stutz, "NETGEN: A Program |
---|
27 | *** for Generating Large Scale Capacitated Assignment, |
---|
28 | *** Transportation, and Minimum Cost Flow Network Problems", |
---|
29 | *** Management Science 20, 5, 814-821 (1974) |
---|
30 | *** |
---|
31 | *** This software provides a number of interfaces for use by |
---|
32 | *** network solvers. Standard call interfaces are supplied for |
---|
33 | *** use by (Unix) C and Fortran solvers, with generation parameters |
---|
34 | *** passed into the generator and the flow network passed back to |
---|
35 | *** the solver via large external (COMMON in Fortran) arrays. |
---|
36 | *** For the DIMACS challenge, this code will produce output files |
---|
37 | *** in the appropriate format for later reading by solvers. |
---|
38 | *** Undefine the symbol DIMACS when using the call interface. |
---|
39 | *** |
---|
40 | *** The generator produces exact duplicates of the networks |
---|
41 | *** made by the Fortran code (even though that means bugs |
---|
42 | *** are being perpetuated). It is faster by orders of magnitude |
---|
43 | *** in generating large networks, primarily by imposing the |
---|
44 | *** notion of the abstract data type INDEX_LIST and implementing |
---|
45 | *** the type operations in a reasonably efficient fashion. |
---|
46 | ***/ |
---|
47 | |
---|
48 | /*** Generates transportation problems if: |
---|
49 | *** SOURCES+SINKS == NODES && TSOURCES == TSINKS == 0 |
---|
50 | *** |
---|
51 | *** Generates assignment problems if above conditions are satisfied, and: |
---|
52 | *** SOURCES == SINKS && SUPPLY == SOURCES |
---|
53 | *** |
---|
54 | *** Generates maximum flow problems if not an assignment problem and: |
---|
55 | *** MINCOST == MAXCOST == 1 |
---|
56 | |
---|
57 | *** Implementation notes: |
---|
58 | *** |
---|
59 | *** This file contains both a Fortran and a C interface. The |
---|
60 | *** Fortran interface is suffixed with an underscore to make it |
---|
61 | *** callable in the normal fashion from Fortran (a Unix convention). |
---|
62 | *** |
---|
63 | *** Because Fortran has no facility for pointers, the common arrays |
---|
64 | *** are statically allocated. Static allocation has nothing to recommend |
---|
65 | *** it except for the need for a Fortran interface. |
---|
66 | *** |
---|
67 | *** This software expects input parameters to be long integers |
---|
68 | *** (in the sense of C); that means no INTEGER*2 from Fortran callers. |
---|
69 | *** |
---|
70 | *** Compiling with -DDIMACS produces a program that reads problem |
---|
71 | *** parameters, generates the appropriate problem, and prints it. |
---|
72 | *** |
---|
73 | *** Compiling with -DDEBUG produces code with externally visible |
---|
74 | *** procedure names, useful for debugging and profiling. |
---|
75 | ***/ |
---|
76 | |
---|
77 | |
---|
78 | /*** System interfaces */ |
---|
79 | |
---|
80 | #include <stdio.h> |
---|
81 | |
---|
82 | |
---|
83 | /*** Public interfaces */ |
---|
84 | |
---|
85 | #define ALLOCATE_NETWORK |
---|
86 | #include "netgen.h" |
---|
87 | |
---|
88 | #define PROBLEM_PARMS 13 /* aliases for generation parameters */ |
---|
