1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2013 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | ///\ingroup graph_concepts |
---|
20 | ///\file |
---|
21 | ///\brief The concept of undirected graphs. |
---|
22 | |
---|
23 | #ifndef LEMON_CONCEPTS_BPGRAPH_H |
---|
24 | #define LEMON_CONCEPTS_BPGRAPH_H |
---|
25 | |
---|
26 | #include <lemon/concepts/graph_components.h> |
---|
27 | #include <lemon/concepts/maps.h> |
---|
28 | #include <lemon/concept_check.h> |
---|
29 | #include <lemon/core.h> |
---|
30 | #include <lemon/bits/stl_iterators.h> |
---|
31 | |
---|
32 | namespace lemon { |
---|
33 | namespace concepts { |
---|
34 | |
---|
35 | /// \ingroup graph_concepts |
---|
36 | /// |
---|
37 | /// \brief Class describing the concept of undirected bipartite graphs. |
---|
38 | /// |
---|
39 | /// This class describes the common interface of all undirected |
---|
40 | /// bipartite graphs. |
---|
41 | /// |
---|
42 | /// Like all concept classes, it only provides an interface |
---|
43 | /// without any sensible implementation. So any general algorithm for |
---|
44 | /// undirected bipartite graphs should compile with this class, |
---|
45 | /// but it will not run properly, of course. |
---|
46 | /// An actual graph implementation like \ref ListBpGraph or |
---|
47 | /// \ref SmartBpGraph may have additional functionality. |
---|
48 | /// |
---|
49 | /// The bipartite graphs also fulfill the concept of \ref Graph |
---|
50 | /// "undirected graphs". Bipartite graphs provide a bipartition of |
---|
51 | /// the node set, namely a red and blue set of the nodes. The |
---|
52 | /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the |
---|
53 | /// two node sets. With RedNodeMap and BlueNodeMap values can be |
---|
54 | /// assigned to the nodes in the two sets. |
---|
55 | /// |
---|
56 | /// The edges of the graph cannot connect two nodes of the same |
---|
57 | /// set. The edges inherent orientation is from the red nodes to |
---|
58 | /// the blue nodes. |
---|
59 | /// |
---|
60 | /// \sa Graph |
---|
61 | class BpGraph { |
---|
62 | private: |
---|
63 | /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead. |
---|
64 | BpGraph(const BpGraph&) {} |
---|
65 | /// \brief Assignment of a graph to another one is \e not allowed. |
---|
66 | /// Use bpGraphCopy instead. |
---|
67 | void operator=(const BpGraph&) {} |
---|
68 | |
---|
69 | public: |
---|
70 | /// Default constructor. |
---|
71 | BpGraph() {} |
---|
72 | |
---|
73 | /// \brief Undirected graphs should be tagged with \c UndirectedTag. |
---|
74 | /// |
---|
75 | /// Undirected graphs should be tagged with \c UndirectedTag. |
---|
76 | /// |
---|
77 | /// This tag helps the \c enable_if technics to make compile time |
---|
78 | /// specializations for undirected graphs. |
---|
79 | typedef True UndirectedTag; |
---|
80 | |
---|
81 | /// The node type of the graph |
---|
82 | |
---|
83 | /// This class identifies a node of the graph. It also serves |
---|
84 | /// as a base class of the node iterators, |
---|
85 | /// thus they convert to this type. |
---|
86 | class Node { |
---|
87 | public: |
---|
88 | /// Default constructor |
---|
89 | |
---|
90 | /// Default constructor. |
---|
91 | /// \warning It sets the object to an undefined value. |
---|
92 | Node() { } |
---|
93 | /// Copy constructor. |
---|
94 | |
---|
95 | /// Copy constructor. |
---|
96 | /// |
---|
97 | Node(const Node&) { } |
---|
98 | /// Assignment operator |
---|
99 | |
---|
100 | /// Assignment operator. |
---|
101 | /// |
---|
102 | const Node &operator=(const Node&) { return *this; } |
---|
103 | |
---|
104 | /// %Invalid constructor \& conversion. |
---|
105 | |
---|
