[209] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
[40] | 2 | * |
---|
[209] | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
[40] | 4 | * |
---|
| 5 | * Copyright (C) 2003-2008 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
[406] | 19 | namespace lemon { |
---|
| 20 | |
---|
[40] | 21 | /** |
---|
| 22 | @defgroup datas Data Structures |
---|
[50] | 23 | This group describes the several data structures implemented in LEMON. |
---|
[40] | 24 | */ |
---|
| 25 | |
---|
| 26 | /** |
---|
| 27 | @defgroup graphs Graph Structures |
---|
| 28 | @ingroup datas |
---|
| 29 | \brief Graph structures implemented in LEMON. |
---|
| 30 | |
---|
[209] | 31 | The implementation of combinatorial algorithms heavily relies on |
---|
| 32 | efficient graph implementations. LEMON offers data structures which are |
---|
| 33 | planned to be easily used in an experimental phase of implementation studies, |
---|
| 34 | and thereafter the program code can be made efficient by small modifications. |
---|
[40] | 35 | |
---|
| 36 | The most efficient implementation of diverse applications require the |
---|
| 37 | usage of different physical graph implementations. These differences |
---|
| 38 | appear in the size of graph we require to handle, memory or time usage |
---|
| 39 | limitations or in the set of operations through which the graph can be |
---|
| 40 | accessed. LEMON provides several physical graph structures to meet |
---|
| 41 | the diverging requirements of the possible users. In order to save on |
---|
| 42 | running time or on memory usage, some structures may fail to provide |
---|
[83] | 43 | some graph features like arc/edge or node deletion. |
---|
[40] | 44 | |
---|
[209] | 45 | Alteration of standard containers need a very limited number of |
---|
| 46 | operations, these together satisfy the everyday requirements. |
---|
| 47 | In the case of graph structures, different operations are needed which do |
---|
| 48 | not alter the physical graph, but gives another view. If some nodes or |
---|
[83] | 49 | arcs have to be hidden or the reverse oriented graph have to be used, then |
---|
[209] | 50 | this is the case. It also may happen that in a flow implementation |
---|
| 51 | the residual graph can be accessed by another algorithm, or a node-set |
---|
| 52 | is to be shrunk for another algorithm. |
---|
| 53 | LEMON also provides a variety of graphs for these requirements called |
---|
| 54 | \ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
---|
| 55 | in conjunction with other graph representations. |
---|
[40] | 56 | |
---|
| 57 | You are free to use the graph structure that fit your requirements |
---|
| 58 | the best, most graph algorithms and auxiliary data structures can be used |
---|
[314] | 59 | with any graph structure. |
---|
| 60 | |
---|
| 61 | <b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
---|
[40] | 62 | */ |
---|
| 63 | |
---|
| 64 | /** |
---|
[50] | 65 | @defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
---|
[40] | 66 | @ingroup graphs |
---|
| 67 | \brief Graph types between real graphs and graph adaptors. |
---|
| 68 | |
---|
[50] | 69 | This group describes some graph types between real graphs and graph adaptors. |
---|
[209] | 70 | These classes wrap graphs to give new functionality as the adaptors do it. |
---|
[50] | 71 | On the other hand they are not light-weight structures as the adaptors. |
---|
[40] | 72 | */ |
---|
| 73 | |
---|
| 74 | /** |
---|
[209] | 75 | @defgroup maps Maps |
---|
[40] | 76 | @ingroup datas |
---|
[50] | 77 | \brief Map structures implemented in LEMON. |
---|
[40] | 78 | |
---|
