1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | /** |
---|
20 | @defgroup datas Data Structures |
---|
21 | This group describes the several graph structures implemented in LEMON. |
---|
22 | */ |
---|
23 | |
---|
24 | /** |
---|
25 | @defgroup graphs Graph Structures |
---|
26 | @ingroup datas |
---|
27 | \brief Graph structures implemented in LEMON. |
---|
28 | |
---|
29 | The implementation of combinatorial algorithms heavily relies on |
---|
30 | efficient graph implementations. LEMON offers data structures which are |
---|
31 | planned to be easily used in an experimental phase of implementation studies, |
---|
32 | and thereafter the program code can be made efficient by small modifications. |
---|
33 | |
---|
34 | The most efficient implementation of diverse applications require the |
---|
35 | usage of different physical graph implementations. These differences |
---|
36 | appear in the size of graph we require to handle, memory or time usage |
---|
37 | limitations or in the set of operations through which the graph can be |
---|
38 | accessed. LEMON provides several physical graph structures to meet |
---|
39 | the diverging requirements of the possible users. In order to save on |
---|
40 | running time or on memory usage, some structures may fail to provide |
---|
41 | some graph features like edge or node deletion. |
---|
42 | |
---|
43 | Alteration of standard containers need a very limited number of |
---|
44 | operations, these together satisfy the everyday requirements. |
---|
45 | In the case of graph structures, different operations are needed which do |
---|
46 | not alter the physical graph, but gives another view. If some nodes or |
---|
47 | edges have to be hidden or the reverse oriented graph have to be used, then |
---|
48 | this is the case. It also may happen that in a flow implementation |
---|
49 | the residual graph can be accessed by another algorithm, or a node-set |
---|
50 | is to be shrunk for another algorithm. |
---|
51 | LEMON also provides a variety of graphs for these requirements called |
---|
52 | \ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
---|
53 | in conjunction with other graph representation. |
---|
54 | |
---|
55 | You are free to use the graph structure that fit your requirements |
---|
56 | the best, most graph algorithms and auxiliary data structures can be used |
---|
57 | with any graph structures. |
---|
58 | */ |
---|
59 | |
---|
60 | /** |
---|
61 | @defgroup semi_adaptors Semi-Adaptors Classes for Graphs |
---|
62 | @ingroup graphs |
---|
63 | \brief Graph types between real graphs and graph adaptors. |
---|
64 | |
---|
65 | Graph types between real graphs and graph adaptors. These classes wrap |
---|
66 | graphs to give new functionality as the adaptors do it. On the other |
---|
67 | hand they are not light-weight structures as the adaptors. |
---|
68 | */ |
---|
69 | |
---|
70 | /** |
---|
71 | @defgroup maps Maps |
---|
72 | @ingroup datas |
---|
73 | \brief Some special purpose map to make life easier. |
---|
74 | |
---|
75 | LEMON provides several special maps that e.g. combine |
---|
76 | new maps from existing ones. |
---|
77 | */ |
---|
78 | |
---|
79 | /** |
---|
80 | @defgroup graph_maps Graph Maps |
---|
81 | @ingroup maps |
---|
82 | \brief Special Graph-Related Maps. |
---|
83 | |
---|
84 | These maps are specifically designed to assign values to the nodes and edges of |
---|
85 | graphs. |
---|
86 | */ |
---|
87 | |
---|
88 | |
---|
89 | /** |
---|
90 | \defgroup map_adaptors Map Adaptors |
---|
91 | \ingroup maps |
---|
92 | \brief Tools to create new maps from existing ones |
---|
93 | |
---|
94 | Map adaptors are used to create "implicit" maps from other maps. |
---|
95 | |
---|
96 | Most of them are \ref lemon::concepts::ReadMap "ReadMap"s. They can |
---|
97 | make arithmetic operations between one or two maps (negation, scaling, |
---|
98 | addition, multiplication etc.) or e.g. convert a map to another one |
---|
99 | of different Value type. |
---|
100 | |
---|