106 | /// Initializes the object to be invalid. |
---|
107 | /// \sa Invalid for more details. |
---|
108 | Node(Invalid) { } |
---|
109 | /// Equality operator |
---|
110 | |
---|
111 | /// Equality operator. |
---|
112 | /// |
---|
113 | /// Two iterators are equal if and only if they point to the |
---|
114 | /// same object or both are \c INVALID. |
---|
115 | bool operator==(Node) const { return true; } |
---|
116 | |
---|
117 | /// Inequality operator |
---|
118 | |
---|
119 | /// Inequality operator. |
---|
120 | bool operator!=(Node) const { return true; } |
---|
121 | |
---|
122 | /// Artificial ordering operator. |
---|
123 | |
---|
124 | /// Artificial ordering operator. |
---|
125 | /// |
---|
126 | /// \note This operator only has to define some strict ordering of |
---|
127 | /// the items; this order has nothing to do with the iteration |
---|
128 | /// ordering of the items. |
---|
129 | bool operator<(Node) const { return false; } |
---|
130 | |
---|
131 | }; |
---|
132 | |
---|
133 | /// Class to represent red nodes. |
---|
134 | |
---|
135 | /// This class represents the red nodes of the graph. It does |
---|
136 | /// not supposed to be used directly, because the nodes can be |
---|
137 | /// represented as Node instances. This class can be used as |
---|
138 | /// template parameter for special map classes. |
---|
139 | class RedNode : public Node { |
---|
140 | public: |
---|
141 | /// Default constructor |
---|
142 | |
---|
143 | /// Default constructor. |
---|
144 | /// \warning It sets the object to an undefined value. |
---|
145 | RedNode() { } |
---|
146 | /// Copy constructor. |
---|
147 | |
---|
148 | /// Copy constructor. |
---|
149 | /// |
---|
150 | RedNode(const RedNode&) : Node() { } |
---|
151 | /// Assignment operator |
---|
152 | |
---|
153 | /// Assignment operator. |
---|
154 | /// |
---|
155 | const RedNode &operator=(const RedNode&) { return *this; } |
---|
156 | |
---|
157 | /// %Invalid constructor \& conversion. |
---|
158 | |
---|
159 | /// Initializes the object to be invalid. |
---|
160 | /// \sa Invalid for more details. |
---|
161 | RedNode(Invalid) { } |
---|
162 | |
---|
163 | }; |
---|
164 | |
---|
165 | /// Class to represent blue nodes. |
---|
166 | |
---|
167 | /// This class represents the blue nodes of the graph. It does |
---|
168 | /// not supposed to be used directly, because the nodes can be |
---|
169 | /// represented as Node instances. This class can be used as |
---|
170 | /// template parameter for special map classes. |
---|
171 | class BlueNode : public Node { |
---|
172 | public: |
---|
173 | /// Default constructor |
---|
174 | |
---|
175 | /// Default constructor. |
---|
176 | /// \warning It sets the object to an undefined value. |
---|
177 | BlueNode() { } |
---|
178 | /// Copy constructor. |
---|
179 | |
---|
180 | /// Copy constructor. |
---|
181 | /// |
---|
182 | BlueNode(const BlueNode&) : Node() { } |
---|
183 | /// Assignment operator |
---|
184 | |
---|
185 | /// Assignment operator. |
---|
186 | /// |
---|
187 | const BlueNode &operator=(const BlueNode&) { return *this; } |
---|
188 | |
---|
189 | |
---|
190 | /// %Invalid constructor \& conversion. |
---|
191 | |
---|
192 | /// Initializes the object to be invalid. |
---|
193 | /// \sa Invalid for more details. |
---|
194 | BlueNode(Invalid) { } |
---|
195 | |
---|
196 | }; |
---|
197 | |
---|
198 | /// Iterator class for the red nodes. |
---|
199 | |
---|
200 | /// This iterator goes through each red node of the graph. |
---|
201 | /// Its usage is quite simple, for example, you can count the number |
---|
202 | /// of red nodes in a graph \c g of type \c %BpGraph like this: |
---|
203 | ///\code |
