COIN-OR::LEMON - Graph Library

source: lemon-main/lemon/christofides_tsp.h @ 1092:dceba191c00d

Last change on this file since 1092:dceba191c00d was 1092:dceba191c00d, checked in by Alpar Juttner <alpar@…>, 11 years ago

Apply unify-sources.sh to the source tree

File size: 7.8 KB
RevLine 
[1033]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
[1092]5 * Copyright (C) 2003-2013
[1033]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[1031]19#ifndef LEMON_CHRISTOFIDES_TSP_H
20#define LEMON_CHRISTOFIDES_TSP_H
21
[1033]22/// \ingroup tsp
23/// \file
24/// \brief Christofides algorithm for symmetric TSP
25
[1031]26#include <lemon/full_graph.h>
27#include <lemon/smart_graph.h>
28#include <lemon/kruskal.h>
29#include <lemon/matching.h>
30#include <lemon/euler.h>
31
32namespace lemon {
[1092]33
[1034]34  /// \ingroup tsp
35  ///
[1033]36  /// \brief Christofides algorithm for symmetric TSP.
37  ///
38  /// ChristofidesTsp implements Christofides' heuristic for solving
39  /// symmetric \ref tsp "TSP".
40  ///
41  /// This a well-known approximation method for the TSP problem with
[1034]42  /// metric cost function.
[1036]43  /// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
44  /// whose total cost is at most 3/2 of the optimum), but it usually
45  /// provides better solutions in practice.
[1033]46  /// This implementation runs in O(n<sup>3</sup>log(n)) time.
47  ///
48  /// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
49  /// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
50  /// in the subgraph induced by the nodes that have odd degree in the
51  /// spanning tree.
52  /// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
53  /// of the union of the spanning tree and the matching.
54  /// During this last step, the algorithm simply skips the visited nodes
55  /// (i.e. creates shortcuts) assuming that the triangle inequality holds
56  /// for the cost function.
57  ///
58  /// \tparam CM Type of the cost map.
59  ///
[1034]60  /// \warning CM::Value must be a signed number type.
[1031]61  template <typename CM>
[1033]62  class ChristofidesTsp
63  {
64    public:
65
66      /// Type of the cost map
67      typedef CM CostMap;
68      /// Type of the edge costs
69      typedef typename CM::Value Cost;
70
[1031]71    private:
[1033]72
73      GRAPH_TYPEDEFS(FullGraph);
74
75      const FullGraph &_gr;
76      const CostMap &_cost;
77      std::vector<Node> _path;
78      Cost _sum;
[1031]79
80    public:
81
[1033]82      /// \brief Constructor
83      ///
84      /// Constructor.
85      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
86      /// \param cost The cost map.
87      ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
88        : _gr(gr), _cost(cost) {}
89
90      /// \name Execution Control
91      /// @{
92
93      /// \brief Runs the algorithm.
94      ///
95      /// This function runs the algorithm.
96      ///
97      /// \return The total cost of the found tour.
[1031]98      Cost run() {
99        _path.clear();
[1033]100
101        if (_gr.nodeNum() == 0) return _sum = 0;
102        else if (_gr.nodeNum() == 1) {
103          _path.push_back(_gr(0));
104          return _sum = 0;
105        }
106        else if (_gr.nodeNum() == 2) {
107          _path.push_back(_gr(0));
108          _path.push_back(_gr(1));
109          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
110        }
[1092]111
[1033]112        // Compute min. cost spanning tree
113        std::vector<Edge> tree;
114        kruskal(_gr, _cost, std::back_inserter(tree));
[1092]115
[1033]116        FullGraph::NodeMap<int> deg(_gr, 0);
117        for (int i = 0; i != int(tree.size()); ++i) {
118          Edge e = tree[i];
119          ++deg[_gr.u(e)];
120          ++deg[_gr.v(e)];
121        }
122
123        // Copy the induced subgraph of odd nodes
124        std::vector<Node> odd_nodes;
125        for (NodeIt u(_gr); u != INVALID; ++u) {
126          if (deg[u] % 2 == 1) odd_nodes.push_back(u);
127        }
[1092]128
[1033]129        SmartGraph sgr;
130        SmartGraph::EdgeMap<Cost> scost(sgr);
131        for (int i = 0; i != int(odd_nodes.size()); ++i) {
132          sgr.addNode();
133        }
134        for (int i = 0; i != int(odd_nodes.size()); ++i) {
135          for (int j = 0; j != int(odd_nodes.size()); ++j) {
136            if (j == i) continue;
