1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | /** |
---|
20 | @defgroup datas Data Structures |
---|
21 | This group describes the several data structures implemented in LEMON. |
---|
22 | */ |
---|
23 | |
---|
24 | /** |
---|
25 | @defgroup graphs Graph Structures |
---|
26 | @ingroup datas |
---|
27 | \brief Graph structures implemented in LEMON. |
---|
28 | |
---|
29 | The implementation of combinatorial algorithms heavily relies on |
---|
30 | efficient graph implementations. LEMON offers data structures which are |
---|
31 | planned to be easily used in an experimental phase of implementation studies, |
---|
32 | and thereafter the program code can be made efficient by small modifications. |
---|
33 | |
---|
34 | The most efficient implementation of diverse applications require the |
---|
35 | usage of different physical graph implementations. These differences |
---|
36 | appear in the size of graph we require to handle, memory or time usage |
---|
37 | limitations or in the set of operations through which the graph can be |
---|
38 | accessed. LEMON provides several physical graph structures to meet |
---|
39 | the diverging requirements of the possible users. In order to save on |
---|
40 | running time or on memory usage, some structures may fail to provide |
---|
41 | some graph features like arc/edge or node deletion. |
---|
42 | |
---|
43 | Alteration of standard containers need a very limited number of |
---|
44 | operations, these together satisfy the everyday requirements. |
---|
45 | In the case of graph structures, different operations are needed which do |
---|
46 | not alter the physical graph, but gives another view. If some nodes or |
---|
47 | arcs have to be hidden or the reverse oriented graph have to be used, then |
---|
48 | this is the case. It also may happen that in a flow implementation |
---|
49 | the residual graph can be accessed by another algorithm, or a node-set |
---|
50 | is to be shrunk for another algorithm. |
---|
51 | LEMON also provides a variety of graphs for these requirements called |
---|
52 | \ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
---|
53 | in conjunction with other graph representations. |
---|
54 | |
---|
55 | You are free to use the graph structure that fit your requirements |
---|
56 | the best, most graph algorithms and auxiliary data structures can be used |
---|
57 | with any graph structure. |
---|
58 | |
---|
59 | <b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
---|
60 | */ |
---|
61 | |
---|
62 | /** |
---|
63 | @defgroup graph_adaptors Adaptor Classes for graphs |
---|
64 | @ingroup graphs |
---|
65 | \brief This group contains several adaptor classes for digraphs and graphs |
---|
66 | |
---|
67 | The main parts of LEMON are the different graph structures, generic |
---|
68 | graph algorithms, graph concepts which couple these, and graph |
---|
69 | adaptors. While the previous notions are more or less clear, the |
---|
70 | latter one needs further explanation. Graph adaptors are graph classes |
---|
71 | which serve for considering graph structures in different ways. |
---|
72 | |
---|
73 | A short example makes this much clearer. Suppose that we have an |
---|
74 | instance \c g of a directed graph type say ListDigraph and an algorithm |
---|
75 | \code |
---|
76 | template <typename Digraph> |
---|
77 | int algorithm(const Digraph&); |
---|
78 | \endcode |
---|
79 | is needed to run on the reverse oriented graph. It may be expensive |
---|
80 | (in time or in memory usage) to copy \c g with the reversed |
---|
81 | arcs. In this case, an adaptor class is used, which (according |
---|
82 | to LEMON digraph concepts) works as a digraph. The adaptor uses the |
---|
83 | original digraph structure and digraph operations when methods of the |
---|
84 | reversed oriented graph are called. This means that the adaptor have |
---|
85 | minor memory usage, and do not perform sophisticated algorithmic |
---|
86 | actions. The purpose of it is to give a tool for the cases when a |