101 | The typical usage of this classes is the passing implicit maps to |
---|
102 | algorithms. If a function type algorithm is called then the function |
---|
103 | type map adaptors can be used comfortable. For example let's see the |
---|
104 | usage of map adaptors with the \c graphToEps() function: |
---|
105 | \code |
---|
106 | Color nodeColor(int deg) { |
---|
107 | if (deg >= 2) { |
---|
108 | return Color(0.5, 0.0, 0.5); |
---|
109 | } else if (deg == 1) { |
---|
110 | return Color(1.0, 0.5, 1.0); |
---|
111 | } else { |
---|
112 | return Color(0.0, 0.0, 0.0); |
---|
113 | } |
---|
114 | } |
---|
115 | |
---|
116 | Graph::NodeMap<int> degree_map(graph); |
---|
117 | |
---|
118 | graphToEps(graph, "graph.eps") |
---|
119 | .coords(coords).scaleToA4().undirected() |
---|
120 | .nodeColors(composeMap(functorMap(nodeColor), degree_map)) |
---|
121 | .run(); |
---|
122 | \endcode |
---|
123 | The \c functorMap() function makes an \c int to \c Color map from the |
---|
124 | \e nodeColor() function. The \c composeMap() compose the \e degree_map |
---|
125 | and the previous created map. The composed map is proper function to |
---|
126 | get color of each node. |
---|
127 | |
---|
128 | The usage with class type algorithms is little bit harder. In this |
---|
129 | case the function type map adaptors can not be used, because the |
---|
130 | function map adaptors give back temporarly objects. |
---|
131 | \code |
---|
132 | Graph graph; |
---|
133 | |
---|
134 | typedef Graph::EdgeMap<double> DoubleEdgeMap; |
---|
135 | DoubleEdgeMap length(graph); |
---|
136 | DoubleEdgeMap speed(graph); |
---|
137 | |
---|
138 | typedef DivMap<DoubleEdgeMap, DoubleEdgeMap> TimeMap; |
---|
139 | |
---|
140 | TimeMap time(length, speed); |
---|
141 | |
---|
142 | Dijkstra<Graph, TimeMap> dijkstra(graph, time); |
---|
143 | dijkstra.run(source, target); |
---|
144 | \endcode |
---|
145 | |
---|
146 | We have a length map and a maximum speed map on a graph. The minimum |
---|
147 | time to pass the edge can be calculated as the division of the two |
---|
148 | maps which can be done implicitly with the \c DivMap template |
---|
149 | class. We use the implicit minimum time map as the length map of the |
---|
150 | \c Dijkstra algorithm. |
---|
151 | */ |
---|
152 | |
---|
153 | /** |
---|
154 | @defgroup matrices Matrices |
---|
155 | @ingroup datas |
---|
156 | \brief Two dimensional data storages. |
---|
157 | |
---|
158 | Two dimensional data storages. |
---|
159 | */ |
---|
160 | |
---|
161 | /** |
---|
162 | @defgroup paths Path Structures |
---|
163 | @ingroup datas |
---|
164 | \brief Path structures implemented in LEMON. |
---|
165 | |
---|
166 | LEMON provides flexible data structures |
---|
167 | to work with paths. |
---|
168 | |
---|
169 | All of them have similar interfaces, and it can be copied easily with |
---|
170 | assignment operator and copy constructor. This make it easy and |
---|
171 | efficient to have e.g. the Dijkstra algorithm to store its result in |
---|
172 | any kind of path structure. |
---|
173 | |
---|
174 | \sa lemon::concepts::Path |
---|
175 | |
---|
176 | */ |
---|
177 | |
---|
178 | /** |
---|
179 | @defgroup auxdat Auxiliary Data Structures |
---|
180 | @ingroup datas |
---|
181 | \brief Some data structures implemented in LEMON. |
---|
182 | |
---|
183 | This group describes the data structures implemented in LEMON in |
---|
184 | order to make it easier to implement combinatorial algorithms. |
---|
185 | */ |
---|
186 | |
---|
187 | |
---|
188 | /** |
---|
189 | @defgroup algs Algorithms |
---|
190 | \brief This group describes the several algorithms |
---|
191 | implemented in LEMON. |
---|
192 | |
---|
193 | This group describes the several algorithms |
---|
194 | implemented in LEMON. |
---|
195 | */ |
---|
196 | |
---|
197 | /** |
---|
198 | @defgroup search Graph Search |
---|
199 | @ingroup algs |
---|
200 | \brief This group contains the common graph |
---|
201 | search algorithms. |
---|
202 | |
---|
203 | This group contains the common graph |
---|