137            SmartGraph::Edge e =
138              sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
139            scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
[1031]140          }
141        }
[1092]142
[1033]143        // Compute min. cost perfect matching
144        MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
145          mwpm(sgr, scost);
146        mwpm.run();
[1092]147
[1033]148        for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
149          if (mwpm.matching(e)) {
150            tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
151                                     odd_nodes[sgr.id(sgr.v(e))]) );
[1031]152          }
153        }
[1092]154
155        // Join the spanning tree and the matching
[1033]156        sgr.clear();
157        for (int i = 0; i != _gr.nodeNum(); ++i) {
158          sgr.addNode();
159        }
160        for (int i = 0; i != int(tree.size()); ++i) {
161          int ui = _gr.id(_gr.u(tree[i])),
162              vi = _gr.id(_gr.v(tree[i]));
163          sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
164        }
165
166        // Compute the tour from the Euler traversal
167        SmartGraph::NodeMap<bool> visited(sgr, false);
168        for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
169          SmartGraph::Node n = sgr.target(e);
170          if (!visited[n]) {
171            _path.push_back(_gr(sgr.id(n)));
172            visited[n] = true;
[1031]173          }
174        }
175
[1033]176        _sum = _cost[_gr.edge(_path.back(), _path.front())];
177        for (int i = 0; i < int(_path.size())-1; ++i) {
178          _sum += _cost[_gr.edge(_path[i], _path[i+1])];
179        }
[1031]180
181        return _sum;
182      }
183
[1033]184      /// @}
[1092]185
[1033]186      /// \name Query Functions
187      /// @{
[1092]188
[1033]189      /// \brief The total cost of the found tour.
190      ///
191      /// This function returns the total cost of the found tour.
192      ///
193      /// \pre run() must be called before using this function.
194      Cost tourCost() const {
[1031]195        return _sum;
196      }
[1092]197
[1033]198      /// \brief Returns a const reference to the node sequence of the
199      /// found tour.
200      ///
[1034]201      /// This function returns a const reference to a vector
[1033]202      /// that stores the node sequence of the found tour.
203      ///
204      /// \pre run() must be called before using this function.
205      const std::vector<Node>& tourNodes() const {
206        return _path;
207      }
[1031]208
[1033]209      /// \brief Gives back the node sequence of the found tour.
210      ///
211      /// This function copies the node sequence of the found tour into
[1037]212      /// an STL container through the given output iterator. The
213      /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
214      /// For example,
215      /// \code
216      /// std::vector<FullGraph::Node> nodes(countNodes(graph));
217      /// tsp.tourNodes(nodes.begin());
218      /// \endcode
219      /// or
220      /// \code
221      /// std::list<FullGraph::Node> nodes;
222      /// tsp.tourNodes(std::back_inserter(nodes));
223      /// \endcode
[1033]224      ///
225      /// \pre run() must be called before using this function.
[1037]226      template <typename Iterator>
227      void tourNodes(Iterator out) const {
228        std::copy(_path.begin(), _path.end(), out);
[1033]229      }
[1092]230
[1033]231      /// \brief Gives back the found tour as a path.
232      ///
233      /// This function copies the found tour as a list of arcs/edges into
[1074]234      /// the given \ref lemon::concepts::Path "path structure".
[1033]235      ///
236      /// \pre run() must be called before using this function.
237      template <typename Path>
238      void tour(Path &path) const {
239        path.clear();
240        for (int i = 0; i < int(_path.size()) - 1; ++i) {
241          path.addBack(_gr.arc(_path[i], _path[i+1]));
242        }
243        if (int(_path.size()) >= 2) {
244          path.addBack(_gr.arc(_path.back(), _path.front()));
245        }
246      }
[1092]247
[1033]248      /// @}
[1092]249
[1031]250  };
251
252}; // namespace lemon
253
254#endif
Note: See TracBrowser for help on using the repository browser.