---|
87 | graph have to be used in a specific alteration. If this alteration is |
---|
88 | obtained by a usual construction like filtering the arc-set or |
---|
89 | considering a new orientation, then an adaptor is worthwhile to use. |
---|
90 | To come back to the reverse oriented graph, in this situation |
---|
91 | \code |
---|
92 | template<typename Digraph> class ReverseDigraph; |
---|
93 | \endcode |
---|
94 | template class can be used. The code looks as follows |
---|
95 | \code |
---|
96 | ListDigraph g; |
---|
97 | ReverseDigraph<ListGraph> rg(g); |
---|
98 | int result = algorithm(rg); |
---|
99 | \endcode |
---|
100 | After running the algorithm, the original graph \c g is untouched. |
---|
101 | This techniques gives rise to an elegant code, and based on stable |
---|
102 | graph adaptors, complex algorithms can be implemented easily. |
---|
103 | |
---|
104 | In flow, circulation and bipartite matching problems, the residual |
---|
105 | graph is of particular importance. Combining an adaptor implementing |
---|
106 | this, shortest path algorithms and minimum mean cycle algorithms, |
---|
107 | a range of weighted and cardinality optimization algorithms can be |
---|
108 | obtained. For other examples, the interested user is referred to the |
---|
109 | detailed documentation of particular adaptors. |
---|
110 | |
---|
111 | The behavior of graph adaptors can be very different. Some of them keep |
---|
112 | capabilities of the original graph while in other cases this would be |
---|
113 | meaningless. This means that the concepts that they are models of depend |
---|
114 | on the graph adaptor, and the wrapped graph(s). |
---|
115 | If an arc of \c rg is deleted, this is carried out by deleting the |
---|
116 | corresponding arc of \c g, thus the adaptor modifies the original graph. |
---|
117 | |
---|
118 | But for a residual graph, this operation has no sense. |
---|
119 | Let us stand one more example here to simplify your work. |
---|
120 | RevGraphAdaptor has constructor |
---|
121 | \code |
---|
122 | ReverseDigraph(Digraph& digraph); |
---|
123 | \endcode |
---|
124 | This means that in a situation, when a <tt>const ListDigraph&</tt> |
---|
125 | reference to a graph is given, then it have to be instantiated with |
---|
126 | <tt>Digraph=const ListDigraph</tt>. |
---|
127 | \code |
---|
128 | int algorithm1(const ListDigraph& g) { |
---|
129 | RevGraphAdaptor<const ListDigraph> rg(g); |
---|
130 | return algorithm2(rg); |
---|
131 | } |
---|
132 | \endcode |
---|
133 | */ |
---|
134 | |
---|
135 | /** |
---|
136 | @defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
---|
137 | @ingroup graphs |
---|
138 | \brief Graph types between real graphs and graph adaptors. |
---|
139 | |
---|
140 | This group describes some graph types between real graphs and graph adaptors. |
---|
141 | These classes wrap graphs to give new functionality as the adaptors do it. |
---|
142 | On the other hand they are not light-weight structures as the adaptors. |
---|
143 | */ |
---|
144 | |
---|
145 | /** |
---|
146 | @defgroup maps Maps |
---|
147 | @ingroup datas |
---|
148 | \brief Map structures implemented in LEMON. |
---|
149 | |
---|
150 | This group describes the map structures implemented in LEMON. |
---|
151 | |
---|
152 | LEMON provides several special purpose maps and map adaptors that e.g. combine |
---|
153 | new maps from existing ones. |
---|
154 | |
---|
155 | <b>See also:</b> \ref map_concepts "Map Concepts". |
---|
156 | */ |
---|
157 | |
---|
158 | /** |
---|
159 | @defgroup graph_maps Graph Maps |
---|
160 | @ingroup maps |
---|
161 | \brief Special graph-related maps. |
---|
162 | |
---|
163 | This group describes maps that are specifically designed to assign |
---|
164 | values to the nodes and arcs of graphs. |
---|
165 | */ |
---|
166 | |
---|
167 | /** |
---|
168 | \defgroup map_adaptors Map Adaptors |
---|
169 | \ingroup maps |
---|
170 | \brief Tools to create new maps from existing ones |
---|
171 | |
---|