204 | search algorithms like Bfs and Dfs. |
---|
205 | */ |
---|
206 | |
---|
207 | /** |
---|
208 | @defgroup shortest_path Shortest Path algorithms |
---|
209 | @ingroup algs |
---|
210 | \brief This group describes the algorithms |
---|
211 | for finding shortest paths. |
---|
212 | |
---|
213 | This group describes the algorithms for finding shortest paths in |
---|
214 | graphs. |
---|
215 | |
---|
216 | */ |
---|
217 | |
---|
218 | /** |
---|
219 | @defgroup max_flow Maximum Flow algorithms |
---|
220 | @ingroup algs |
---|
221 | \brief This group describes the algorithms for finding maximum flows. |
---|
222 | |
---|
223 | This group describes the algorithms for finding maximum flows and |
---|
224 | feasible circulations. |
---|
225 | |
---|
226 | The maximum flow problem is to find a flow between a single-source and |
---|
227 | single-target that is maximum. Formally, there is \f$G=(V,A)\f$ |
---|
228 | directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity |
---|
229 | function and given \f$s, t \in V\f$ source and target node. The |
---|
230 | maximum flow is the solution of the next optimization problem: |
---|
231 | |
---|
232 | \f[ 0 \le f_a \le c_a \f] |
---|
233 | \f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} \quad u \in V \setminus \{s,t\}\f] |
---|
234 | \f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f] |
---|
235 | |
---|
236 | The lemon contains several algorithms for solve maximum flow problems: |
---|
237 | - \ref lemon::EdmondsKarp "Edmonds-Karp" |
---|
238 | - \ref lemon::Preflow "Goldberg's Preflow algorithm" |
---|
239 | - \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic tree" |
---|
240 | - \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees" |
---|
241 | |
---|
242 | In most cases the \ref lemon::Preflow "preflow" algorithm provides the |
---|
243 | fastest method to compute the maximum flow. All impelementations |
---|
244 | provides functions for query the minimum cut, which is the dual linear |
---|
245 | programming probelm of the maximum flow. |
---|
246 | |
---|
247 | */ |
---|
248 | |
---|
249 | /** |
---|
250 | @defgroup min_cost_flow Minimum Cost Flow algorithms |
---|
251 | @ingroup algs |
---|
252 | |
---|
253 | \brief This group describes the algorithms |
---|
254 | for finding minimum cost flows and circulations. |
---|
255 | |
---|
256 | This group describes the algorithms for finding minimum cost flows and |
---|
257 | circulations. |
---|
258 | */ |
---|
259 | |
---|
260 | /** |
---|
261 | @defgroup min_cut Minimum Cut algorithms |
---|
262 | @ingroup algs |
---|
263 | |
---|
264 | \brief This group describes the algorithms for finding minimum cut in |
---|
265 | graphs. |
---|
266 | |
---|
267 | This group describes the algorithms for finding minimum cut in graphs. |
---|
268 | |
---|
269 | The minimum cut problem is to find a non-empty and non-complete |
---|
270 | \f$X\f$ subset of the vertices with minimum overall capacity on |
---|
271 | outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an |
---|
272 | \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
---|
273 | cut is the solution of the next optimization problem: |
---|
274 | |
---|
275 | \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f] |
---|
276 | |
---|
277 | The lemon contains several algorithms related to minimum cut problems: |
---|
278 | |
---|
279 | - \ref lemon::HaoOrlin "Hao-Orlin algorithm" for calculate minimum cut |
---|
280 | in directed graphs |
---|
281 | - \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
---|
282 | calculate minimum cut in undirected graphs |
---|
283 | - \ref lemon::GomoryHuTree "Gomory-Hu tree computation" for calculate all |
---|
284 | pairs minimum cut in undirected graphs |
---|
285 | |
---|
286 | If you want to find minimum cut just between two distinict nodes, |
---|
287 | please see the \ref max_flow "Maximum Flow page". |
---|
288 | |
---|
289 | */ |
---|
290 | |
---|
291 | /** |
---|
292 | @defgroup graph_prop Connectivity and other graph properties |
---|