---|
204 | /// int count=0; |
---|
205 | /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count; |
---|
206 | ///\endcode |
---|
207 | class RedNodeIt : public RedNode { |
---|
208 | public: |
---|
209 | /// Default constructor |
---|
210 | |
---|
211 | /// Default constructor. |
---|
212 | /// \warning It sets the iterator to an undefined value. |
---|
213 | RedNodeIt() { } |
---|
214 | /// Copy constructor. |
---|
215 | |
---|
216 | /// Copy constructor. |
---|
217 | /// |
---|
218 | RedNodeIt(const RedNodeIt& n) : RedNode(n) { } |
---|
219 | /// Assignment operator |
---|
220 | |
---|
221 | /// Assignment operator. |
---|
222 | /// |
---|
223 | const RedNodeIt &operator=(const RedNodeIt&) { return *this; } |
---|
224 | /// %Invalid constructor \& conversion. |
---|
225 | |
---|
226 | /// Initializes the iterator to be invalid. |
---|
227 | /// \sa Invalid for more details. |
---|
228 | RedNodeIt(Invalid) { } |
---|
229 | /// Sets the iterator to the first red node. |
---|
230 | |
---|
231 | /// Sets the iterator to the first red node of the given |
---|
232 | /// digraph. |
---|
233 | explicit RedNodeIt(const BpGraph&) { } |
---|
234 | /// Sets the iterator to the given red node. |
---|
235 | |
---|
236 | /// Sets the iterator to the given red node of the given |
---|
237 | /// digraph. |
---|
238 | RedNodeIt(const BpGraph&, const RedNode&) { } |
---|
239 | /// Next node. |
---|
240 | |
---|
241 | /// Assign the iterator to the next red node. |
---|
242 | /// |
---|
243 | RedNodeIt& operator++() { return *this; } |
---|
244 | }; |
---|
245 | |
---|
246 | /// \brief Gets the collection of the red nodes of the graph. |
---|
247 | /// |
---|
248 | /// This function can be used for iterating on |
---|
249 | /// the red nodes of the graph. It returns a wrapped RedNodeIt, |
---|
250 | /// which looks like an STL container (by having begin() and end()) |
---|
251 | /// which you can use in range-based for loops, stl algorithms, etc. |
---|
252 | /// For example if g is a BpGraph, you can write: |
---|
253 | ///\code |
---|
254 | /// for(auto v: g.redNodes()) |
---|
255 | /// doSomething(v); |
---|
256 | ///\endcode |
---|
257 | LemonRangeWrapper1<RedNodeIt, BpGraph> redNodes() const { |
---|
258 | return LemonRangeWrapper1<RedNodeIt, BpGraph>(*this); |
---|
259 | } |
---|
260 | |
---|
261 | |
---|
262 | /// Iterator class for the blue nodes. |
---|
263 | |
---|
264 | /// This iterator goes through each blue node of the graph. |
---|
265 | /// Its usage is quite simple, for example, you can count the number |
---|
266 | /// of blue nodes in a graph \c g of type \c %BpGraph like this: |
---|
267 | ///\code |
---|
268 | /// int count=0; |
---|
269 | /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count; |
---|
270 | ///\endcode |
---|
271 | class BlueNodeIt : public BlueNode { |
---|
272 | public: |
---|
273 | /// Default constructor |
---|
274 | |
---|
275 | /// Default constructor. |
---|
276 | /// \warning It sets the iterator to an undefined value. |
---|
277 | BlueNodeIt() { } |
---|
278 | /// Copy constructor. |
---|
279 | |
---|
280 | /// Copy constructor. |
---|
281 | /// |
---|
282 | BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { } |
---|
283 | /// Assignment operator |
---|
284 | |
---|
285 | /// Assignment operator. |
---|
286 | /// |
---|
287 | const BlueNodeIt &operator=(const BlueNodeIt&) { return *this; } |
---|
288 | /// %Invalid constructor \& conversion. |
---|
289 | |
---|
290 | /// Initializes the iterator to be invalid. |
---|
291 | /// \sa Invalid for more details. |
---|
292 | BlueNodeIt(Invalid) { } |
---|
293 | /// Sets the iterator to the first blue node. |
---|
294 | |
---|