[50] | 79 | This group describes the map structures implemented in LEMON. |
---|
| 80 | |
---|
[314] | 81 | LEMON provides several special purpose maps and map adaptors that e.g. combine |
---|
[40] | 82 | new maps from existing ones. |
---|
[314] | 83 | |
---|
| 84 | <b>See also:</b> \ref map_concepts "Map Concepts". |
---|
[40] | 85 | */ |
---|
| 86 | |
---|
| 87 | /** |
---|
[209] | 88 | @defgroup graph_maps Graph Maps |
---|
[40] | 89 | @ingroup maps |
---|
[83] | 90 | \brief Special graph-related maps. |
---|
[40] | 91 | |
---|
[50] | 92 | This group describes maps that are specifically designed to assign |
---|
[406] | 93 | values to the nodes and arcs/edges of graphs. |
---|
| 94 | |
---|
| 95 | If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
---|
| 96 | \c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
---|
[40] | 97 | */ |
---|
| 98 | |
---|
| 99 | /** |
---|
| 100 | \defgroup map_adaptors Map Adaptors |
---|
| 101 | \ingroup maps |
---|
| 102 | \brief Tools to create new maps from existing ones |
---|
| 103 | |
---|
[50] | 104 | This group describes map adaptors that are used to create "implicit" |
---|
| 105 | maps from other maps. |
---|
[40] | 106 | |
---|
[406] | 107 | Most of them are \ref concepts::ReadMap "read-only maps". |
---|
[83] | 108 | They can make arithmetic and logical operations between one or two maps |
---|
| 109 | (negation, shifting, addition, multiplication, logical 'and', 'or', |
---|
| 110 | 'not' etc.) or e.g. convert a map to another one of different Value type. |
---|
[40] | 111 | |
---|
[50] | 112 | The typical usage of this classes is passing implicit maps to |
---|
[40] | 113 | algorithms. If a function type algorithm is called then the function |
---|
| 114 | type map adaptors can be used comfortable. For example let's see the |
---|
[314] | 115 | usage of map adaptors with the \c graphToEps() function. |
---|
[40] | 116 | \code |
---|
| 117 | Color nodeColor(int deg) { |
---|
| 118 | if (deg >= 2) { |
---|
| 119 | return Color(0.5, 0.0, 0.5); |
---|
| 120 | } else if (deg == 1) { |
---|
| 121 | return Color(1.0, 0.5, 1.0); |
---|
| 122 | } else { |
---|
| 123 | return Color(0.0, 0.0, 0.0); |
---|
| 124 | } |
---|
| 125 | } |
---|
[209] | 126 | |
---|
[83] | 127 | Digraph::NodeMap<int> degree_map(graph); |
---|
[209] | 128 | |
---|
[314] | 129 | graphToEps(graph, "graph.eps") |
---|
[40] | 130 | .coords(coords).scaleToA4().undirected() |
---|
[83] | 131 | .nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
---|
[40] | 132 | .run(); |
---|
[209] | 133 | \endcode |
---|
[83] | 134 | The \c functorToMap() function makes an \c int to \c Color map from the |
---|
[314] | 135 | \c nodeColor() function. The \c composeMap() compose the \c degree_map |
---|
[83] | 136 | and the previously created map. The composed map is a proper function to |
---|
| 137 | get the color of each node. |
---|
[40] | 138 | |
---|
| 139 | The usage with class type algorithms is little bit harder. In this |
---|
| 140 | case the function type map adaptors can not be used, because the |
---|
[50] | 141 | function map adaptors give back temporary objects. |
---|
[40] | 142 | \code |
---|
[83] | 143 | Digraph graph; |
---|
| 144 | |
---|
| 145 | typedef Digraph::ArcMap<double> DoubleArcMap; |
---|
| 146 | DoubleArcMap length(graph); |
---|
| 147 | DoubleArcMap speed(graph); |
---|
| 148 | |
---|
| 149 | typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
---|
[40] | 150 | TimeMap time(length, speed); |
---|
[209] | 151 | |
---|
[83] | 152 | Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
---|
[40] | 153 | dijkstra.run(source, target); |