293 | @ingroup algs |
---|
294 | \brief This group describes the algorithms |
---|
295 | for discover the graph properties |
---|
296 | |
---|
297 | This group describes the algorithms for discover the graph properties |
---|
298 | like connectivity, bipartiteness, euler property, simplicity, etc... |
---|
299 | |
---|
300 | \image html edge_biconnected_components.png |
---|
301 | \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
---|
302 | */ |
---|
303 | |
---|
304 | /** |
---|
305 | @defgroup planar Planarity embedding and drawing |
---|
306 | @ingroup algs |
---|
307 | \brief This group contains algorithms for planarity embedding and drawing |
---|
308 | |
---|
309 | This group contains algorithms for planarity checking, embedding and drawing. |
---|
310 | |
---|
311 | \image html planar.png |
---|
312 | \image latex planar.eps "Plane graph" width=\textwidth |
---|
313 | */ |
---|
314 | |
---|
315 | /** |
---|
316 | @defgroup matching Matching algorithms |
---|
317 | @ingroup algs |
---|
318 | \brief This group describes the algorithms |
---|
319 | for find matchings in graphs and bipartite graphs. |
---|
320 | |
---|
321 | This group provides some algorithm objects and function to calculate |
---|
322 | matchings in graphs and bipartite graphs. The general matching problem is |
---|
323 | finding a subset of the edges which does not shares common endpoints. |
---|
324 | |
---|
325 | There are several different algorithms for calculate matchings in |
---|
326 | graphs. The matching problems in bipartite graphs are generally |
---|
327 | easier than in general graphs. The goal of the matching optimization |
---|
328 | can be the finding maximum cardinality, maximum weight or minimum cost |
---|
329 | matching. The search can be constrained to find perfect or |
---|
330 | maximum cardinality matching. |
---|
331 | |
---|
332 | Lemon contains the next algorithms: |
---|
333 | - \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp |
---|
334 | augmenting path algorithm for calculate maximum cardinality matching in |
---|
335 | bipartite graphs |
---|
336 | - \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel |
---|
337 | algorithm for calculate maximum cardinality matching in bipartite graphs |
---|
338 | - \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" |
---|
339 | Successive shortest path algorithm for calculate maximum weighted matching |
---|
340 | and maximum weighted bipartite matching in bipartite graph |
---|
341 | - \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" |
---|
342 | Successive shortest path algorithm for calculate minimum cost maximum |
---|
343 | matching in bipartite graph |
---|
344 | - \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm |
---|
345 | for calculate maximum cardinality matching in general graph |
---|
346 | - \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom |
---|
347 | shrinking algorithm for calculate maximum weighted matching in general |
---|
348 | graph |
---|
349 | - \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching" |
---|
350 | Edmond's blossom shrinking algorithm for calculate maximum weighted |
---|
351 | perfect matching in general graph |
---|
352 | |
---|
353 | \image html bipartite_matching.png |
---|
354 | \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
---|
355 | |
---|
356 | */ |
---|
357 | |
---|
358 | /** |
---|
359 | @defgroup spantree Minimum Spanning Tree algorithms |
---|
360 | @ingroup algs |
---|
361 | \brief This group contains the algorithms for finding a minimum cost spanning |
---|
362 | tree in a graph |
---|
363 | |
---|
364 | This group contains the algorithms for finding a minimum cost spanning |
---|
365 | tree in a graph |
---|
366 | */ |
---|
367 | |
---|
368 | |
---|
369 | /** |
---|
370 | @defgroup auxalg Auxiliary algorithms |
---|
371 | @ingroup algs |
---|
372 | \brief Some algorithms implemented in LEMON. |
---|
373 | |
---|
374 | This group describes the algorithms in LEMON in order to make |
---|
375 | it easier to implement complex algorithms. |
