[209] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
[40] | 2 | * |
---|
[209] | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
[40] | 4 | * |
---|
| 5 | * Copyright (C) 2003-2008 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
[406] | 19 | namespace lemon { |
---|
| 20 | |
---|
[40] | 21 | /** |
---|
| 22 | @defgroup datas Data Structures |
---|
[50] | 23 | This group describes the several data structures implemented in LEMON. |
---|
[40] | 24 | */ |
---|
| 25 | |
---|
| 26 | /** |
---|
| 27 | @defgroup graphs Graph Structures |
---|
| 28 | @ingroup datas |
---|
| 29 | \brief Graph structures implemented in LEMON. |
---|
| 30 | |
---|
[209] | 31 | The implementation of combinatorial algorithms heavily relies on |
---|
| 32 | efficient graph implementations. LEMON offers data structures which are |
---|
| 33 | planned to be easily used in an experimental phase of implementation studies, |
---|
| 34 | and thereafter the program code can be made efficient by small modifications. |
---|
[40] | 35 | |
---|
| 36 | The most efficient implementation of diverse applications require the |
---|
| 37 | usage of different physical graph implementations. These differences |
---|
| 38 | appear in the size of graph we require to handle, memory or time usage |
---|
| 39 | limitations or in the set of operations through which the graph can be |
---|
| 40 | accessed. LEMON provides several physical graph structures to meet |
---|
| 41 | the diverging requirements of the possible users. In order to save on |
---|
| 42 | running time or on memory usage, some structures may fail to provide |
---|
[83] | 43 | some graph features like arc/edge or node deletion. |
---|
[40] | 44 | |
---|
[209] | 45 | Alteration of standard containers need a very limited number of |
---|
| 46 | operations, these together satisfy the everyday requirements. |
---|
| 47 | In the case of graph structures, different operations are needed which do |
---|
| 48 | not alter the physical graph, but gives another view. If some nodes or |
---|
[83] | 49 | arcs have to be hidden or the reverse oriented graph have to be used, then |
---|
[209] | 50 | this is the case. It also may happen that in a flow implementation |
---|
| 51 | the residual graph can be accessed by another algorithm, or a node-set |
---|
| 52 | is to be shrunk for another algorithm. |
---|
| 53 | LEMON also provides a variety of graphs for these requirements called |
---|
| 54 | \ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
---|
| 55 | in conjunction with other graph representations. |
---|
[40] | 56 | |
---|
| 57 | You are free to use the graph structure that fit your requirements |
---|
| 58 | the best, most graph algorithms and auxiliary data structures can be used |
---|
[314] | 59 | with any graph structure. |
---|
| 60 | |
---|
| 61 | <b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
---|
[40] | 62 | */ |
---|
| 63 | |
---|
| 64 | /** |
---|
[416] | 65 | @defgroup graph_adaptors Adaptor Classes for graphs |
---|
| 66 | @ingroup graphs |
---|
| 67 | \brief This group contains several adaptor classes for digraphs and graphs |
---|
| 68 | |
---|
| 69 | The main parts of LEMON are the different graph structures, generic |
---|
| 70 | graph algorithms, graph concepts which couple these, and graph |
---|
| 71 | adaptors. While the previous notions are more or less clear, the |
---|
| 72 | latter one needs further explanation. Graph adaptors are graph classes |
---|
| 73 | which serve for considering graph structures in different ways. |
---|
| 74 | |
---|
| 75 | A short example makes this much clearer. Suppose that we have an |
---|
| 76 | instance \c g of a directed graph type say ListDigraph and an algorithm |
---|
| 77 | \code |
---|
| 78 | template <typename Digraph> |
---|
| 79 | int algorithm(const Digraph&); |
---|
| 80 | \endcode |
---|
| 81 | is needed to run on the reverse oriented graph. It may be expensive |
---|
| 82 | (in time or in memory usage) to copy \c g with the reversed |
---|
| 83 | arcs. In this case, an adaptor class is used, which (according |
---|
| 84 | to LEMON digraph concepts) works as a digraph. The adaptor uses the |