---|
| 154 | \endcode |
---|
[83] | 155 | We have a length map and a maximum speed map on the arcs of a digraph. |
---|
| 156 | The minimum time to pass the arc can be calculated as the division of |
---|
| 157 | the two maps which can be done implicitly with the \c DivMap template |
---|
[40] | 158 | class. We use the implicit minimum time map as the length map of the |
---|
| 159 | \c Dijkstra algorithm. |
---|
| 160 | */ |
---|
| 161 | |
---|
| 162 | /** |
---|
[209] | 163 | @defgroup matrices Matrices |
---|
[40] | 164 | @ingroup datas |
---|
[50] | 165 | \brief Two dimensional data storages implemented in LEMON. |
---|
[40] | 166 | |
---|
[50] | 167 | This group describes two dimensional data storages implemented in LEMON. |
---|
[40] | 168 | */ |
---|
| 169 | |
---|
| 170 | /** |
---|
| 171 | @defgroup paths Path Structures |
---|
| 172 | @ingroup datas |
---|
[318] | 173 | \brief %Path structures implemented in LEMON. |
---|
[40] | 174 | |
---|
[50] | 175 | This group describes the path structures implemented in LEMON. |
---|
[40] | 176 | |
---|
[50] | 177 | LEMON provides flexible data structures to work with paths. |
---|
| 178 | All of them have similar interfaces and they can be copied easily with |
---|
| 179 | assignment operators and copy constructors. This makes it easy and |
---|
[40] | 180 | efficient to have e.g. the Dijkstra algorithm to store its result in |
---|
| 181 | any kind of path structure. |
---|
| 182 | |
---|
| 183 | \sa lemon::concepts::Path |
---|
| 184 | */ |
---|
| 185 | |
---|
| 186 | /** |
---|
| 187 | @defgroup auxdat Auxiliary Data Structures |
---|
| 188 | @ingroup datas |
---|
[50] | 189 | \brief Auxiliary data structures implemented in LEMON. |
---|
[40] | 190 | |
---|
[50] | 191 | This group describes some data structures implemented in LEMON in |
---|
[40] | 192 | order to make it easier to implement combinatorial algorithms. |
---|
| 193 | */ |
---|
| 194 | |
---|
| 195 | /** |
---|
| 196 | @defgroup algs Algorithms |
---|
| 197 | \brief This group describes the several algorithms |
---|
| 198 | implemented in LEMON. |
---|
| 199 | |
---|
| 200 | This group describes the several algorithms |
---|
| 201 | implemented in LEMON. |
---|
| 202 | */ |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | @defgroup search Graph Search |
---|
| 206 | @ingroup algs |
---|
[50] | 207 | \brief Common graph search algorithms. |
---|
[40] | 208 | |
---|
[406] | 209 | This group describes the common graph search algorithms, namely |
---|
| 210 | \e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
---|
[40] | 211 | */ |
---|
| 212 | |
---|
| 213 | /** |
---|
[314] | 214 | @defgroup shortest_path Shortest Path Algorithms |
---|
[40] | 215 | @ingroup algs |
---|
[50] | 216 | \brief Algorithms for finding shortest paths. |
---|
[40] | 217 | |
---|
[406] | 218 | This group describes the algorithms for finding shortest paths in digraphs. |
---|
| 219 | |
---|
| 220 | - \ref Dijkstra algorithm for finding shortest paths from a source node |
---|
| 221 | when all arc lengths are non-negative. |
---|
| 222 | - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
---|
| 223 | from a source node when arc lenghts can be either positive or negative, |
---|
| 224 | but the digraph should not contain directed cycles with negative total |
---|
| 225 | length. |
---|
| 226 | - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
---|
| 227 | for solving the \e all-pairs \e shortest \e paths \e problem when arc |
---|
| 228 | lenghts can be either positive or negative, but the digraph should |
---|
| 229 | not contain directed cycles with negative total length. |