---|
376 | */ |
---|
377 | |
---|
378 | /** |
---|
379 | @defgroup approx Approximation algorithms |
---|
380 | \brief Approximation algorithms |
---|
381 | |
---|
382 | Approximation and heuristic algorithms |
---|
383 | */ |
---|
384 | |
---|
385 | /** |
---|
386 | @defgroup gen_opt_group General Optimization Tools |
---|
387 | \brief This group describes some general optimization frameworks |
---|
388 | implemented in LEMON. |
---|
389 | |
---|
390 | This group describes some general optimization frameworks |
---|
391 | implemented in LEMON. |
---|
392 | |
---|
393 | */ |
---|
394 | |
---|
395 | /** |
---|
396 | @defgroup lp_group Lp and Mip solvers |
---|
397 | @ingroup gen_opt_group |
---|
398 | \brief Lp and Mip solver interfaces for LEMON. |
---|
399 | |
---|
400 | This group describes Lp and Mip solver interfaces for LEMON. The |
---|
401 | various LP solvers could be used in the same manner with this |
---|
402 | interface. |
---|
403 | |
---|
404 | */ |
---|
405 | |
---|
406 | /** |
---|
407 | @defgroup lp_utils Tools for Lp and Mip solvers |
---|
408 | @ingroup lp_group |
---|
409 | \brief This group adds some helper tools to the Lp and Mip solvers |
---|
410 | implemented in LEMON. |
---|
411 | |
---|
412 | This group adds some helper tools to general optimization framework |
---|
413 | implemented in LEMON. |
---|
414 | */ |
---|
415 | |
---|
416 | /** |
---|
417 | @defgroup metah Metaheuristics |
---|
418 | @ingroup gen_opt_group |
---|
419 | \brief Metaheuristics for LEMON library. |
---|
420 | |
---|
421 | This group contains some metaheuristic optimization tools. |
---|
422 | */ |
---|
423 | |
---|
424 | /** |
---|
425 | @defgroup utils Tools and Utilities |
---|
426 | \brief Tools and Utilities for Programming in LEMON |
---|
427 | |
---|
428 | Tools and Utilities for Programming in LEMON |
---|
429 | */ |
---|
430 | |
---|
431 | /** |
---|
432 | @defgroup gutils Basic Graph Utilities |
---|
433 | @ingroup utils |
---|
434 | \brief This group describes some simple basic graph utilities. |
---|
435 | |
---|
436 | This group describes some simple basic graph utilities. |
---|
437 | */ |
---|
438 | |
---|
439 | /** |
---|
440 | @defgroup misc Miscellaneous Tools |
---|
441 | @ingroup utils |
---|
442 | Here you can find several useful tools for development, |
---|
443 | debugging and testing. |
---|
444 | */ |
---|
445 | |
---|
446 | |
---|
447 | /** |
---|
448 | @defgroup timecount Time measuring and Counting |
---|
449 | @ingroup misc |
---|
450 | Here you can find simple tools for measuring the performance |
---|
451 | of algorithms. |
---|
452 | */ |
---|
453 | |
---|
454 | /** |
---|
455 | @defgroup graphbits Tools for Graph Implementation |
---|
456 | @ingroup utils |
---|
457 | \brief Tools to Make It Easier to Make Graphs. |
---|
458 | |
---|
459 | This group describes the tools that makes it easier to make graphs and |
---|
460 | the maps that dynamically update with the graph changes. |
---|
461 | */ |
---|
462 | |
---|
463 | /** |
---|
464 | @defgroup exceptions Exceptions |
---|
465 | @ingroup utils |
---|
466 | This group contains the exceptions thrown by LEMON library |
---|
467 | */ |
---|
468 | |
---|
469 | /** |
---|
470 | @defgroup io_group Input-Output |
---|
471 | \brief Several Graph Input-Output methods |
---|
472 | |
---|
473 | Here you can find tools for importing and exporting graphs |
---|
474 | and graph related data. Now it supports the LEMON format, the |
---|
475 | \c DIMACS format and the encapsulated postscript format. |
---|
476 | */ |
---|
477 | |
---|
478 | /** |
---|
479 | @defgroup lemon_io Lemon Input-Output |
---|
480 | @ingroup io_group |
---|
481 | \brief Reading and writing LEMON format |
---|
482 | |
---|
483 | Methods for reading and writing LEMON format. More about this |
---|
484 | format you can find on the \ref graph-io-page "Graph Input-Output" |
---|
485 | tutorial pages. |
---|
486 | */ |
---|
487 | |
---|
488 | /** |
---|
489 | @defgroup section_io Section readers and writers |
---|
490 | @ingroup lemon_io |