---|
| 85 | original digraph structure and digraph operations when methods of the |
---|
| 86 | reversed oriented graph are called. This means that the adaptor have |
---|
| 87 | minor memory usage, and do not perform sophisticated algorithmic |
---|
| 88 | actions. The purpose of it is to give a tool for the cases when a |
---|
| 89 | graph have to be used in a specific alteration. If this alteration is |
---|
| 90 | obtained by a usual construction like filtering the arc-set or |
---|
| 91 | considering a new orientation, then an adaptor is worthwhile to use. |
---|
| 92 | To come back to the reverse oriented graph, in this situation |
---|
| 93 | \code |
---|
| 94 | template<typename Digraph> class ReverseDigraph; |
---|
| 95 | \endcode |
---|
| 96 | template class can be used. The code looks as follows |
---|
| 97 | \code |
---|
| 98 | ListDigraph g; |
---|
| 99 | ReverseDigraph<ListGraph> rg(g); |
---|
| 100 | int result = algorithm(rg); |
---|
| 101 | \endcode |
---|
| 102 | After running the algorithm, the original graph \c g is untouched. |
---|
| 103 | This techniques gives rise to an elegant code, and based on stable |
---|
| 104 | graph adaptors, complex algorithms can be implemented easily. |
---|
| 105 | |
---|
| 106 | In flow, circulation and bipartite matching problems, the residual |
---|
| 107 | graph is of particular importance. Combining an adaptor implementing |
---|
| 108 | this, shortest path algorithms and minimum mean cycle algorithms, |
---|
| 109 | a range of weighted and cardinality optimization algorithms can be |
---|
| 110 | obtained. For other examples, the interested user is referred to the |
---|
| 111 | detailed documentation of particular adaptors. |
---|
| 112 | |
---|
| 113 | The behavior of graph adaptors can be very different. Some of them keep |
---|
| 114 | capabilities of the original graph while in other cases this would be |
---|
| 115 | meaningless. This means that the concepts that they are models of depend |
---|
| 116 | on the graph adaptor, and the wrapped graph(s). |
---|
| 117 | If an arc of \c rg is deleted, this is carried out by deleting the |
---|
| 118 | corresponding arc of \c g, thus the adaptor modifies the original graph. |
---|
| 119 | |
---|
| 120 | But for a residual graph, this operation has no sense. |
---|
| 121 | Let us stand one more example here to simplify your work. |
---|
| 122 | RevGraphAdaptor has constructor |
---|
| 123 | \code |
---|
| 124 | ReverseDigraph(Digraph& digraph); |
---|
| 125 | \endcode |
---|
| 126 | This means that in a situation, when a <tt>const ListDigraph&</tt> |
---|
| 127 | reference to a graph is given, then it have to be instantiated with |
---|
| 128 | <tt>Digraph=const ListDigraph</tt>. |
---|
| 129 | \code |
---|
| 130 | int algorithm1(const ListDigraph& g) { |
---|
| 131 | RevGraphAdaptor<const ListDigraph> rg(g); |
---|
| 132 | return algorithm2(rg); |
---|
| 133 | } |
---|
| 134 | \endcode |
---|
| 135 | */ |
---|
| 136 | |
---|
| 137 | /** |
---|
[50] | 138 | @defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
---|
[40] | 139 | @ingroup graphs |
---|
| 140 | \brief Graph types between real graphs and graph adaptors. |
---|
| 141 | |
---|
[50] | 142 | This group describes some graph types between real graphs and graph adaptors. |
---|
[209] | 143 | These classes wrap graphs to give new functionality as the adaptors do it. |
---|
[50] | 144 | On the other hand they are not light-weight structures as the adaptors. |
---|
[40] | 145 | */ |
---|
| 146 | |
---|
| 147 | /** |
---|
[209] | 148 | @defgroup maps Maps |
---|
[40] | 149 | @ingroup datas |
---|
[50] | 150 | \brief Map structures implemented in LEMON. |
---|
[40] | 151 | |
---|
[50] | 152 | This group describes the map structures implemented in LEMON. |
---|
| 153 | |
---|
[314] | 154 | LEMON provides several special purpose maps and map adaptors that e.g. combine |
---|
[40] | 155 | new maps from existing ones. |
---|
[314] | 156 | |
---|
| 157 | <b>See also:</b> \ref map_concepts "Map Concepts". |
---|
[40] | 158 | */ |
---|
| 159 | |
---|
| 160 | /** |
---|
[209] | 161 | @defgroup graph_maps Graph Maps |
---|