295 | /// Sets the iterator to the first blue node of the given |
---|
296 | /// digraph. |
---|
297 | explicit BlueNodeIt(const BpGraph&) { } |
---|
298 | /// Sets the iterator to the given blue node. |
---|
299 | |
---|
300 | /// Sets the iterator to the given blue node of the given |
---|
301 | /// digraph. |
---|
302 | BlueNodeIt(const BpGraph&, const BlueNode&) { } |
---|
303 | /// Next node. |
---|
304 | |
---|
305 | /// Assign the iterator to the next blue node. |
---|
306 | /// |
---|
307 | BlueNodeIt& operator++() { return *this; } |
---|
308 | }; |
---|
309 | |
---|
310 | /// \brief Gets the collection of the blue nodes of the graph. |
---|
311 | /// |
---|
312 | /// This function can be used for iterating on |
---|
313 | /// the blue nodes of the graph. It returns a wrapped BlueNodeIt, |
---|
314 | /// which looks like an STL container (by having begin() and end()) |
---|
315 | /// which you can use in range-based for loops, stl algorithms, etc. |
---|
316 | /// For example if g is a BpGraph, you can write: |
---|
317 | ///\code |
---|
318 | /// for(auto v: g.blueNodes()) |
---|
319 | /// doSomething(v); |
---|
320 | ///\endcode |
---|
321 | LemonRangeWrapper1<BlueNodeIt, BpGraph> blueNodes() const { |
---|
322 | return LemonRangeWrapper1<BlueNodeIt, BpGraph>(*this); |
---|
323 | } |
---|
324 | |
---|
325 | |
---|
326 | /// Iterator class for the nodes. |
---|
327 | |
---|
328 | /// This iterator goes through each node of the graph. |
---|
329 | /// Its usage is quite simple, for example, you can count the number |
---|
330 | /// of nodes in a graph \c g of type \c %BpGraph like this: |
---|
331 | ///\code |
---|
332 | /// int count=0; |
---|
333 | /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
---|
334 | ///\endcode |
---|
335 | class NodeIt : public Node { |
---|
336 | public: |
---|
337 | /// Default constructor |
---|
338 | |
---|
339 | /// Default constructor. |
---|
340 | /// \warning It sets the iterator to an undefined value. |
---|
341 | NodeIt() { } |
---|
342 | /// Copy constructor. |
---|
343 | |
---|
344 | /// Copy constructor. |
---|
345 | /// |
---|
346 | NodeIt(const NodeIt& n) : Node(n) { } |
---|
347 | /// Assignment operator |
---|
348 | |
---|
349 | /// Assignment operator. |
---|
350 | /// |
---|
351 | const NodeIt &operator=(const NodeIt&) { return *this; } |
---|
352 | /// %Invalid constructor \& conversion. |
---|
353 | |
---|
354 | /// Initializes the iterator to be invalid. |
---|
355 | /// \sa Invalid for more details. |
---|
356 | NodeIt(Invalid) { } |
---|
357 | /// Sets the iterator to the first node. |
---|
358 | |
---|
359 | /// Sets the iterator to the first node of the given digraph. |
---|
360 | /// |
---|
361 | explicit NodeIt(const BpGraph&) { } |
---|
362 | /// Sets the iterator to the given node. |
---|
363 | |
---|
364 | /// Sets the iterator to the given node of the given digraph. |
---|
365 | /// |
---|
366 | NodeIt(const BpGraph&, const Node&) { } |
---|
367 | /// Next node. |
---|
368 | |
---|
369 | /// Assign the iterator to the next node. |
---|
370 | /// |
---|
371 | NodeIt& operator++() { return *this; } |
---|
372 | }; |
---|
373 | |
---|
374 | /// \brief Gets the collection of the nodes of the graph. |
---|
375 | /// |
---|
376 | /// This function can be used for iterating on |
---|
377 | /// the nodes of the graph. It returns a wrapped NodeIt, |
---|
378 | /// which looks like an STL container (by having begin() and end()) |
---|
379 | /// which you can use in range-based for loops, stl algorithms, etc. |
---|
380 | /// For example if g is a BpGraph, you can write: |
---|
381 | ///\code |
---|
382 | /// for(auto v: g.nodes()) |
---|
383 | /// doSomething(v); |
---|