89 | #define NODES parms[0] /* number of nodes */ |
---|
90 | #define SOURCES parms[1] /* number of sources (including transshipment) */ |
---|
91 | #define SINKS parms[2] /* number of sinks (including transshipment) */ |
---|
92 | #define DENSITY parms[3] /* number of (requested) arcs */ |
---|
93 | #define MINCOST parms[4] /* minimum cost of arcs */ |
---|
94 | #define MAXCOST parms[5] /* maximum cost of arcs */ |
---|
95 | #define SUPPLY parms[6] /* total supply */ |
---|
96 | #define TSOURCES parms[7] /* transshipment sources */ |
---|
97 | #define TSINKS parms[8] /* transshipment sinks */ |
---|
98 | #define HICOST parms[9] /* percent of skeleton arcs given maximum cost */ |
---|
99 | #define CAPACITATED parms[10] /* percent of arcs to be capacitated */ |
---|
100 | #define MINCAP parms[11] /* minimum capacity for capacitated arcs */ |
---|
101 | #define MAXCAP parms[12] /* maximum capacity for capacitated arcs */ |
---|
102 | |
---|
103 | |
---|
104 | /*** Private interfaces */ |
---|
105 | |
---|
106 | #ifdef DEBUG |
---|
107 | #define PRIVATE |
---|
108 | #else |
---|
109 | #define PRIVATE static |
---|
110 | #endif |
---|
111 | |
---|
112 | #ifdef __STDC__ |
---|
113 | PRIVATE void create_supply(NODE, CAPACITY); /* create supply nodes */ |
---|
114 | PRIVATE void create_assignment(long*); /* create assignment problem */ |
---|
115 | PRIVATE void sort_skeleton(int); /* sorts skeleton chains */ |
---|
116 | PRIVATE void pick_head(long*, int, NODE); /* choose destination nodes for rubbish arcs */ |
---|
117 | PRIVATE void error_exit(long); /* print error message and exit */ |
---|
118 | #else |
---|
119 | PRIVATE void create_supply(); /* create supply nodes */ |
---|
120 | PRIVATE void create_assignment(); /* create assignment problem */ |
---|
121 | PRIVATE void sort_skeleton(); /* sorts skeleton chains */ |
---|
122 | PRIVATE void pick_head(); /* chooses destination nodes for rubbish arcs */ |
---|
123 | PRIVATE void error_exit(); /* print error message and exit */ |
---|
124 | #endif |
---|
125 | |
---|
126 | /*** Private variables */ |
---|
127 | |
---|
128 | static NODE nodes_left; |
---|
129 | static ARC arc_count; |
---|
130 | static NODE pred[MAXARCS]; |
---|
131 | static NODE head[MAXARCS]; |
---|
132 | static NODE tail[MAXARCS]; |
---|
133 | |
---|
134 | |
---|
135 | /*** Local macros */ |
---|
136 | |
---|
137 | #define MIN(x, y) ((x) < (y) ? (x) : (y)) |
---|
138 | #define MAX(x, y) ((x) > (y) ? (x) : (y)) |
---|
139 | #define SAVE_ARC(tail, head, cost, capacity) /* records an arc where our caller can get it */ \ |
---|
140 | { \ |
---|
141 | FROM[arc_count] = tail; \ |
---|
142 | TO [arc_count] = head; \ |
---|
143 | C [arc_count] = cost; \ |
---|
144 | U [arc_count] = capacity; \ |
---|
145 | arc_count++; \ |
---|
146 | } |
---|
147 | |
---|
148 | |
---|
149 | /*** Fortran callable interface routine */ |
---|
150 | |
---|
151 | void netgen_(seed, parms, generated_nodes, generated_arcs) |
---|
152 | long* seed; /* pointer to random seed */ |
---|
153 | long parms[PROBLEM_PARMS]; /* problem parameters */ |
---|
154 | long* generated_nodes; /* number of generated nodes */ |
---|