[40] | 162 | @ingroup maps |
---|
[83] | 163 | \brief Special graph-related maps. |
---|
[40] | 164 | |
---|
[50] | 165 | This group describes maps that are specifically designed to assign |
---|
[406] | 166 | values to the nodes and arcs/edges of graphs. |
---|
| 167 | |
---|
| 168 | If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
---|
| 169 | \c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
---|
[40] | 170 | */ |
---|
| 171 | |
---|
| 172 | /** |
---|
| 173 | \defgroup map_adaptors Map Adaptors |
---|
| 174 | \ingroup maps |
---|
| 175 | \brief Tools to create new maps from existing ones |
---|
| 176 | |
---|
[50] | 177 | This group describes map adaptors that are used to create "implicit" |
---|
| 178 | maps from other maps. |
---|
[40] | 179 | |
---|
[406] | 180 | Most of them are \ref concepts::ReadMap "read-only maps". |
---|
[83] | 181 | They can make arithmetic and logical operations between one or two maps |
---|
| 182 | (negation, shifting, addition, multiplication, logical 'and', 'or', |
---|
| 183 | 'not' etc.) or e.g. convert a map to another one of different Value type. |
---|
[40] | 184 | |
---|
[50] | 185 | The typical usage of this classes is passing implicit maps to |
---|
[40] | 186 | algorithms. If a function type algorithm is called then the function |
---|
| 187 | type map adaptors can be used comfortable. For example let's see the |
---|
[314] | 188 | usage of map adaptors with the \c graphToEps() function. |
---|
[40] | 189 | \code |
---|
| 190 | Color nodeColor(int deg) { |
---|
| 191 | if (deg >= 2) { |
---|
| 192 | return Color(0.5, 0.0, 0.5); |
---|
| 193 | } else if (deg == 1) { |
---|
| 194 | return Color(1.0, 0.5, 1.0); |
---|
| 195 | } else { |
---|
| 196 | return Color(0.0, 0.0, 0.0); |
---|
| 197 | } |
---|
| 198 | } |
---|
[209] | 199 | |
---|
[83] | 200 | Digraph::NodeMap<int> degree_map(graph); |
---|
[209] | 201 | |
---|
[314] | 202 | graphToEps(graph, "graph.eps") |
---|
[40] | 203 | .coords(coords).scaleToA4().undirected() |
---|
[83] | 204 | .nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
---|
[40] | 205 | .run(); |
---|
[209] | 206 | \endcode |
---|
[83] | 207 | The \c functorToMap() function makes an \c int to \c Color map from the |
---|
[314] | 208 | \c nodeColor() function. The \c composeMap() compose the \c degree_map |
---|
[83] | 209 | and the previously created map. The composed map is a proper function to |
---|
| 210 | get the color of each node. |
---|
[40] | 211 | |
---|
| 212 | The usage with class type algorithms is little bit harder. In this |
---|
| 213 | case the function type map adaptors can not be used, because the |
---|
[50] | 214 | function map adaptors give back temporary objects. |
---|
[40] | 215 | \code |
---|
[83] | 216 | Digraph graph; |
---|
| 217 | |
---|
| 218 | typedef Digraph::ArcMap<double> DoubleArcMap; |
---|
| 219 | DoubleArcMap length(graph); |
---|
| 220 | DoubleArcMap speed(graph); |
---|
| 221 | |
---|
| 222 | typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
---|
[40] | 223 | TimeMap time(length, speed); |
---|
[209] | 224 | |
---|
[83] | 225 | Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
---|
[40] | 226 | dijkstra.run(source, target); |
---|
| 227 | \endcode |
---|
[83] | 228 | We have a length map and a maximum speed map on the arcs of a digraph. |
---|
| 229 | The minimum time to pass the arc can be calculated as the division of |
---|
| 230 | the two maps which can be done implicitly with the \c DivMap template |
---|
[40] | 231 | class. We use the implicit minimum time map as the length map of the |
---|
| 232 | \c Dijkstra algorithm. |
---|
| 233 | */ |
---|
| 234 | |
---|
| 235 | /** |
---|
[209] | 236 | @defgroup matrices Matrices |
---|
[40] | 237 | @ingroup datas |
---|
[50] | 238 | \brief Two dimensional data storages implemented in LEMON. |
---|
[40] | 239 | |
---|
[50] | 240 | This group describes two dimensional data storages implemented in LEMON. |
---|
[40] | 241 | */ |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | @defgroup paths Path Structures |
---|
| 245 | @ingroup datas |
---|
[318] | 246 | \brief %Path structures implemented in LEMON. |
---|
[40] | 247 | |