172 | This group describes map adaptors that are used to create "implicit" |
---|
173 | maps from other maps. |
---|
174 | |
---|
175 | Most of them are \ref lemon::concepts::ReadMap "read-only maps". |
---|
176 | They can make arithmetic and logical operations between one or two maps |
---|
177 | (negation, shifting, addition, multiplication, logical 'and', 'or', |
---|
178 | 'not' etc.) or e.g. convert a map to another one of different Value type. |
---|
179 | |
---|
180 | The typical usage of this classes is passing implicit maps to |
---|
181 | algorithms. If a function type algorithm is called then the function |
---|
182 | type map adaptors can be used comfortable. For example let's see the |
---|
183 | usage of map adaptors with the \c graphToEps() function. |
---|
184 | \code |
---|
185 | Color nodeColor(int deg) { |
---|
186 | if (deg >= 2) { |
---|
187 | return Color(0.5, 0.0, 0.5); |
---|
188 | } else if (deg == 1) { |
---|
189 | return Color(1.0, 0.5, 1.0); |
---|
190 | } else { |
---|
191 | return Color(0.0, 0.0, 0.0); |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | Digraph::NodeMap<int> degree_map(graph); |
---|
196 | |
---|
197 | graphToEps(graph, "graph.eps") |
---|
198 | .coords(coords).scaleToA4().undirected() |
---|
199 | .nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
---|
200 | .run(); |
---|
201 | \endcode |
---|
202 | The \c functorToMap() function makes an \c int to \c Color map from the |
---|
203 | \c nodeColor() function. The \c composeMap() compose the \c degree_map |
---|
204 | and the previously created map. The composed map is a proper function to |
---|
205 | get the color of each node. |
---|
206 | |
---|
207 | The usage with class type algorithms is little bit harder. In this |
---|
208 | case the function type map adaptors can not be used, because the |
---|
209 | function map adaptors give back temporary objects. |
---|
210 | \code |
---|
211 | Digraph graph; |
---|
212 | |
---|
213 | typedef Digraph::ArcMap<double> DoubleArcMap; |
---|
214 | DoubleArcMap length(graph); |
---|
215 | DoubleArcMap speed(graph); |
---|
216 | |
---|
217 | typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
---|
218 | TimeMap time(length, speed); |
---|
219 | |
---|
220 | Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
---|
221 | dijkstra.run(source, target); |
---|
222 | \endcode |
---|
223 | We have a length map and a maximum speed map on the arcs of a digraph. |
---|
224 | The minimum time to pass the arc can be calculated as the division of |
---|
225 | the two maps which can be done implicitly with the \c DivMap template |
---|
226 | class. We use the implicit minimum time map as the length map of the |
---|
227 | \c Dijkstra algorithm. |
---|
228 | */ |
---|
229 | |
---|
230 | /** |
---|
231 | @defgroup matrices Matrices |
---|
232 | @ingroup datas |
---|
233 | \brief Two dimensional data storages implemented in LEMON. |
---|
234 | |
---|
235 | This group describes two dimensional data storages implemented in LEMON. |
---|
236 | */ |
---|
237 | |
---|
238 | /** |
---|
239 | @defgroup paths Path Structures |
---|
240 | @ingroup datas |
---|
241 | \brief %Path structures implemented in LEMON. |
---|
242 | |
---|
243 | This group describes the path structures implemented in LEMON. |
---|
244 | |
---|
245 | LEMON provides flexible data structures to work with paths. |
---|
246 | All of them have similar interfaces and they can be copied easily with |
---|
247 | assignment operators and copy constructors. This makes it easy and |
---|
248 | efficient to have e.g. the Dijkstra algorithm to store its result in |
---|
249 | any kind of path structure. |
---|
250 | |
---|
251 | \sa lemon::concepts::Path |
---|
252 | */ |
---|
253 | |
---|
254 | /** |
---|
255 | @defgroup auxdat Auxiliary Data Structures |
---|
256 | @ingroup datas |
---|
257 | \brief Auxiliary data structures implemented in LEMON. |
---|
258 | |
---|
259 | This group describes some data structures implemented in LEMON in |
---|