155 | long* generated_arcs; /* number of generated arcs */ |
---|
156 | { |
---|
157 | *generated_nodes = NODES; |
---|
158 | if ((*generated_arcs = netgen(*seed, parms)) < 0) |
---|
159 | error_exit(*generated_arcs); |
---|
160 | } |
---|
161 | |
---|
162 | |
---|
163 | /*** C callable interface routine */ |
---|
164 | |
---|
165 | ARC netgen(seed, parms) |
---|
166 | long seed; /* random seed */ |
---|
167 | long parms[]; /* problem parameters */ |
---|
168 | { |
---|
169 | register NODE i,j,k; |
---|
170 | NODE source; |
---|
171 | NODE node; |
---|
172 | NODE sinks_per_source; |
---|
173 | NODE* sinks; |
---|
174 | NODE it; |
---|
175 | int chain_length; |
---|
176 | COST cost; |
---|
177 | CAPACITY cap; |
---|
178 | INDEX_LIST handle; |
---|
179 | int supply_per_sink; |
---|
180 | int partial_supply; |
---|
181 | int sort_count; |
---|
182 | |
---|
183 | |
---|
184 | /*** Perform sanity checks on the input */ |
---|
185 | |
---|
186 | if (seed <= 0) |
---|
187 | return BAD_SEED; |
---|
188 | if (NODES > MAXNODES || DENSITY > MAXARCS) |
---|
189 | return TOO_BIG; |
---|
190 | if ((NODES <= 0) || |
---|
191 | (NODES > DENSITY) || |
---|
192 | (SOURCES <= 0) || |
---|
193 | (SINKS <= 0) || |
---|
194 | (SOURCES + SINKS > NODES) || |
---|
195 | (MINCOST > MAXCOST) || |
---|
196 | (SUPPLY < SOURCES) || |
---|
197 | (TSOURCES > SOURCES) || |
---|
198 | (TSINKS > SINKS) || |
---|
199 | (HICOST < 0 || HICOST > 100) || |
---|
200 | (CAPACITATED < 0 || CAPACITATED > 100) || |
---|
201 | (MINCAP > MAXCAP)) |
---|
202 | return BAD_PARMS; |
---|
203 | |
---|
204 | |
---|
205 | /*** Do a little bit of setting up. */ |
---|
206 | |
---|
207 | set_random(seed); |
---|
208 | |
---|
209 | arc_count = 0; |
---|
210 | nodes_left = NODES - SINKS + TSINKS; |
---|
211 | |
---|
212 | if ((SOURCES-TSOURCES)+(SINKS-TSINKS) == NODES && |
---|
213 | (SOURCES-TSOURCES) == (SINKS-TSINKS) && |
---|
214 | SOURCES == SUPPLY) { |
---|
215 | create_assignment(parms); |
---|
216 | return arc_count; |
---|
217 | } |
---|
218 | |
---|
219 | (void)memset((void *)B, 0, sizeof(B));/* set supplies and demands to zero */ |
---|
220 | |
---|
221 | create_supply((NODE)SOURCES, (CAPACITY)SUPPLY); |
---|
222 | |
---|
223 | |
---|
224 | /*** Form most of the network skeleton. First, 60% of the transshipment |
---|
225 | *** nodes are divided evenly among the various sources; the remainder |
---|
226 | *** are chained onto the end of the chains belonging to random sources. |
---|
227 | ***/ |
---|
228 | |
---|
229 | for (i = 1; i <= SOURCES; i++) /* point SOURCES at themselves */ |
---|
230 | pred[i] = i; |
---|
231 | handle = make_index_list((INDEX)(SOURCES + 1), (INDEX)(NODES - SINKS)); |
---|
232 | source = 1; |
---|
233 | for (i = NODES-SOURCES-SINKS; i > (4*(NODES-SOURCES-SINKS)+9)/10; i--) { |
---|
234 | node = choose_index(handle, (INDEX)ng_random(1L, (long)index_size(handle))); |
---|
235 | pred[node] = pred[source]; |
---|
236 | pred[source] = node; |
---|
237 | if (++source > SOURCES) |
---|
238 | source = 1; |
---|
239 | } |
---|
240 | for ( ; i > 0; --i) { |
---|
241 | node = choose_index(handle, (INDEX)ng_random(1L, (long)index_size(handle))); |