---|
[50] | 248 | This group describes the path structures implemented in LEMON. |
---|
[40] | 249 | |
---|
[50] | 250 | LEMON provides flexible data structures to work with paths. |
---|
| 251 | All of them have similar interfaces and they can be copied easily with |
---|
| 252 | assignment operators and copy constructors. This makes it easy and |
---|
[40] | 253 | efficient to have e.g. the Dijkstra algorithm to store its result in |
---|
| 254 | any kind of path structure. |
---|
| 255 | |
---|
| 256 | \sa lemon::concepts::Path |
---|
| 257 | */ |
---|
| 258 | |
---|
| 259 | /** |
---|
| 260 | @defgroup auxdat Auxiliary Data Structures |
---|
| 261 | @ingroup datas |
---|
[50] | 262 | \brief Auxiliary data structures implemented in LEMON. |
---|
[40] | 263 | |
---|
[50] | 264 | This group describes some data structures implemented in LEMON in |
---|
[40] | 265 | order to make it easier to implement combinatorial algorithms. |
---|
| 266 | */ |
---|
| 267 | |
---|
| 268 | /** |
---|
| 269 | @defgroup algs Algorithms |
---|
| 270 | \brief This group describes the several algorithms |
---|
| 271 | implemented in LEMON. |
---|
| 272 | |
---|
| 273 | This group describes the several algorithms |
---|
| 274 | implemented in LEMON. |
---|
| 275 | */ |
---|
| 276 | |
---|
| 277 | /** |
---|
| 278 | @defgroup search Graph Search |
---|
| 279 | @ingroup algs |
---|
[50] | 280 | \brief Common graph search algorithms. |
---|
[40] | 281 | |
---|
[406] | 282 | This group describes the common graph search algorithms, namely |
---|
| 283 | \e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
---|
[40] | 284 | */ |
---|
| 285 | |
---|
| 286 | /** |
---|
[314] | 287 | @defgroup shortest_path Shortest Path Algorithms |
---|
[40] | 288 | @ingroup algs |
---|
[50] | 289 | \brief Algorithms for finding shortest paths. |
---|
[40] | 290 | |
---|
[406] | 291 | This group describes the algorithms for finding shortest paths in digraphs. |
---|
| 292 | |
---|
| 293 | - \ref Dijkstra algorithm for finding shortest paths from a source node |
---|
| 294 | when all arc lengths are non-negative. |
---|
| 295 | - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
---|
| 296 | from a source node when arc lenghts can be either positive or negative, |
---|
| 297 | but the digraph should not contain directed cycles with negative total |
---|
| 298 | length. |
---|
| 299 | - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
---|
| 300 | for solving the \e all-pairs \e shortest \e paths \e problem when arc |
---|
| 301 | lenghts can be either positive or negative, but the digraph should |
---|
| 302 | not contain directed cycles with negative total length. |
---|
| 303 | - \ref Suurballe A successive shortest path algorithm for finding |
---|
| 304 | arc-disjoint paths between two nodes having minimum total length. |
---|
[40] | 305 | */ |
---|
| 306 | |
---|
[209] | 307 | /** |
---|
[314] | 308 | @defgroup max_flow Maximum Flow Algorithms |
---|
[209] | 309 | @ingroup algs |
---|
[50] | 310 | \brief Algorithms for finding maximum flows. |
---|
[40] | 311 | |
---|
| 312 | This group describes the algorithms for finding maximum flows and |
---|
| 313 | feasible circulations. |
---|
| 314 | |
---|
[406] | 315 | The \e maximum \e flow \e problem is to find a flow of maximum value between |
---|
| 316 | a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
---|
| 317 | digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
---|
| 318 | \f$s, t \in V\f$ source and target nodes. |
---|
| 319 | A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
---|
| 320 | following optimization problem. |
---|
[40] | 321 | |
---|
[406] | 322 | \f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
---|
| 323 | \f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
---|
| 324 | \qquad \forall v\in V\setminus\{s,t\} \f] |
---|
| 325 | \f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
---|
[40] | 326 | |
---|
[50] | 327 | LEMON contains several algorithms for solving maximum flow problems: |
---|
[406] | 328 | - \ref EdmondsKarp Edmonds-Karp algorithm. |
---|
| 329 | - \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
---|