384 | ///\endcode |
---|
385 | LemonRangeWrapper1<NodeIt, BpGraph> nodes() const { |
---|
386 | return LemonRangeWrapper1<NodeIt, BpGraph>(*this); |
---|
387 | } |
---|
388 | |
---|
389 | |
---|
390 | |
---|
391 | /// The edge type of the graph |
---|
392 | |
---|
393 | /// This class identifies an edge of the graph. It also serves |
---|
394 | /// as a base class of the edge iterators, |
---|
395 | /// thus they will convert to this type. |
---|
396 | class Edge { |
---|
397 | public: |
---|
398 | /// Default constructor |
---|
399 | |
---|
400 | /// Default constructor. |
---|
401 | /// \warning It sets the object to an undefined value. |
---|
402 | Edge() { } |
---|
403 | /// Copy constructor. |
---|
404 | |
---|
405 | /// Copy constructor. |
---|
406 | /// |
---|
407 | Edge(const Edge&) { } |
---|
408 | /// Assignment operator |
---|
409 | |
---|
410 | /// Assignment operator. |
---|
411 | /// |
---|
412 | const Edge &operator=(const Edge&) { return *this; } |
---|
413 | /// %Invalid constructor \& conversion. |
---|
414 | |
---|
415 | /// Initializes the object to be invalid. |
---|
416 | /// \sa Invalid for more details. |
---|
417 | Edge(Invalid) { } |
---|
418 | /// Equality operator |
---|
419 | |
---|
420 | /// Equality operator. |
---|
421 | /// |
---|
422 | /// Two iterators are equal if and only if they point to the |
---|
423 | /// same object or both are \c INVALID. |
---|
424 | bool operator==(Edge) const { return true; } |
---|
425 | /// Inequality operator |
---|
426 | |
---|
427 | /// Inequality operator. |
---|
428 | bool operator!=(Edge) const { return true; } |
---|
429 | |
---|
430 | /// Artificial ordering operator. |
---|
431 | |
---|
432 | /// Artificial ordering operator. |
---|
433 | /// |
---|
434 | /// \note This operator only has to define some strict ordering of |
---|
435 | /// the edges; this order has nothing to do with the iteration |
---|
436 | /// ordering of the edges. |
---|
437 | bool operator<(Edge) const { return false; } |
---|
438 | }; |
---|
439 | |
---|
440 | /// Iterator class for the edges. |
---|
441 | |
---|
442 | /// This iterator goes through each edge of the graph. |
---|
443 | /// Its usage is quite simple, for example, you can count the number |
---|
444 | /// of edges in a graph \c g of type \c %BpGraph as follows: |
---|
445 | ///\code |
---|
446 | /// int count=0; |
---|
447 | /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
448 | ///\endcode |
---|
449 | class EdgeIt : public Edge { |
---|
450 | public: |
---|
451 | /// Default constructor |
---|
452 | |
---|
453 | /// Default constructor. |
---|
454 | /// \warning It sets the iterator to an undefined value. |
---|
455 | EdgeIt() { } |
---|
456 | /// Copy constructor. |
---|
457 | |
---|
458 | /// Copy constructor. |
---|
459 | /// |
---|
460 | EdgeIt(const EdgeIt& e) : Edge(e) { } |
---|
461 | /// Assignment operator |
---|
462 | |
---|
463 | /// Assignment operator. |
---|
464 | /// |
---|
465 | const EdgeIt &operator=(const EdgeIt&) { return *this; } |
---|
466 | /// %Invalid constructor \& conversion. |
---|
467 | |
---|
468 | /// Initializes the iterator to be invalid. |
---|
469 | /// \sa Invalid for more details. |
---|
470 | EdgeIt(Invalid) { } |
---|
471 | /// Sets the iterator to the first edge. |
---|
472 | |
---|
473 | /// Sets the iterator to the first edge of the given graph. |
---|
474 | /// |
---|
475 | explicit EdgeIt(const BpGraph&) { } |
---|
476 | /// Sets the iterator to the given edge. |
---|
477 | |
---|
478 | /// Sets the iterator to the given edge of the given graph. |
---|
479 | /// |
---|
480 | EdgeIt(const BpGraph&, const Edge&) { } |
---|
481 | /// Next edge |
---|
482 | |
---|