---|
242 | source = ng_random(1L, SOURCES); |
---|
243 | pred[node] = pred[source]; |
---|
244 | pred[source] = node; |
---|
245 | } |
---|
246 | free_index_list(handle); |
---|
247 | |
---|
248 | |
---|
249 | /*** For each source chain, hook it to an "appropriate" number of sinks, |
---|
250 | *** place capacities and costs on the skeleton edges, and then call |
---|
251 | *** pick_head to add a bunch of rubbish edges at each node on the chain. |
---|
252 | ***/ |
---|
253 | |
---|
254 | for (source = 1; source <= SOURCES; source++) { |
---|
255 | sort_count = 0; |
---|
256 | node = pred[source]; |
---|
257 | while (node != source) { |
---|
258 | sort_count++; |
---|
259 | head[sort_count] = node; |
---|
260 | node = tail[sort_count] = pred[node]; |
---|
261 | } |
---|
262 | if ((NODES-SOURCES-SINKS) == 0) |
---|
263 | sinks_per_source = SINKS/SOURCES + 1; |
---|
264 | else |
---|
265 | /* changing to handle overflows with large n; Mar 18 -- jc */ |
---|
266 | sinks_per_source = ((double) 2*sort_count*SINKS) / ((double) NODES-SOURCES-SINKS); |
---|
267 | sinks_per_source = MAX(2, MIN(sinks_per_source, SINKS)); |
---|
268 | sinks = (NODE*) malloc(sinks_per_source * sizeof(NODE)); |
---|
269 | handle = make_index_list((INDEX)(NODES - SINKS), (INDEX)(NODES - 1)); |
---|
270 | for (i = 0; i < sinks_per_source; i++) { |
---|
271 | sinks[i] = choose_index(handle, (INDEX)ng_random(1L, (long)index_size(handle))); |
---|
272 | } |
---|
273 | if (source == SOURCES && index_size(handle) > 0) { |
---|
274 | sinks = (NODE*) realloc((void *)sinks, (sinks_per_source + index_size(handle)) * sizeof(NODE)); |
---|
275 | while (index_size(handle) > 0) { |
---|
276 | j = choose_index(handle, 1); |
---|
277 | if (B[j] == 0) |
---|
278 | sinks[sinks_per_source++] = j; |
---|
279 | } |
---|
280 | } |
---|
281 | free_index_list(handle); |
---|
282 | |
---|
283 | chain_length = sort_count; |
---|
284 | supply_per_sink = B[source-1] / sinks_per_source; |
---|
285 | k = pred[source]; |
---|
286 | for (i = 0; i < sinks_per_source; i++) { |
---|
287 | sort_count++; |
---|
288 | partial_supply = ng_random(1L, (long)supply_per_sink); |
---|
289 | j = ng_random(0L, (long)sinks_per_source - 1); |
---|
290 | tail[sort_count] = k; |
---|
291 | head[sort_count] = sinks[i] + 1; |
---|
292 | B[sinks[i]] -= partial_supply; |
---|
293 | B[sinks[j]] -= (supply_per_sink - partial_supply); |
---|
294 | k = source; |
---|
295 | for (j = ng_random(1L, (long)chain_length); j > 0; j--) |
---|
296 | k = pred[k]; |
---|
297 | } |
---|
298 | B[sinks[0]] -= (B[source-1] % sinks_per_source); |
---|
299 | free((void *)sinks); |
---|
300 | |
---|
301 | sort_skeleton(sort_count); |
---|
302 | tail[sort_count+1] = 0; |
---|
303 | for (i = 1; i <= sort_count; ) { |
---|
304 | handle = make_index_list((INDEX)(SOURCES - TSOURCES + 1), (INDEX)NODES); |
---|
305 | remove_index(handle, (INDEX)tail[i]); |
---|
306 | it = tail[i]; |
---|
307 | while (it == tail[i]) { |
---|
308 | remove_index(handle, (INDEX)head[i]); |
---|
309 | cap = SUPPLY; |
---|
310 | if (ng_random(1L, 100L) <= CAPACITATED) |
---|
311 | cap = MAX(B[source-1], MINCAP); |