260 | order to make it easier to implement combinatorial algorithms. |
---|
261 | */ |
---|
262 | |
---|
263 | /** |
---|
264 | @defgroup algs Algorithms |
---|
265 | \brief This group describes the several algorithms |
---|
266 | implemented in LEMON. |
---|
267 | |
---|
268 | This group describes the several algorithms |
---|
269 | implemented in LEMON. |
---|
270 | */ |
---|
271 | |
---|
272 | /** |
---|
273 | @defgroup search Graph Search |
---|
274 | @ingroup algs |
---|
275 | \brief Common graph search algorithms. |
---|
276 | |
---|
277 | This group describes the common graph search algorithms like |
---|
278 | Breadth-First Search (BFS) and Depth-First Search (DFS). |
---|
279 | */ |
---|
280 | |
---|
281 | /** |
---|
282 | @defgroup shortest_path Shortest Path Algorithms |
---|
283 | @ingroup algs |
---|
284 | \brief Algorithms for finding shortest paths. |
---|
285 | |
---|
286 | This group describes the algorithms for finding shortest paths in graphs. |
---|
287 | */ |
---|
288 | |
---|
289 | /** |
---|
290 | @defgroup max_flow Maximum Flow Algorithms |
---|
291 | @ingroup algs |
---|
292 | \brief Algorithms for finding maximum flows. |
---|
293 | |
---|
294 | This group describes the algorithms for finding maximum flows and |
---|
295 | feasible circulations. |
---|
296 | |
---|
297 | The maximum flow problem is to find a flow between a single source and |
---|
298 | a single target that is maximum. Formally, there is a \f$G=(V,A)\f$ |
---|
299 | directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity |
---|
300 | function and given \f$s, t \in V\f$ source and target node. The |
---|
301 | maximum flow is the \f$f_a\f$ solution of the next optimization problem: |
---|
302 | |
---|
303 | \f[ 0 \le f_a \le c_a \f] |
---|
304 | \f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} |
---|
305 | \qquad \forall u \in V \setminus \{s,t\}\f] |
---|
306 | \f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f] |
---|
307 | |
---|
308 | LEMON contains several algorithms for solving maximum flow problems: |
---|
309 | - \ref lemon::EdmondsKarp "Edmonds-Karp" |
---|
310 | - \ref lemon::Preflow "Goldberg's Preflow algorithm" |
---|
311 | - \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees" |
---|
312 | - \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees" |
---|
313 | |
---|
314 | In most cases the \ref lemon::Preflow "Preflow" algorithm provides the |
---|
315 | fastest method to compute the maximum flow. All impelementations |
---|
316 | provides functions to query the minimum cut, which is the dual linear |
---|
317 | programming problem of the maximum flow. |
---|
318 | */ |
---|
319 | |
---|
320 | /** |
---|
321 | @defgroup min_cost_flow Minimum Cost Flow Algorithms |
---|
322 | @ingroup algs |
---|
323 | |
---|
324 | \brief Algorithms for finding minimum cost flows and circulations. |
---|
325 | |
---|
326 | This group describes the algorithms for finding minimum cost flows and |
---|
327 | circulations. |
---|
328 | */ |
---|
329 | |
---|
330 | /** |
---|
331 | @defgroup min_cut Minimum Cut Algorithms |
---|
332 | @ingroup algs |
---|
333 | |
---|
334 | \brief Algorithms for finding minimum cut in graphs. |
---|
335 | |
---|
336 | This group describes the algorithms for finding minimum cut in graphs. |
---|
337 | |
---|
338 | The minimum cut problem is to find a non-empty and non-complete |
---|
339 | \f$X\f$ subset of the vertices with minimum overall capacity on |
---|
340 | outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an |
---|
341 | \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
---|
342 | cut is the \f$X\f$ solution of the next optimization problem: |
---|
343 | |
---|
344 | \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
---|
345 | \sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f] |
---|
346 | |
---|
347 | LEMON contains several algorithms related to minimum cut problems: |
---|
348 | |
---|
349 | - \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut |
---|
350 | in directed graphs |
---|