| 330 | - \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
---|
| 331 | - \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
---|
[40] | 332 | |
---|
[406] | 333 | In most cases the \ref Preflow "Preflow" algorithm provides the |
---|
| 334 | fastest method for computing a maximum flow. All implementations |
---|
| 335 | provides functions to also query the minimum cut, which is the dual |
---|
| 336 | problem of the maximum flow. |
---|
[40] | 337 | */ |
---|
| 338 | |
---|
| 339 | /** |
---|
[314] | 340 | @defgroup min_cost_flow Minimum Cost Flow Algorithms |
---|
[40] | 341 | @ingroup algs |
---|
| 342 | |
---|
[50] | 343 | \brief Algorithms for finding minimum cost flows and circulations. |
---|
[40] | 344 | |
---|
| 345 | This group describes the algorithms for finding minimum cost flows and |
---|
[209] | 346 | circulations. |
---|
[406] | 347 | |
---|
| 348 | The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
---|
| 349 | minimum total cost from a set of supply nodes to a set of demand nodes |
---|
| 350 | in a network with capacity constraints and arc costs. |
---|
| 351 | Formally, let \f$G=(V,A)\f$ be a digraph, |
---|
| 352 | \f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
---|
| 353 | upper bounds for the flow values on the arcs, |
---|
| 354 | \f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
---|
| 355 | on the arcs, and |
---|
| 356 | \f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
---|
| 357 | of the nodes. |
---|
| 358 | A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
---|
| 359 | the following optimization problem. |
---|
| 360 | |
---|
| 361 | \f[ \min\sum_{a\in A} f(a) cost(a) \f] |
---|
| 362 | \f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
---|
| 363 | supply(v) \qquad \forall v\in V \f] |
---|
| 364 | \f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
---|
| 365 | |
---|
| 366 | LEMON contains several algorithms for solving minimum cost flow problems: |
---|
| 367 | - \ref CycleCanceling Cycle-canceling algorithms. |
---|
| 368 | - \ref CapacityScaling Successive shortest path algorithm with optional |
---|
| 369 | capacity scaling. |
---|
| 370 | - \ref CostScaling Push-relabel and augment-relabel algorithms based on |
---|
| 371 | cost scaling. |
---|
| 372 | - \ref NetworkSimplex Primal network simplex algorithm with various |
---|
| 373 | pivot strategies. |
---|
[40] | 374 | */ |
---|
| 375 | |
---|
| 376 | /** |
---|
[314] | 377 | @defgroup min_cut Minimum Cut Algorithms |
---|
[209] | 378 | @ingroup algs |
---|
[40] | 379 | |
---|
[50] | 380 | \brief Algorithms for finding minimum cut in graphs. |
---|
[40] | 381 | |
---|
| 382 | This group describes the algorithms for finding minimum cut in graphs. |
---|
| 383 | |
---|
[406] | 384 | The \e minimum \e cut \e problem is to find a non-empty and non-complete |
---|
| 385 | \f$X\f$ subset of the nodes with minimum overall capacity on |
---|
| 386 | outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
---|
| 387 | \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
---|
[50] | 388 | cut is the \f$X\f$ solution of the next optimization problem: |
---|
[40] | 389 | |
---|
[210] | 390 | \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
---|
[406] | 391 | \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
---|
[40] | 392 | |
---|
[50] | 393 | LEMON contains several algorithms related to minimum cut problems: |
---|
[40] | 394 | |
---|
[406] | 395 | - \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
---|
| 396 | in directed graphs. |
---|
| 397 | - \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
---|
| 398 | calculating minimum cut in undirected graphs. |
---|
| 399 | - \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
---|
| 400 | all-pairs minimum cut in undirected graphs. |
---|
[40] | 401 | |
---|
| 402 | If you want to find minimum cut just between two distinict nodes, |
---|
[406] | 403 | see the \ref max_flow "maximum flow problem". |
---|
[40] | 404 | */ |
---|
| 405 | |
---|
| 406 | /** |
---|
[314] | 407 | @defgroup graph_prop Connectivity and Other Graph Properties |
---|
[40] | 408 | @ingroup algs |
---|