483 | /// Assign the iterator to the next edge. |
---|
484 | /// |
---|
485 | EdgeIt& operator++() { return *this; } |
---|
486 | }; |
---|
487 | |
---|
488 | /// \brief Gets the collection of the edges of the graph. |
---|
489 | /// |
---|
490 | /// This function can be used for iterating on the |
---|
491 | /// edges of the graph. It returns a wrapped |
---|
492 | /// EdgeIt, which looks like an STL container |
---|
493 | /// (by having begin() and end()) which you can use in range-based |
---|
494 | /// for loops, stl algorithms, etc. |
---|
495 | /// For example if g is a BpGraph, you can write: |
---|
496 | ///\code |
---|
497 | /// for(auto e: g.edges()) |
---|
498 | /// doSomething(e); |
---|
499 | ///\endcode |
---|
500 | LemonRangeWrapper1<EdgeIt, BpGraph> edges() const { |
---|
501 | return LemonRangeWrapper1<EdgeIt, BpGraph>(*this); |
---|
502 | } |
---|
503 | |
---|
504 | |
---|
505 | /// Iterator class for the incident edges of a node. |
---|
506 | |
---|
507 | /// This iterator goes trough the incident undirected edges |
---|
508 | /// of a certain node of a graph. |
---|
509 | /// Its usage is quite simple, for example, you can compute the |
---|
510 | /// degree (i.e. the number of incident edges) of a node \c n |
---|
511 | /// in a graph \c g of type \c %BpGraph as follows. |
---|
512 | /// |
---|
513 | ///\code |
---|
514 | /// int count=0; |
---|
515 | /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
516 | ///\endcode |
---|
517 | /// |
---|
518 | /// \warning Loop edges will be iterated twice. |
---|
519 | class IncEdgeIt : public Edge { |
---|
520 | public: |
---|
521 | /// Default constructor |
---|
522 | |
---|
523 | /// Default constructor. |
---|
524 | /// \warning It sets the iterator to an undefined value. |
---|
525 | IncEdgeIt() { } |
---|
526 | /// Copy constructor. |
---|
527 | |
---|
528 | /// Copy constructor. |
---|
529 | /// |
---|
530 | IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } |
---|
531 | /// Assignment operator |
---|
532 | |
---|
533 | /// Assignment operator. |
---|
534 | /// |
---|
535 | const IncEdgeIt &operator=(const IncEdgeIt&) { return *this; } |
---|
536 | /// %Invalid constructor \& conversion. |
---|
537 | |
---|
538 | /// Initializes the iterator to be invalid. |
---|
539 | /// \sa Invalid for more details. |
---|
540 | IncEdgeIt(Invalid) { } |
---|
541 | /// Sets the iterator to the first incident edge. |
---|
542 | |
---|
543 | /// Sets the iterator to the first incident edge of the given node. |
---|
544 | /// |
---|
545 | IncEdgeIt(const BpGraph&, const Node&) { } |
---|
546 | /// Sets the iterator to the given edge. |
---|
547 | |
---|
548 | /// Sets the iterator to the given edge of the given graph. |
---|
549 | /// |
---|
550 | IncEdgeIt(const BpGraph&, const Edge&) { } |
---|
551 | /// Next incident edge |
---|
552 | |
---|
553 | /// Assign the iterator to the next incident edge |
---|
554 | /// of the corresponding node. |
---|
555 | IncEdgeIt& operator++() { return *this; } |
---|
556 | }; |
---|
557 | |
---|
558 | /// \brief Gets the collection of the incident edges |
---|
559 | /// of a certain node of the graph. |
---|
560 | /// |
---|
561 | /// This function can be used for iterating on the |
---|
562 | /// incident undirected edges of a certain node of the graph. |
---|
563 | /// It returns a wrapped |
---|
564 | /// IncEdgeIt, which looks like an STL container |
---|
565 | /// (by having begin() and end()) which you can use in range-based |
---|
566 | /// for loops, stl algorithms, etc. |
---|
567 | /// For example if g is a BpGraph and u is a Node, you can write: |
---|
568 | ///\code |
---|
569 | /// for(auto e: g.incEdges(u)) |
---|
570 | /// doSomething(e); |