351 | - \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to |
---|
352 | calculate minimum cut in undirected graphs |
---|
353 | - \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all |
---|
354 | pairs minimum cut in undirected graphs |
---|
355 | |
---|
356 | If you want to find minimum cut just between two distinict nodes, |
---|
357 | please see the \ref max_flow "Maximum Flow page". |
---|
358 | */ |
---|
359 | |
---|
360 | /** |
---|
361 | @defgroup graph_prop Connectivity and Other Graph Properties |
---|
362 | @ingroup algs |
---|
363 | \brief Algorithms for discovering the graph properties |
---|
364 | |
---|
365 | This group describes the algorithms for discovering the graph properties |
---|
366 | like connectivity, bipartiteness, euler property, simplicity etc. |
---|
367 | |
---|
368 | \image html edge_biconnected_components.png |
---|
369 | \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
---|
370 | */ |
---|
371 | |
---|
372 | /** |
---|
373 | @defgroup planar Planarity Embedding and Drawing |
---|
374 | @ingroup algs |
---|
375 | \brief Algorithms for planarity checking, embedding and drawing |
---|
376 | |
---|
377 | This group describes the algorithms for planarity checking, |
---|
378 | embedding and drawing. |
---|
379 | |
---|
380 | \image html planar.png |
---|
381 | \image latex planar.eps "Plane graph" width=\textwidth |
---|
382 | */ |
---|
383 | |
---|
384 | /** |
---|
385 | @defgroup matching Matching Algorithms |
---|
386 | @ingroup algs |
---|
387 | \brief Algorithms for finding matchings in graphs and bipartite graphs. |
---|
388 | |
---|
389 | This group contains algorithm objects and functions to calculate |
---|
390 | matchings in graphs and bipartite graphs. The general matching problem is |
---|
391 | finding a subset of the arcs which does not shares common endpoints. |
---|
392 | |
---|
393 | There are several different algorithms for calculate matchings in |
---|
394 | graphs. The matching problems in bipartite graphs are generally |
---|
395 | easier than in general graphs. The goal of the matching optimization |
---|
396 | can be the finding maximum cardinality, maximum weight or minimum cost |
---|
397 | matching. The search can be constrained to find perfect or |
---|
398 | maximum cardinality matching. |
---|
399 | |
---|
400 | LEMON contains the next algorithms: |
---|
401 | - \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp |
---|
402 | augmenting path algorithm for calculate maximum cardinality matching in |
---|
403 | bipartite graphs |
---|
404 | - \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel |
---|
405 | algorithm for calculate maximum cardinality matching in bipartite graphs |
---|
406 | - \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" |
---|
407 | Successive shortest path algorithm for calculate maximum weighted matching |
---|
408 | and maximum weighted bipartite matching in bipartite graph |
---|
409 | - \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" |
---|
410 | Successive shortest path algorithm for calculate minimum cost maximum |
---|
411 | matching in bipartite graph |
---|
412 | - \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm |
---|
413 | for calculate maximum cardinality matching in general graph |
---|
414 | - \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom |
---|
415 | shrinking algorithm for calculate maximum weighted matching in general |
---|
416 | graph |
---|
417 | - \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching" |
---|
418 | Edmond's blossom shrinking algorithm for calculate maximum weighted |
---|
419 | perfect matching in general graph |
---|
420 | |
---|
421 | \image html bipartite_matching.png |
---|
422 | \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
---|
423 | */ |
---|
424 | |
---|
425 | /** |
---|
426 | @defgroup spantree Minimum Spanning Tree Algorithms |
---|
427 | @ingroup algs |
---|
428 | \brief Algorithms for finding a minimum cost spanning tree in a graph. |
---|
429 | |
---|