---|
312 | cost = MAXCOST; |
---|
313 | if (ng_random(1L, 100L) > HICOST) |
---|
314 | cost = ng_random(MINCOST, MAXCOST); |
---|
315 | SAVE_ARC(it,head[i],cost,cap); |
---|
316 | i++; |
---|
317 | } |
---|
318 | pick_head(parms, handle, it); |
---|
319 | free_index_list(handle); |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | |
---|
324 | /*** Add more rubbish edges out of the transshipment sinks. */ |
---|
325 | |
---|
326 | for (i = NODES - SINKS + 1; i <= NODES - SINKS + TSINKS; i++) { |
---|
327 | handle = make_index_list((INDEX)(SOURCES - TSOURCES + 1), (INDEX)NODES); |
---|
328 | remove_index(handle, (INDEX)i); |
---|
329 | pick_head(parms, handle, i); |
---|
330 | free_index_list(handle); |
---|
331 | } |
---|
332 | |
---|
333 | return arc_count; |
---|
334 | } |
---|
335 | |
---|
336 | |
---|
337 | PRIVATE void create_supply(sources, supply) |
---|
338 | NODE sources; |
---|
339 | CAPACITY supply; |
---|
340 | { |
---|
341 | CAPACITY supply_per_source = supply / sources; |
---|
342 | CAPACITY partial_supply; |
---|
343 | NODE i; |
---|
344 | |
---|
345 | for (i = 0; i < sources; i++) { |
---|
346 | B[i] += (partial_supply = ng_random(1L, (long)supply_per_source)); |
---|
347 | B[ng_random(0L, (long)(sources - 1))] += supply_per_source - partial_supply; |
---|
348 | } |
---|
349 | B[ng_random(0L, (long)(sources - 1))] += supply % sources; |
---|
350 | } |
---|
351 | |
---|
352 | |
---|
353 | PRIVATE void create_assignment(parms) |
---|
354 | long parms[]; |
---|
355 | { |
---|
356 | INDEX_LIST skeleton, handle; |
---|
357 | INDEX index; |
---|
358 | NODE source; |
---|
359 | |
---|
360 | for (source = 0; source < NODES/2; source++) |
---|
361 | B[source] = 1; |
---|
362 | for ( ; source < NODES; source++) |
---|
363 | B[source] = -1; |
---|
364 | |
---|
365 | skeleton = make_index_list((INDEX)(SOURCES + 1), (INDEX)NODES); |
---|
366 | for (source = 1; source <= NODES/2; source++) { |
---|
367 | index = choose_index(skeleton, (INDEX)ng_random(1L, (long)index_size(skeleton))); |
---|
368 | SAVE_ARC(source, index, ng_random(MINCOST, MAXCOST), 1); |
---|
369 | handle = make_index_list((INDEX)(SOURCES + 1), (INDEX)NODES); |
---|
370 | remove_index(handle, index); |
---|
371 | pick_head(parms, handle, source); |
---|
372 | free_index_list(handle); |
---|
373 | } |
---|
374 | free_index_list(skeleton); |
---|
375 | } |
---|
376 | |
---|
377 | |
---|
378 | PRIVATE void sort_skeleton(sort_count) /* Shell sort */ |
---|
379 | int sort_count; |
---|
380 | { |
---|
381 | int m,i,j,k; |
---|
382 | int temp; |
---|
383 | |
---|
384 | m = sort_count; |
---|
385 | while ((m /= 2) != 0) { |
---|
386 | k = sort_count - m; |
---|
387 | for (j = 1; j <= k; j++) { |
---|
388 | i = j; |
---|
389 | while (i >= 1 && tail[i] > tail[i+m]) { |
---|
390 | temp = tail[i]; |
---|
391 | tail[i] = tail[i+m]; |
---|
392 | tail[i+m] = temp; |
---|
393 | temp = head[i]; |
---|
394 | head[i] = head[i+m]; |
---|
395 | head[i+m] = temp; |
---|
396 | i -= m; |
---|
397 | } |
---|
398 | } |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | |
---|
403 | PRIVATE void pick_head(parms, handle, desired_tail) |
---|