---|
571 | ///\endcode |
---|
572 | LemonRangeWrapper2<IncEdgeIt, BpGraph, Node> incEdges(const Node& u) const { |
---|
573 | return LemonRangeWrapper2<IncEdgeIt, BpGraph, Node>(*this, u); |
---|
574 | } |
---|
575 | |
---|
576 | |
---|
577 | /// The arc type of the graph |
---|
578 | |
---|
579 | /// This class identifies a directed arc of the graph. It also serves |
---|
580 | /// as a base class of the arc iterators, |
---|
581 | /// thus they will convert to this type. |
---|
582 | class Arc { |
---|
583 | public: |
---|
584 | /// Default constructor |
---|
585 | |
---|
586 | /// Default constructor. |
---|
587 | /// \warning It sets the object to an undefined value. |
---|
588 | Arc() { } |
---|
589 | /// Copy constructor. |
---|
590 | |
---|
591 | /// Copy constructor. |
---|
592 | /// |
---|
593 | Arc(const Arc&) { } |
---|
594 | /// Assignment operator |
---|
595 | |
---|
596 | /// Assignment operator. |
---|
597 | /// |
---|
598 | const Arc &operator=(const Arc&) { return *this; } |
---|
599 | /// %Invalid constructor \& conversion. |
---|
600 | |
---|
601 | /// Initializes the object to be invalid. |
---|
602 | /// \sa Invalid for more details. |
---|
603 | Arc(Invalid) { } |
---|
604 | /// Equality operator |
---|
605 | |
---|
606 | /// Equality operator. |
---|
607 | /// |
---|
608 | /// Two iterators are equal if and only if they point to the |
---|
609 | /// same object or both are \c INVALID. |
---|
610 | bool operator==(Arc) const { return true; } |
---|
611 | /// Inequality operator |
---|
612 | |
---|
613 | /// Inequality operator. |
---|
614 | bool operator!=(Arc) const { return true; } |
---|
615 | |
---|
616 | /// Artificial ordering operator. |
---|
617 | |
---|
618 | /// Artificial ordering operator. |
---|
619 | /// |
---|
620 | /// \note This operator only has to define some strict ordering of |
---|
621 | /// the arcs; this order has nothing to do with the iteration |
---|
622 | /// ordering of the arcs. |
---|
623 | bool operator<(Arc) const { return false; } |
---|
624 | |
---|
625 | /// Converison to \c Edge |
---|
626 | |
---|
627 | /// Converison to \c Edge. |
---|
628 | /// |
---|
629 | operator Edge() const { return Edge(); } |
---|
630 | }; |
---|
631 | |
---|
632 | /// Iterator class for the arcs. |
---|
633 | |
---|
634 | /// This iterator goes through each directed arc of the graph. |
---|
635 | /// Its usage is quite simple, for example, you can count the number |
---|
636 | /// of arcs in a graph \c g of type \c %BpGraph as follows: |
---|
637 | ///\code |
---|
638 | /// int count=0; |
---|
639 | /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
---|
640 | ///\endcode |
---|
641 | class ArcIt : public Arc { |
---|
642 | public: |
---|
643 | /// Default constructor |
---|
644 | |
---|
645 | /// Default constructor. |
---|
646 | /// \warning It sets the iterator to an undefined value. |
---|
647 | ArcIt() { } |
---|
648 | /// Copy constructor. |
---|
649 | |
---|
650 | /// Copy constructor. |
---|
651 | /// |
---|
652 | ArcIt(const ArcIt& e) : Arc(e) { } |
---|
653 | /// Assignment operator |
---|
654 | |
---|
655 | /// Assignment operator. |
---|
656 | /// |
---|
657 | const ArcIt &operator=(const ArcIt&) { return *this; } |
---|
658 | /// %Invalid constructor \& conversion. |
---|
659 | |
---|
660 | /// Initializes the iterator to be invalid. |
---|
661 | /// \sa Invalid for more details. |
---|
662 | ArcIt(Invalid) { } |
---|
663 | /// Sets the iterator to the first arc. |
---|
664 | |
---|
665 | /// Sets the iterator to the first arc of the given graph. |
---|
666 | /// |
---|
667 | explicit ArcIt(const BpGraph &g) |
---|
668 | { |
---|
669 | ::lemon::ignore_unused_variable_warning(g); |