---|
| 230 | - \ref Suurballe A successive shortest path algorithm for finding |
---|
| 231 | arc-disjoint paths between two nodes having minimum total length. |
---|
[40] | 232 | */ |
---|
| 233 | |
---|
[209] | 234 | /** |
---|
[314] | 235 | @defgroup max_flow Maximum Flow Algorithms |
---|
[209] | 236 | @ingroup algs |
---|
[50] | 237 | \brief Algorithms for finding maximum flows. |
---|
[40] | 238 | |
---|
| 239 | This group describes the algorithms for finding maximum flows and |
---|
| 240 | feasible circulations. |
---|
| 241 | |
---|
[406] | 242 | The \e maximum \e flow \e problem is to find a flow of maximum value between |
---|
| 243 | a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
---|
| 244 | digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
---|
| 245 | \f$s, t \in V\f$ source and target nodes. |
---|
| 246 | A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
---|
| 247 | following optimization problem. |
---|
[40] | 248 | |
---|
[406] | 249 | \f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
---|
| 250 | \f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
---|
| 251 | \qquad \forall v\in V\setminus\{s,t\} \f] |
---|
| 252 | \f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
---|
[40] | 253 | |
---|
[50] | 254 | LEMON contains several algorithms for solving maximum flow problems: |
---|
[406] | 255 | - \ref EdmondsKarp Edmonds-Karp algorithm. |
---|
| 256 | - \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
---|
| 257 | - \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
---|
| 258 | - \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
---|
[40] | 259 | |
---|
[406] | 260 | In most cases the \ref Preflow "Preflow" algorithm provides the |
---|
| 261 | fastest method for computing a maximum flow. All implementations |
---|
| 262 | provides functions to also query the minimum cut, which is the dual |
---|
| 263 | problem of the maximum flow. |
---|
[40] | 264 | */ |
---|
| 265 | |
---|
| 266 | /** |
---|
[314] | 267 | @defgroup min_cost_flow Minimum Cost Flow Algorithms |
---|
[40] | 268 | @ingroup algs |
---|
| 269 | |
---|
[50] | 270 | \brief Algorithms for finding minimum cost flows and circulations. |
---|
[40] | 271 | |
---|
| 272 | This group describes the algorithms for finding minimum cost flows and |
---|
[209] | 273 | circulations. |
---|
[406] | 274 | |
---|
| 275 | The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
---|
| 276 | minimum total cost from a set of supply nodes to a set of demand nodes |
---|
| 277 | in a network with capacity constraints and arc costs. |
---|
| 278 | Formally, let \f$G=(V,A)\f$ be a digraph, |
---|
| 279 | \f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
---|
| 280 | upper bounds for the flow values on the arcs, |
---|
| 281 | \f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
---|
| 282 | on the arcs, and |
---|
| 283 | \f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
---|
| 284 | of the nodes. |
---|
| 285 | A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
---|
| 286 | the following optimization problem. |
---|
| 287 | |
---|
| 288 | \f[ \min\sum_{a\in A} f(a) cost(a) \f] |
---|
| 289 | \f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
---|
| 290 | supply(v) \qquad \forall v\in V \f] |
---|
| 291 | \f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
---|
| 292 | |
---|
| 293 | LEMON contains several algorithms for solving minimum cost flow problems: |
---|
| 294 | - \ref CycleCanceling Cycle-canceling algorithms. |
---|
| 295 | - \ref CapacityScaling Successive shortest path algorithm with optional |
---|