---|
491 | \brief Section readers and writers for lemon Input-Output. |
---|
492 | |
---|
493 | Here you can find which section readers and writers can attach to |
---|
494 | the LemonReader and LemonWriter. |
---|
495 | */ |
---|
496 | |
---|
497 | /** |
---|
498 | @defgroup item_io Item Readers and Writers |
---|
499 | @ingroup lemon_io |
---|
500 | \brief Item readers and writers for lemon Input-Output. |
---|
501 | |
---|
502 | The Input-Output classes can handle more data type by example |
---|
503 | as map or attribute value. Each of these should be written and |
---|
504 | read some way. The module make possible to do this. |
---|
505 | */ |
---|
506 | |
---|
507 | /** |
---|
508 | @defgroup eps_io Postscript exporting |
---|
509 | @ingroup io_group |
---|
510 | \brief General \c EPS drawer and graph exporter |
---|
511 | |
---|
512 | This group contains general \c EPS drawing methods and special |
---|
513 | graph exporting tools. |
---|
514 | */ |
---|
515 | |
---|
516 | |
---|
517 | /** |
---|
518 | @defgroup concept Concepts |
---|
519 | \brief Skeleton classes and concept checking classes |
---|
520 | |
---|
521 | This group describes the data/algorithm skeletons and concept checking |
---|
522 | classes implemented in LEMON. |
---|
523 | |
---|
524 | The purpose of the classes in this group is fourfold. |
---|
525 | |
---|
526 | - These classes contain the documentations of the concepts. In order |
---|
527 | to avoid document multiplications, an implementation of a concept |
---|
528 | simply refers to the corresponding concept class. |
---|
529 | |
---|
530 | - These classes declare every functions, <tt>typedef</tt>s etc. an |
---|
531 | implementation of the concepts should provide, however completely |
---|
532 | without implementations and real data structures behind the |
---|
533 | interface. On the other hand they should provide nothing else. All |
---|
534 | the algorithms working on a data structure meeting a certain concept |
---|
535 | should compile with these classes. (Though it will not run properly, |
---|
536 | of course.) In this way it is easily to check if an algorithm |
---|
537 | doesn't use any extra feature of a certain implementation. |
---|
538 | |
---|
539 | - The concept descriptor classes also provide a <em>checker class</em> |
---|
540 | that makes it possible check whether a certain implementation of a |
---|
541 | concept indeed provides all the required features. |
---|
542 | |
---|
543 | - Finally, They can serve as a skeleton of a new implementation of a concept. |
---|
544 | |
---|
545 | */ |
---|
546 | |
---|
547 | |
---|
548 | /** |
---|
549 | @defgroup graph_concepts Graph Structure Concepts |
---|
550 | @ingroup concept |
---|
551 | \brief Skeleton and concept checking classes for graph structures |
---|
552 | |
---|
553 | This group contains the skeletons and concept checking classes of LEMON's |
---|
554 | graph structures and helper classes used to implement these. |
---|
555 | */ |
---|
556 | |
---|
557 | /* --- Unused group |
---|
558 | @defgroup experimental Experimental Structures and Algorithms |
---|
559 | This group contains some Experimental structures and algorithms. |
---|
560 | The stuff here is subject to change. |
---|
561 | */ |
---|
562 | |
---|
563 | /** |
---|
564 | \anchor demoprograms |
---|
565 | |
---|
566 | @defgroup demos Demo programs |
---|
567 | |
---|
568 | Some demo programs are listed here. Their full source codes can be found in |
---|
569 | the \c demo subdirectory of the source tree. |
---|
570 | |
---|
571 | It order to compile them, use <tt>--enable-demo</tt> configure option when |
---|
572 | build the library. |
---|
573 | |
---|
574 | */ |
---|
575 | |
---|
576 | /** |
---|
577 | @defgroup tools Standalone utility applications |
---|
578 | |
---|
579 | Some utility applications are listed here. |
---|
580 | |
---|
581 | The standard compilation procedure (<tt>./configure;make</tt>) will compile |
---|
582 | them, as well. |
---|
583 | |
---|
584 | */ |
---|
585 | |
---|