[50] | 409 | \brief Algorithms for discovering the graph properties |
---|
[40] | 410 | |
---|
[50] | 411 | This group describes the algorithms for discovering the graph properties |
---|
| 412 | like connectivity, bipartiteness, euler property, simplicity etc. |
---|
[40] | 413 | |
---|
| 414 | \image html edge_biconnected_components.png |
---|
| 415 | \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
---|
| 416 | */ |
---|
| 417 | |
---|
| 418 | /** |
---|
[314] | 419 | @defgroup planar Planarity Embedding and Drawing |
---|
[40] | 420 | @ingroup algs |
---|
[50] | 421 | \brief Algorithms for planarity checking, embedding and drawing |
---|
[40] | 422 | |
---|
[210] | 423 | This group describes the algorithms for planarity checking, |
---|
| 424 | embedding and drawing. |
---|
[40] | 425 | |
---|
| 426 | \image html planar.png |
---|
| 427 | \image latex planar.eps "Plane graph" width=\textwidth |
---|
| 428 | */ |
---|
| 429 | |
---|
| 430 | /** |
---|
[314] | 431 | @defgroup matching Matching Algorithms |
---|
[40] | 432 | @ingroup algs |
---|
[50] | 433 | \brief Algorithms for finding matchings in graphs and bipartite graphs. |
---|
[40] | 434 | |
---|
[50] | 435 | This group contains algorithm objects and functions to calculate |
---|
[40] | 436 | matchings in graphs and bipartite graphs. The general matching problem is |
---|
[83] | 437 | finding a subset of the arcs which does not shares common endpoints. |
---|
[209] | 438 | |
---|
[40] | 439 | There are several different algorithms for calculate matchings in |
---|
| 440 | graphs. The matching problems in bipartite graphs are generally |
---|
| 441 | easier than in general graphs. The goal of the matching optimization |
---|
[406] | 442 | can be finding maximum cardinality, maximum weight or minimum cost |
---|
[40] | 443 | matching. The search can be constrained to find perfect or |
---|
| 444 | maximum cardinality matching. |
---|
| 445 | |
---|
[406] | 446 | The matching algorithms implemented in LEMON: |
---|
| 447 | - \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
---|
| 448 | for calculating maximum cardinality matching in bipartite graphs. |
---|
| 449 | - \ref PrBipartiteMatching Push-relabel algorithm |
---|
| 450 | for calculating maximum cardinality matching in bipartite graphs. |
---|
| 451 | - \ref MaxWeightedBipartiteMatching |
---|
| 452 | Successive shortest path algorithm for calculating maximum weighted |
---|
| 453 | matching and maximum weighted bipartite matching in bipartite graphs. |
---|
| 454 | - \ref MinCostMaxBipartiteMatching |
---|
| 455 | Successive shortest path algorithm for calculating minimum cost maximum |
---|
| 456 | matching in bipartite graphs. |
---|
| 457 | - \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
---|
| 458 | maximum cardinality matching in general graphs. |
---|
| 459 | - \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
---|
| 460 | maximum weighted matching in general graphs. |
---|
| 461 | - \ref MaxWeightedPerfectMatching |
---|
| 462 | Edmond's blossom shrinking algorithm for calculating maximum weighted |
---|
| 463 | perfect matching in general graphs. |
---|
[40] | 464 | |
---|
| 465 | \image html bipartite_matching.png |
---|
| 466 | \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
---|
| 467 | */ |
---|
| 468 | |
---|
| 469 | /** |
---|
[314] | 470 | @defgroup spantree Minimum Spanning Tree Algorithms |
---|
[40] | 471 | @ingroup algs |
---|
[50] | 472 | \brief Algorithms for finding a minimum cost spanning tree in a graph. |
---|
[40] | 473 | |
---|
[50] | 474 | This group describes the algorithms for finding a minimum cost spanning |
---|
[406] | 475 | tree in a graph. |
---|
[40] | 476 | */ |
---|
| 477 | |
---|
| 478 | /** |
---|
[314] | 479 | @defgroup auxalg Auxiliary Algorithms |
---|
[40] | 480 | @ingroup algs |
---|
[50] | 481 | \brief Auxiliary algorithms implemented in LEMON. |
---|
[40] | 482 | |
---|
[50] | 483 | This group describes some algorithms implemented in LEMON |
---|
| 484 | in order to make it easier to implement complex algorithms. |
---|
[40] | 485 | */ |
---|
| 486 | |
---|
| 487 | /** |
---|
[314] | 488 | @defgroup approx Approximation Algorithms |