| 296 | capacity scaling. |
---|
| 297 | - \ref CostScaling Push-relabel and augment-relabel algorithms based on |
---|
| 298 | cost scaling. |
---|
| 299 | - \ref NetworkSimplex Primal network simplex algorithm with various |
---|
| 300 | pivot strategies. |
---|
[40] | 301 | */ |
---|
| 302 | |
---|
| 303 | /** |
---|
[314] | 304 | @defgroup min_cut Minimum Cut Algorithms |
---|
[209] | 305 | @ingroup algs |
---|
[40] | 306 | |
---|
[50] | 307 | \brief Algorithms for finding minimum cut in graphs. |
---|
[40] | 308 | |
---|
| 309 | This group describes the algorithms for finding minimum cut in graphs. |
---|
| 310 | |
---|
[406] | 311 | The \e minimum \e cut \e problem is to find a non-empty and non-complete |
---|
| 312 | \f$X\f$ subset of the nodes with minimum overall capacity on |
---|
| 313 | outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
---|
| 314 | \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
---|
[50] | 315 | cut is the \f$X\f$ solution of the next optimization problem: |
---|
[40] | 316 | |
---|
[210] | 317 | \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
---|
[406] | 318 | \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
---|
[40] | 319 | |
---|
[50] | 320 | LEMON contains several algorithms related to minimum cut problems: |
---|
[40] | 321 | |
---|
[406] | 322 | - \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
---|
| 323 | in directed graphs. |
---|
| 324 | - \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
---|
| 325 | calculating minimum cut in undirected graphs. |
---|
| 326 | - \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
---|
| 327 | all-pairs minimum cut in undirected graphs. |
---|
[40] | 328 | |
---|
| 329 | If you want to find minimum cut just between two distinict nodes, |
---|
[406] | 330 | see the \ref max_flow "maximum flow problem". |
---|
[40] | 331 | */ |
---|
| 332 | |
---|
| 333 | /** |
---|
[314] | 334 | @defgroup graph_prop Connectivity and Other Graph Properties |
---|
[40] | 335 | @ingroup algs |
---|
[50] | 336 | \brief Algorithms for discovering the graph properties |
---|
[40] | 337 | |
---|
[50] | 338 | This group describes the algorithms for discovering the graph properties |
---|
| 339 | like connectivity, bipartiteness, euler property, simplicity etc. |
---|
[40] | 340 | |
---|
| 341 | \image html edge_biconnected_components.png |
---|
| 342 | \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
---|
| 343 | */ |
---|
| 344 | |
---|
| 345 | /** |
---|
[314] | 346 | @defgroup planar Planarity Embedding and Drawing |
---|
[40] | 347 | @ingroup algs |
---|
[50] | 348 | \brief Algorithms for planarity checking, embedding and drawing |
---|
[40] | 349 | |
---|
[210] | 350 | This group describes the algorithms for planarity checking, |
---|
| 351 | embedding and drawing. |
---|
[40] | 352 | |
---|
| 353 | \image html planar.png |
---|
| 354 | \image latex planar.eps "Plane graph" width=\textwidth |
---|
| 355 | */ |
---|
| 356 | |
---|
| 357 | /** |
---|
[314] | 358 | @defgroup matching Matching Algorithms |
---|
[40] | 359 | @ingroup algs |
---|
[50] | 360 | \brief Algorithms for finding matchings in graphs and bipartite graphs. |
---|
[40] | 361 | |
---|
[50] | 362 | This group contains algorithm objects and functions to calculate |
---|
[40] | 363 | matchings in graphs and bipartite graphs. The general matching problem is |
---|
[83] | 364 | finding a subset of the arcs which does not shares common endpoints. |
---|
[209] | 365 | |
---|
[40] | 366 | There are several different algorithms for calculate matchings in |
---|
| 367 | graphs. The matching problems in bipartite graphs are generally |