430 | This group describes the algorithms for finding a minimum cost spanning |
---|
431 | tree in a graph |
---|
432 | */ |
---|
433 | |
---|
434 | /** |
---|
435 | @defgroup auxalg Auxiliary Algorithms |
---|
436 | @ingroup algs |
---|
437 | \brief Auxiliary algorithms implemented in LEMON. |
---|
438 | |
---|
439 | This group describes some algorithms implemented in LEMON |
---|
440 | in order to make it easier to implement complex algorithms. |
---|
441 | */ |
---|
442 | |
---|
443 | /** |
---|
444 | @defgroup approx Approximation Algorithms |
---|
445 | @ingroup algs |
---|
446 | \brief Approximation algorithms. |
---|
447 | |
---|
448 | This group describes the approximation and heuristic algorithms |
---|
449 | implemented in LEMON. |
---|
450 | */ |
---|
451 | |
---|
452 | /** |
---|
453 | @defgroup gen_opt_group General Optimization Tools |
---|
454 | \brief This group describes some general optimization frameworks |
---|
455 | implemented in LEMON. |
---|
456 | |
---|
457 | This group describes some general optimization frameworks |
---|
458 | implemented in LEMON. |
---|
459 | */ |
---|
460 | |
---|
461 | /** |
---|
462 | @defgroup lp_group Lp and Mip Solvers |
---|
463 | @ingroup gen_opt_group |
---|
464 | \brief Lp and Mip solver interfaces for LEMON. |
---|
465 | |
---|
466 | This group describes Lp and Mip solver interfaces for LEMON. The |
---|
467 | various LP solvers could be used in the same manner with this |
---|
468 | interface. |
---|
469 | */ |
---|
470 | |
---|
471 | /** |
---|
472 | @defgroup lp_utils Tools for Lp and Mip Solvers |
---|
473 | @ingroup lp_group |
---|
474 | \brief Helper tools to the Lp and Mip solvers. |
---|
475 | |
---|
476 | This group adds some helper tools to general optimization framework |
---|
477 | implemented in LEMON. |
---|
478 | */ |
---|
479 | |
---|
480 | /** |
---|
481 | @defgroup metah Metaheuristics |
---|
482 | @ingroup gen_opt_group |
---|
483 | \brief Metaheuristics for LEMON library. |
---|
484 | |
---|
485 | This group describes some metaheuristic optimization tools. |
---|
486 | */ |
---|
487 | |
---|
488 | /** |
---|
489 | @defgroup utils Tools and Utilities |
---|
490 | \brief Tools and utilities for programming in LEMON |
---|
491 | |
---|
492 | Tools and utilities for programming in LEMON. |
---|
493 | */ |
---|
494 | |
---|
495 | /** |
---|
496 | @defgroup gutils Basic Graph Utilities |
---|
497 | @ingroup utils |
---|
498 | \brief Simple basic graph utilities. |
---|
499 | |
---|
500 | This group describes some simple basic graph utilities. |
---|
501 | */ |
---|
502 | |
---|
503 | /** |
---|
504 | @defgroup misc Miscellaneous Tools |
---|
505 | @ingroup utils |
---|
506 | \brief Tools for development, debugging and testing. |
---|
507 | |
---|
508 | This group describes several useful tools for development, |
---|
509 | debugging and testing. |
---|
510 | */ |
---|
511 | |
---|
512 | /** |
---|
513 | @defgroup timecount Time Measuring and Counting |
---|
514 | @ingroup misc |
---|
515 | \brief Simple tools for measuring the performance of algorithms. |
---|
516 | |
---|
517 | This group describes simple tools for measuring the performance |
---|
518 | of algorithms. |
---|
519 | */ |
---|
520 | |
---|
521 | /** |
---|
522 | @defgroup exceptions Exceptions |
---|
523 | @ingroup utils |
---|
524 | \brief Exceptions defined in LEMON. |
---|
525 | |
---|
526 | This group describes the exceptions defined in LEMON. |
---|
527 | */ |
---|
528 | |
---|
529 | /** |
---|
530 | @defgroup io_group Input-Output |
---|
531 | \brief Graph Input-Output methods |
---|
532 | |
---|
533 | This group describes the tools for importing and exporting graphs |
---|
534 | and graph related data. Now it supports the \ref lgf-format |
---|
535 | "LEMON Graph Format", the \c DIMACS format and the encapsulated |
---|
536 | postscript (EPS) format. |
---|
537 | */ |
---|
538 | |
---|
539 | /** |
---|
540 | @defgroup lemon_io LEMON Graph Format |
---|
541 | @ingroup io_group |
---|
542 | \brief Reading and writing LEMON Graph Format. |