404 | long parms[]; |
---|
405 | INDEX_LIST handle; |
---|
406 | NODE desired_tail; |
---|
407 | { |
---|
408 | NODE non_sources = NODES - SOURCES + TSOURCES; |
---|
409 | |
---|
410 | /* changing Aug 29 -- jc |
---|
411 | ARC remaining_arcs = DENSITY - arc_count; |
---|
412 | */ |
---|
413 | int remaining_arcs = (int) DENSITY - (int) arc_count; |
---|
414 | |
---|
415 | INDEX index; |
---|
416 | int limit; |
---|
417 | long upper_bound; |
---|
418 | CAPACITY cap; |
---|
419 | |
---|
420 | /* changing Aug 29 -- jc |
---|
421 | */ |
---|
422 | nodes_left--; |
---|
423 | if ((2 * (int) nodes_left) >= (int) remaining_arcs) |
---|
424 | return; |
---|
425 | |
---|
426 | if ((remaining_arcs + non_sources - pseudo_size(handle) - 1) / (nodes_left + 1) >= non_sources - 1) { |
---|
427 | limit = non_sources; |
---|
428 | } else { |
---|
429 | upper_bound = 2 * (remaining_arcs / (nodes_left + 1) - 1); |
---|
430 | do { |
---|
431 | limit = ng_random(1L, upper_bound); |
---|
432 | if (nodes_left == 0) |
---|
433 | limit = remaining_arcs; |
---|
434 | /* changing to handle overflows with large n; Mar 18 -- jc */ |
---|
435 | } while ( ((double) nodes_left * (non_sources - 1)) < ((double) remaining_arcs - limit)); |
---|
436 | } |
---|
437 | |
---|
438 | for ( ; limit > 0; limit--) { |
---|
439 | index = choose_index(handle, (INDEX)ng_random(1L, (long)pseudo_size(handle))); |
---|
440 | cap = SUPPLY; |
---|
441 | if (ng_random(1L, 100L) <= CAPACITATED) |
---|
442 | cap = ng_random(MINCAP, MAXCAP); |
---|
443 | |
---|
444 | /* adding Aug 29 -- jc */ |
---|
445 | if ((1 <= index) && (index <= NODES)) { |
---|
446 | SAVE_ARC(desired_tail, index, ng_random(MINCOST, MAXCOST), cap); |
---|
447 | } |
---|
448 | |
---|
449 | } |
---|
450 | } |
---|
451 | |
---|
452 | |
---|
453 | /*** Print an appropriate error message and then exit with a nonzero code. */ |
---|
454 | |
---|
455 | PRIVATE void error_exit(rc) |
---|
456 | long rc; |
---|
457 | { |
---|
458 | switch (rc) { |
---|
459 | case BAD_SEED: |
---|
460 | fprintf(stderr, "NETGEN requires a positive random seed\n"); |
---|
461 | break; |
---|
462 | case TOO_BIG: |
---|
463 | fprintf(stderr, "Problem too large for generator\n"); |
---|
464 | break; |
---|
465 | case BAD_PARMS: |
---|
466 | fprintf(stderr, "Inconsistent parameter settings - check the input\n"); |
---|
467 | break; |
---|
468 | case ALLOCATION_FAILURE: |
---|
469 | fprintf(stderr, "Memory allocation failure\n"); |
---|
470 | break; |
---|
471 | default: |
---|
472 | fprintf(stderr, "Internal error\n"); |
---|
473 | break; |
---|
474 | } |
---|
475 | exit(1000 - (int)rc); |
---|
476 | } |
---|
477 | |
---|
478 | #ifdef DIMACS /* generates network on standard output */ |
---|
479 | |
---|
480 | #define READ(v) /* read one variable using scanf */ \ |
---|
481 | switch( scanf("%ld", &v) ) { \ |
---|
482 | case 1: \ |
---|
483 | break; \ |
---|
484 | default: \ |
---|
485 | exit(0); \ |
---|
486 | } |
---|
487 | |
---|
488 | int main() |
---|
489 | { |
---|
490 | long seed; |
---|
491 | long problem; |
---|
492 | long parms[PROBLEM_PARMS]; |
---|
493 | long arcs; |
---|
494 | int i; |
---|
495 | |
---|