---|
| 368 | easier than in general graphs. The goal of the matching optimization |
---|
[406] | 369 | can be finding maximum cardinality, maximum weight or minimum cost |
---|
[40] | 370 | matching. The search can be constrained to find perfect or |
---|
| 371 | maximum cardinality matching. |
---|
| 372 | |
---|
[406] | 373 | The matching algorithms implemented in LEMON: |
---|
| 374 | - \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
---|
| 375 | for calculating maximum cardinality matching in bipartite graphs. |
---|
| 376 | - \ref PrBipartiteMatching Push-relabel algorithm |
---|
| 377 | for calculating maximum cardinality matching in bipartite graphs. |
---|
| 378 | - \ref MaxWeightedBipartiteMatching |
---|
| 379 | Successive shortest path algorithm for calculating maximum weighted |
---|
| 380 | matching and maximum weighted bipartite matching in bipartite graphs. |
---|
| 381 | - \ref MinCostMaxBipartiteMatching |
---|
| 382 | Successive shortest path algorithm for calculating minimum cost maximum |
---|
| 383 | matching in bipartite graphs. |
---|
| 384 | - \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
---|
| 385 | maximum cardinality matching in general graphs. |
---|
| 386 | - \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
---|
| 387 | maximum weighted matching in general graphs. |
---|
| 388 | - \ref MaxWeightedPerfectMatching |
---|
| 389 | Edmond's blossom shrinking algorithm for calculating maximum weighted |
---|
| 390 | perfect matching in general graphs. |
---|
[40] | 391 | |
---|
| 392 | \image html bipartite_matching.png |
---|
| 393 | \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
---|
| 394 | */ |
---|
| 395 | |
---|
| 396 | /** |
---|
[314] | 397 | @defgroup spantree Minimum Spanning Tree Algorithms |
---|
[40] | 398 | @ingroup algs |
---|
[50] | 399 | \brief Algorithms for finding a minimum cost spanning tree in a graph. |
---|
[40] | 400 | |
---|
[50] | 401 | This group describes the algorithms for finding a minimum cost spanning |
---|
[406] | 402 | tree in a graph. |
---|
[40] | 403 | */ |
---|
| 404 | |
---|
| 405 | /** |
---|
[314] | 406 | @defgroup auxalg Auxiliary Algorithms |
---|
[40] | 407 | @ingroup algs |
---|
[50] | 408 | \brief Auxiliary algorithms implemented in LEMON. |
---|
[40] | 409 | |
---|
[50] | 410 | This group describes some algorithms implemented in LEMON |
---|
| 411 | in order to make it easier to implement complex algorithms. |
---|
[40] | 412 | */ |
---|
| 413 | |
---|
| 414 | /** |
---|
[314] | 415 | @defgroup approx Approximation Algorithms |
---|
| 416 | @ingroup algs |
---|
[50] | 417 | \brief Approximation algorithms. |
---|
[40] | 418 | |
---|
[50] | 419 | This group describes the approximation and heuristic algorithms |
---|
| 420 | implemented in LEMON. |
---|
[40] | 421 | */ |
---|
| 422 | |
---|
| 423 | /** |
---|
| 424 | @defgroup gen_opt_group General Optimization Tools |
---|
| 425 | \brief This group describes some general optimization frameworks |
---|
| 426 | implemented in LEMON. |
---|
| 427 | |
---|
| 428 | This group describes some general optimization frameworks |
---|
| 429 | implemented in LEMON. |
---|
| 430 | */ |
---|
| 431 | |
---|
| 432 | /** |
---|
[314] | 433 | @defgroup lp_group Lp and Mip Solvers |
---|
[40] | 434 | @ingroup gen_opt_group |
---|
| 435 | \brief Lp and Mip solver interfaces for LEMON. |
---|
| 436 | |
---|
| 437 | This group describes Lp and Mip solver interfaces for LEMON. The |
---|
| 438 | various LP solvers could be used in the same manner with this |
---|
| 439 | interface. |
---|
| 440 | */ |
---|
| 441 | |
---|