---|
| 489 | @ingroup algs |
---|
[50] | 490 | \brief Approximation algorithms. |
---|
[40] | 491 | |
---|
[50] | 492 | This group describes the approximation and heuristic algorithms |
---|
| 493 | implemented in LEMON. |
---|
[40] | 494 | */ |
---|
| 495 | |
---|
| 496 | /** |
---|
| 497 | @defgroup gen_opt_group General Optimization Tools |
---|
| 498 | \brief This group describes some general optimization frameworks |
---|
| 499 | implemented in LEMON. |
---|
| 500 | |
---|
| 501 | This group describes some general optimization frameworks |
---|
| 502 | implemented in LEMON. |
---|
| 503 | */ |
---|
| 504 | |
---|
| 505 | /** |
---|
[314] | 506 | @defgroup lp_group Lp and Mip Solvers |
---|
[40] | 507 | @ingroup gen_opt_group |
---|
| 508 | \brief Lp and Mip solver interfaces for LEMON. |
---|
| 509 | |
---|
| 510 | This group describes Lp and Mip solver interfaces for LEMON. The |
---|
| 511 | various LP solvers could be used in the same manner with this |
---|
| 512 | interface. |
---|
| 513 | */ |
---|
| 514 | |
---|
[209] | 515 | /** |
---|
[314] | 516 | @defgroup lp_utils Tools for Lp and Mip Solvers |
---|
[40] | 517 | @ingroup lp_group |
---|
[50] | 518 | \brief Helper tools to the Lp and Mip solvers. |
---|
[40] | 519 | |
---|
| 520 | This group adds some helper tools to general optimization framework |
---|
| 521 | implemented in LEMON. |
---|
| 522 | */ |
---|
| 523 | |
---|
| 524 | /** |
---|
| 525 | @defgroup metah Metaheuristics |
---|
| 526 | @ingroup gen_opt_group |
---|
| 527 | \brief Metaheuristics for LEMON library. |
---|
| 528 | |
---|
[50] | 529 | This group describes some metaheuristic optimization tools. |
---|
[40] | 530 | */ |
---|
| 531 | |
---|
| 532 | /** |
---|
[209] | 533 | @defgroup utils Tools and Utilities |
---|
[50] | 534 | \brief Tools and utilities for programming in LEMON |
---|
[40] | 535 | |
---|
[50] | 536 | Tools and utilities for programming in LEMON. |
---|
[40] | 537 | */ |
---|
| 538 | |
---|
| 539 | /** |
---|
| 540 | @defgroup gutils Basic Graph Utilities |
---|
| 541 | @ingroup utils |
---|
[50] | 542 | \brief Simple basic graph utilities. |
---|
[40] | 543 | |
---|
| 544 | This group describes some simple basic graph utilities. |
---|
| 545 | */ |
---|
| 546 | |
---|
| 547 | /** |
---|
| 548 | @defgroup misc Miscellaneous Tools |
---|
| 549 | @ingroup utils |
---|
[50] | 550 | \brief Tools for development, debugging and testing. |
---|
| 551 | |
---|
| 552 | This group describes several useful tools for development, |
---|
[40] | 553 | debugging and testing. |
---|
| 554 | */ |
---|
| 555 | |
---|
| 556 | /** |
---|
[314] | 557 | @defgroup timecount Time Measuring and Counting |
---|
[40] | 558 | @ingroup misc |
---|
[50] | 559 | \brief Simple tools for measuring the performance of algorithms. |
---|
| 560 | |
---|
| 561 | This group describes simple tools for measuring the performance |
---|
[40] | 562 | of algorithms. |
---|
| 563 | */ |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | @defgroup exceptions Exceptions |
---|
| 567 | @ingroup utils |
---|
[50] | 568 | \brief Exceptions defined in LEMON. |
---|
| 569 | |
---|
| 570 | This group describes the exceptions defined in LEMON. |
---|
[40] | 571 | */ |
---|
| 572 | |
---|
| 573 | /** |
---|
| 574 | @defgroup io_group Input-Output |
---|
[50] | 575 | \brief Graph Input-Output methods |
---|
[40] | 576 | |
---|
[209] | 577 | This group describes the tools for importing and exporting graphs |
---|
[314] | 578 | and graph related data. Now it supports the \ref lgf-format |
---|
| 579 | "LEMON Graph Format", the \c DIMACS format and the encapsulated |
---|
| 580 | postscript (EPS) format. |
---|
[40] | 581 | */ |
---|
| 582 | |
---|
| 583 | /** |
---|
[351] | 584 | @defgroup lemon_io LEMON Graph Format |
---|
[40] | 585 | @ingroup io_group |
---|
[314] | 586 | \brief Reading and writing LEMON Graph Format. |
---|
[40] | 587 | |
---|
[210] | 588 | This group describes methods for reading and writing |
---|
[236] | 589 | \ref lgf-format "LEMON Graph Format". |
---|
[40] | 590 | */ |
---|
| 591 | |
---|
| 592 | /** |
---|
[314] | 593 | @defgroup eps_io Postscript Exporting |