496 | /*** Read problem parameters and generate networks */ |
---|
497 | |
---|
498 | while (1) { |
---|
499 | READ(seed); |
---|
500 | if (seed <= 0) exit(0); |
---|
501 | READ(problem); |
---|
502 | if (problem <= 0) exit(0); |
---|
503 | for (i = 0; i < PROBLEM_PARMS; i++) |
---|
504 | READ(parms[i]); |
---|
505 | printf("c NETGEN flow network generator (C version)\n"); |
---|
506 | printf("c Problem %2ld input parameters\n", problem); |
---|
507 | printf("c ---------------------------\n"); |
---|
508 | printf("c Random seed: %10ld\n", seed); |
---|
509 | printf("c Number of nodes: %10ld\n", NODES); |
---|
510 | printf("c Source nodes: %10ld\n", SOURCES); |
---|
511 | printf("c Sink nodes: %10ld\n", SINKS); |
---|
512 | printf("c Number of arcs: %10ld\n", DENSITY); |
---|
513 | printf("c Minimum arc cost: %10ld\n", MINCOST); |
---|
514 | printf("c Maximum arc cost: %10ld\n", MAXCOST); |
---|
515 | printf("c Total supply: %10ld\n", SUPPLY); |
---|
516 | printf("c Transshipment -\n"); |
---|
517 | printf("c Sources: %10ld\n", TSOURCES); |
---|
518 | printf("c Sinks: %10ld\n", TSINKS); |
---|
519 | printf("c Skeleton arcs -\n"); |
---|
520 | printf("c With max cost: %10ld%%\n", HICOST); |
---|
521 | printf("c Capacitated: %10ld%%\n", CAPACITATED); |
---|
522 | printf("c Minimum arc capacity: %10ld\n", MINCAP); |
---|
523 | printf("c Maximum arc capacity: %10ld\n", MAXCAP); |
---|
524 | |
---|
525 | if ((arcs = netgen(seed, parms)) < 0) |
---|
526 | error_exit(arcs); |
---|
527 | if ((SOURCES-TSOURCES)+(SINKS-TSINKS) == NODES && |
---|
528 | (SOURCES-TSOURCES) == (SINKS-TSINKS) && |
---|
529 | SOURCES == SUPPLY) { |
---|
530 | printf("c\n"); |
---|
531 | printf("c *** Assignment ***\n"); |
---|
532 | printf("c\n"); |
---|
533 | printf("p asn %ld %ld\n", NODES, arcs); |
---|
534 | for (i = 0; i < NODES; i++) { |
---|
535 | if (B[i] > 0) |
---|
536 | printf("n %ld\n", i + 1); |
---|
537 | } |
---|
538 | for (i = 0; i < arcs; i++) { |
---|
539 | printf("a %ld %ld %ld\n", FROM[i], TO[i], C[i]); |
---|
540 | } |
---|
541 | } else |
---|
542 | if (MINCOST == 1 && MAXCOST == 1) { |
---|
543 | printf("c\n"); |
---|
544 | printf("c *** Maximum flow ***\n"); |
---|
545 | printf("c\n"); |
---|
546 | printf("p max %ld %ld\n", NODES, arcs); |
---|
547 | for (i = 0; i < NODES; i++) { |
---|
548 | if (B[i] > 0) |
---|
549 | printf("n %ld s\n", i + 1); |
---|
550 | else |
---|
551 | if (B[i] < 0) |
---|
552 | printf("n %ld t\n", i + 1); |
---|
553 | } |
---|
554 | for (i = 0; i < arcs; i++) { |
---|
555 | printf("a %ld %ld %ld\n", FROM[i], TO[i], U[i]); |
---|
556 | } |
---|
557 | } else { |
---|
558 | printf("c\n"); |
---|
559 | printf("c *** Minimum cost flow ***\n"); |
---|
560 | printf("c\n"); |
---|
561 | printf("p min %ld %ld\n", NODES, arcs); |
---|
562 | for (i = 0; i < NODES; i++) { |
---|
563 | if (B[i] != 0) |
---|
564 | printf("n %ld %ld\n", i + 1, B[i]); |
---|
565 | } |
---|
566 | for (i = 0; i < arcs; i++) { |
---|
567 | printf("a %ld %ld %ld %ld %ld\n", FROM[i], TO[i], 0, U[i], C[i]); |
---|
568 | } |
---|
569 | } |
---|
570 | } |
---|
571 | return 0; |
---|
572 | } |
---|
573 | |
---|
574 | #endif |
---|