[209] | 442 | /** |
---|
[314] | 443 | @defgroup lp_utils Tools for Lp and Mip Solvers |
---|
[40] | 444 | @ingroup lp_group |
---|
[50] | 445 | \brief Helper tools to the Lp and Mip solvers. |
---|
[40] | 446 | |
---|
| 447 | This group adds some helper tools to general optimization framework |
---|
| 448 | implemented in LEMON. |
---|
| 449 | */ |
---|
| 450 | |
---|
| 451 | /** |
---|
| 452 | @defgroup metah Metaheuristics |
---|
| 453 | @ingroup gen_opt_group |
---|
| 454 | \brief Metaheuristics for LEMON library. |
---|
| 455 | |
---|
[50] | 456 | This group describes some metaheuristic optimization tools. |
---|
[40] | 457 | */ |
---|
| 458 | |
---|
| 459 | /** |
---|
[209] | 460 | @defgroup utils Tools and Utilities |
---|
[50] | 461 | \brief Tools and utilities for programming in LEMON |
---|
[40] | 462 | |
---|
[50] | 463 | Tools and utilities for programming in LEMON. |
---|
[40] | 464 | */ |
---|
| 465 | |
---|
| 466 | /** |
---|
| 467 | @defgroup gutils Basic Graph Utilities |
---|
| 468 | @ingroup utils |
---|
[50] | 469 | \brief Simple basic graph utilities. |
---|
[40] | 470 | |
---|
| 471 | This group describes some simple basic graph utilities. |
---|
| 472 | */ |
---|
| 473 | |
---|
| 474 | /** |
---|
| 475 | @defgroup misc Miscellaneous Tools |
---|
| 476 | @ingroup utils |
---|
[50] | 477 | \brief Tools for development, debugging and testing. |
---|
| 478 | |
---|
| 479 | This group describes several useful tools for development, |
---|
[40] | 480 | debugging and testing. |
---|
| 481 | */ |
---|
| 482 | |
---|
| 483 | /** |
---|
[314] | 484 | @defgroup timecount Time Measuring and Counting |
---|
[40] | 485 | @ingroup misc |
---|
[50] | 486 | \brief Simple tools for measuring the performance of algorithms. |
---|
| 487 | |
---|
| 488 | This group describes simple tools for measuring the performance |
---|
[40] | 489 | of algorithms. |
---|
| 490 | */ |
---|
| 491 | |
---|
| 492 | /** |
---|
| 493 | @defgroup exceptions Exceptions |
---|
| 494 | @ingroup utils |
---|
[50] | 495 | \brief Exceptions defined in LEMON. |
---|
| 496 | |
---|
| 497 | This group describes the exceptions defined in LEMON. |
---|
[40] | 498 | */ |
---|
| 499 | |
---|
| 500 | /** |
---|
| 501 | @defgroup io_group Input-Output |
---|
[50] | 502 | \brief Graph Input-Output methods |
---|
[40] | 503 | |
---|
[209] | 504 | This group describes the tools for importing and exporting graphs |
---|
[314] | 505 | and graph related data. Now it supports the \ref lgf-format |
---|
| 506 | "LEMON Graph Format", the \c DIMACS format and the encapsulated |
---|
| 507 | postscript (EPS) format. |
---|
[40] | 508 | */ |
---|
| 509 | |
---|
| 510 | /** |
---|
[351] | 511 | @defgroup lemon_io LEMON Graph Format |
---|
[40] | 512 | @ingroup io_group |
---|
[314] | 513 | \brief Reading and writing LEMON Graph Format. |
---|
[40] | 514 | |
---|
[210] | 515 | This group describes methods for reading and writing |
---|
[236] | 516 | \ref lgf-format "LEMON Graph Format". |
---|
[40] | 517 | */ |
---|
| 518 | |
---|
| 519 | /** |
---|
[314] | 520 | @defgroup eps_io Postscript Exporting |
---|
[40] | 521 | @ingroup io_group |
---|
| 522 | \brief General \c EPS drawer and graph exporter |
---|
| 523 | |
---|
[50] | 524 | This group describes general \c EPS drawing methods and special |
---|
[209] | 525 | graph exporting tools. |
---|
[40] | 526 | */ |
---|
| 527 | |
---|
| 528 | /** |
---|
[388] | 529 | @defgroup dimacs_group DIMACS format |
---|
| 530 | @ingroup io_group |
---|
| 531 | \brief Read and write files in DIMACS format |
---|
| 532 | |
---|
| 533 | Tools to read a digraph from or write it to a file in DIMACS format data. |