---|
543 | |
---|
544 | This group describes methods for reading and writing |
---|
545 | \ref lgf-format "LEMON Graph Format". |
---|
546 | */ |
---|
547 | |
---|
548 | /** |
---|
549 | @defgroup eps_io Postscript Exporting |
---|
550 | @ingroup io_group |
---|
551 | \brief General \c EPS drawer and graph exporter |
---|
552 | |
---|
553 | This group describes general \c EPS drawing methods and special |
---|
554 | graph exporting tools. |
---|
555 | */ |
---|
556 | |
---|
557 | /** |
---|
558 | @defgroup dimacs_group DIMACS format |
---|
559 | @ingroup io_group |
---|
560 | \brief Read and write files in DIMACS format |
---|
561 | |
---|
562 | Tools to read a digraph from or write it to a file in DIMACS format data. |
---|
563 | */ |
---|
564 | |
---|
565 | /** |
---|
566 | @defgroup nauty_group NAUTY Format |
---|
567 | @ingroup io_group |
---|
568 | \brief Read \e Nauty format |
---|
569 | |
---|
570 | Tool to read graphs from \e Nauty format data. |
---|
571 | */ |
---|
572 | |
---|
573 | /** |
---|
574 | @defgroup concept Concepts |
---|
575 | \brief Skeleton classes and concept checking classes |
---|
576 | |
---|
577 | This group describes the data/algorithm skeletons and concept checking |
---|
578 | classes implemented in LEMON. |
---|
579 | |
---|
580 | The purpose of the classes in this group is fourfold. |
---|
581 | |
---|
582 | - These classes contain the documentations of the %concepts. In order |
---|
583 | to avoid document multiplications, an implementation of a concept |
---|
584 | simply refers to the corresponding concept class. |
---|
585 | |
---|
586 | - These classes declare every functions, <tt>typedef</tt>s etc. an |
---|
587 | implementation of the %concepts should provide, however completely |
---|
588 | without implementations and real data structures behind the |
---|
589 | interface. On the other hand they should provide nothing else. All |
---|
590 | the algorithms working on a data structure meeting a certain concept |
---|
591 | should compile with these classes. (Though it will not run properly, |
---|
592 | of course.) In this way it is easily to check if an algorithm |
---|
593 | doesn't use any extra feature of a certain implementation. |
---|
594 | |
---|
595 | - The concept descriptor classes also provide a <em>checker class</em> |
---|
596 | that makes it possible to check whether a certain implementation of a |
---|
597 | concept indeed provides all the required features. |
---|
598 | |
---|
599 | - Finally, They can serve as a skeleton of a new implementation of a concept. |
---|
600 | */ |
---|
601 | |
---|
602 | /** |
---|
603 | @defgroup graph_concepts Graph Structure Concepts |
---|
604 | @ingroup concept |
---|
605 | \brief Skeleton and concept checking classes for graph structures |
---|
606 | |
---|
607 | This group describes the skeletons and concept checking classes of LEMON's |
---|
608 | graph structures and helper classes used to implement these. |
---|
609 | */ |
---|
610 | |
---|
611 | /** |
---|
612 | @defgroup map_concepts Map Concepts |
---|
613 | @ingroup concept |
---|
614 | \brief Skeleton and concept checking classes for maps |
---|
615 | |
---|
616 | This group describes the skeletons and concept checking classes of maps. |
---|
617 | */ |
---|
618 | |
---|
619 | /** |
---|
620 | \anchor demoprograms |
---|
621 | |
---|
622 | @defgroup demos Demo programs |
---|
623 | |
---|
624 | Some demo programs are listed here. Their full source codes can be found in |
---|
625 | the \c demo subdirectory of the source tree. |
---|
626 | |
---|
627 | It order to compile them, use <tt>--enable-demo</tt> configure option when |
---|
628 | build the library. |
---|
629 | */ |
---|
630 | |
---|
631 | /** |
---|
632 | @defgroup tools Standalone utility applications |
---|
633 | |
---|
634 | Some utility applications are listed here. |
---|
635 | |
---|
636 | The standard compilation procedure (<tt>./configure;make</tt>) will compile |
---|
637 | them, as well. |
---|
638 | */ |
---|
639 | |
---|