---|
[40] | 594 | @ingroup io_group |
---|
| 595 | \brief General \c EPS drawer and graph exporter |
---|
| 596 | |
---|
[50] | 597 | This group describes general \c EPS drawing methods and special |
---|
[209] | 598 | graph exporting tools. |
---|
[40] | 599 | */ |
---|
| 600 | |
---|
| 601 | /** |
---|
[388] | 602 | @defgroup dimacs_group DIMACS format |
---|
| 603 | @ingroup io_group |
---|
| 604 | \brief Read and write files in DIMACS format |
---|
| 605 | |
---|
| 606 | Tools to read a digraph from or write it to a file in DIMACS format data. |
---|
| 607 | */ |
---|
| 608 | |
---|
| 609 | /** |
---|
[351] | 610 | @defgroup nauty_group NAUTY Format |
---|
| 611 | @ingroup io_group |
---|
| 612 | \brief Read \e Nauty format |
---|
[388] | 613 | |
---|
[351] | 614 | Tool to read graphs from \e Nauty format data. |
---|
| 615 | */ |
---|
| 616 | |
---|
| 617 | /** |
---|
[40] | 618 | @defgroup concept Concepts |
---|
| 619 | \brief Skeleton classes and concept checking classes |
---|
| 620 | |
---|
| 621 | This group describes the data/algorithm skeletons and concept checking |
---|
| 622 | classes implemented in LEMON. |
---|
| 623 | |
---|
| 624 | The purpose of the classes in this group is fourfold. |
---|
[209] | 625 | |
---|
[318] | 626 | - These classes contain the documentations of the %concepts. In order |
---|
[40] | 627 | to avoid document multiplications, an implementation of a concept |
---|
| 628 | simply refers to the corresponding concept class. |
---|
| 629 | |
---|
| 630 | - These classes declare every functions, <tt>typedef</tt>s etc. an |
---|
[318] | 631 | implementation of the %concepts should provide, however completely |
---|
[40] | 632 | without implementations and real data structures behind the |
---|
| 633 | interface. On the other hand they should provide nothing else. All |
---|
| 634 | the algorithms working on a data structure meeting a certain concept |
---|
| 635 | should compile with these classes. (Though it will not run properly, |
---|
| 636 | of course.) In this way it is easily to check if an algorithm |
---|
| 637 | doesn't use any extra feature of a certain implementation. |
---|
| 638 | |
---|
| 639 | - The concept descriptor classes also provide a <em>checker class</em> |
---|
[50] | 640 | that makes it possible to check whether a certain implementation of a |
---|
[40] | 641 | concept indeed provides all the required features. |
---|
| 642 | |
---|
| 643 | - Finally, They can serve as a skeleton of a new implementation of a concept. |
---|
| 644 | */ |
---|
| 645 | |
---|
| 646 | /** |
---|
| 647 | @defgroup graph_concepts Graph Structure Concepts |
---|
| 648 | @ingroup concept |
---|
| 649 | \brief Skeleton and concept checking classes for graph structures |
---|
| 650 | |
---|
[50] | 651 | This group describes the skeletons and concept checking classes of LEMON's |
---|
[40] | 652 | graph structures and helper classes used to implement these. |
---|
| 653 | */ |
---|
| 654 | |
---|
[314] | 655 | /** |
---|
| 656 | @defgroup map_concepts Map Concepts |
---|
| 657 | @ingroup concept |
---|
| 658 | \brief Skeleton and concept checking classes for maps |
---|
| 659 | |
---|
| 660 | This group describes the skeletons and concept checking classes of maps. |
---|
[40] | 661 | */ |
---|
| 662 | |
---|
| 663 | /** |
---|
| 664 | \anchor demoprograms |
---|
| 665 | |
---|
[406] | 666 | @defgroup demos Demo Programs |
---|
[40] | 667 | |
---|
| 668 | Some demo programs are listed here. Their full source codes can be found in |
---|
| 669 | the \c demo subdirectory of the source tree. |
---|
| 670 | |
---|
[41] | 671 | It order to compile them, use <tt>--enable-demo</tt> configure option when |
---|
| 672 | build the library. |
---|
[40] | 673 | */ |
---|
| 674 | |
---|
| 675 | /** |
---|
[406] | 676 | @defgroup tools Standalone Utility Applications |
---|
[40] | 677 | |
---|
[209] | 678 | Some utility applications are listed here. |
---|
[40] | 679 | |
---|
| 680 | The standard compilation procedure (<tt>./configure;make</tt>) will compile |
---|
[209] | 681 | them, as well. |
---|
[40] | 682 | */ |
---|
| 683 | |
---|
[406] | 684 | } |
---|