---|
| 534 | */ |
---|
| 535 | |
---|
| 536 | /** |
---|
[351] | 537 | @defgroup nauty_group NAUTY Format |
---|
| 538 | @ingroup io_group |
---|
| 539 | \brief Read \e Nauty format |
---|
[388] | 540 | |
---|
[351] | 541 | Tool to read graphs from \e Nauty format data. |
---|
| 542 | */ |
---|
| 543 | |
---|
| 544 | /** |
---|
[40] | 545 | @defgroup concept Concepts |
---|
| 546 | \brief Skeleton classes and concept checking classes |
---|
| 547 | |
---|
| 548 | This group describes the data/algorithm skeletons and concept checking |
---|
| 549 | classes implemented in LEMON. |
---|
| 550 | |
---|
| 551 | The purpose of the classes in this group is fourfold. |
---|
[209] | 552 | |
---|
[318] | 553 | - These classes contain the documentations of the %concepts. In order |
---|
[40] | 554 | to avoid document multiplications, an implementation of a concept |
---|
| 555 | simply refers to the corresponding concept class. |
---|
| 556 | |
---|
| 557 | - These classes declare every functions, <tt>typedef</tt>s etc. an |
---|
[318] | 558 | implementation of the %concepts should provide, however completely |
---|
[40] | 559 | without implementations and real data structures behind the |
---|
| 560 | interface. On the other hand they should provide nothing else. All |
---|
| 561 | the algorithms working on a data structure meeting a certain concept |
---|
| 562 | should compile with these classes. (Though it will not run properly, |
---|
| 563 | of course.) In this way it is easily to check if an algorithm |
---|
| 564 | doesn't use any extra feature of a certain implementation. |
---|
| 565 | |
---|
| 566 | - The concept descriptor classes also provide a <em>checker class</em> |
---|
[50] | 567 | that makes it possible to check whether a certain implementation of a |
---|
[40] | 568 | concept indeed provides all the required features. |
---|
| 569 | |
---|
| 570 | - Finally, They can serve as a skeleton of a new implementation of a concept. |
---|
| 571 | */ |
---|
| 572 | |
---|
| 573 | /** |
---|
| 574 | @defgroup graph_concepts Graph Structure Concepts |
---|
| 575 | @ingroup concept |
---|
| 576 | \brief Skeleton and concept checking classes for graph structures |
---|
| 577 | |
---|
[50] | 578 | This group describes the skeletons and concept checking classes of LEMON's |
---|
[40] | 579 | graph structures and helper classes used to implement these. |
---|
| 580 | */ |
---|
| 581 | |
---|
[314] | 582 | /** |
---|
| 583 | @defgroup map_concepts Map Concepts |
---|
| 584 | @ingroup concept |
---|
| 585 | \brief Skeleton and concept checking classes for maps |
---|
| 586 | |
---|
| 587 | This group describes the skeletons and concept checking classes of maps. |
---|
[40] | 588 | */ |
---|
| 589 | |
---|
| 590 | /** |
---|
| 591 | \anchor demoprograms |
---|
| 592 | |
---|
[406] | 593 | @defgroup demos Demo Programs |
---|
[40] | 594 | |
---|
| 595 | Some demo programs are listed here. Their full source codes can be found in |
---|
| 596 | the \c demo subdirectory of the source tree. |
---|
| 597 | |
---|
[41] | 598 | It order to compile them, use <tt>--enable-demo</tt> configure option when |
---|
| 599 | build the library. |
---|
[40] | 600 | */ |
---|
| 601 | |
---|
| 602 | /** |
---|
[406] | 603 | @defgroup tools Standalone Utility Applications |
---|
[40] | 604 | |
---|
[209] | 605 | Some utility applications are listed here. |
---|
[40] | 606 | |
---|
| 607 | The standard compilation procedure (<tt>./configure;make</tt>) will compile |
---|
[209] | 608 | them, as well. |
---|
[40] | 609 | */ |
---|
| 610 | |
---|
[406] | 611 | } |
---|