---|
670 | } |
---|
671 | /// Sets the iterator to the given arc. |
---|
672 | |
---|
673 | /// Sets the iterator to the given arc of the given graph. |
---|
674 | /// |
---|
675 | ArcIt(const BpGraph&, const Arc&) { } |
---|
676 | /// Next arc |
---|
677 | |
---|
678 | /// Assign the iterator to the next arc. |
---|
679 | /// |
---|
680 | ArcIt& operator++() { return *this; } |
---|
681 | }; |
---|
682 | |
---|
683 | /// \brief Gets the collection of the directed arcs of the graph. |
---|
684 | /// |
---|
685 | /// This function can be used for iterating on the |
---|
686 | /// arcs of the graph. It returns a wrapped |
---|
687 | /// ArcIt, which looks like an STL container |
---|
688 | /// (by having begin() and end()) which you can use in range-based |
---|
689 | /// for loops, stl algorithms, etc. |
---|
690 | /// For example if g is a BpGraph you can write: |
---|
691 | ///\code |
---|
692 | /// for(auto a: g.arcs()) |
---|
693 | /// doSomething(a); |
---|
694 | ///\endcode |
---|
695 | LemonRangeWrapper1<ArcIt, BpGraph> arcs() const { |
---|
696 | return LemonRangeWrapper1<ArcIt, BpGraph>(*this); |
---|
697 | } |
---|
698 | |
---|
699 | |
---|
700 | /// Iterator class for the outgoing arcs of a node. |
---|
701 | |
---|
702 | /// This iterator goes trough the \e outgoing directed arcs of a |
---|
703 | /// certain node of a graph. |
---|
704 | /// Its usage is quite simple, for example, you can count the number |
---|
705 | /// of outgoing arcs of a node \c n |
---|
706 | /// in a graph \c g of type \c %BpGraph as follows. |
---|
707 | ///\code |
---|
708 | /// int count=0; |
---|
709 | /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
---|
710 | ///\endcode |
---|
711 | class OutArcIt : public Arc { |
---|
712 | public: |
---|
713 | /// Default constructor |
---|
714 | |
---|
715 | /// Default constructor. |
---|
716 | /// \warning It sets the iterator to an undefined value. |
---|
717 | OutArcIt() { } |
---|
718 | /// Copy constructor. |
---|
719 | |
---|
720 | /// Copy constructor. |
---|
721 | /// |
---|
722 | OutArcIt(const OutArcIt& e) : Arc(e) { } |
---|
723 | /// Assignment operator |
---|
724 | |
---|
725 | /// Assignment operator. |
---|
726 | /// |
---|
727 | const OutArcIt &operator=(const OutArcIt&) { return *this; } |
---|
728 | /// %Invalid constructor \& conversion. |
---|
729 | |
---|
730 | /// Initializes the iterator to be invalid. |
---|
731 | /// \sa Invalid for more details. |
---|
732 | OutArcIt(Invalid) { } |
---|
733 | /// Sets the iterator to the first outgoing arc. |
---|
734 | |
---|
735 | /// Sets the iterator to the first outgoing arc of the given node. |
---|
736 | /// |
---|
737 | OutArcIt(const BpGraph& n, const Node& g) { |
---|
738 | ::lemon::ignore_unused_variable_warning(n); |
---|
739 | ::lemon::ignore_unused_variable_warning(g); |
---|
740 | } |
---|
741 | /// Sets the iterator to the given arc. |
---|
742 | |
---|
743 | /// Sets the iterator to the given arc of the given graph. |
---|
744 | /// |
---|
745 | OutArcIt(const BpGraph&, const Arc&) { } |
---|
746 | /// Next outgoing arc |
---|
747 | |
---|
748 | /// Assign the iterator to the next |
---|
749 | /// outgoing arc of the corresponding node. |
---|
750 | OutArcIt& operator++() { return *this; } |
---|
751 | }; |
---|
752 | |
---|
753 | /// \brief Gets the collection of the outgoing directed arcs of a |
---|
754 | /// certain node of the graph. |
---|
755 | /// |
---|
756 | /// This function can be used for iterating on the |
---|
757 | /// outgoing arcs of a certain node of the graph. It returns a wrapped |
---|
758 | /// OutArcIt, which looks like an STL container |
---|
759 | /// (by having begin() and end()) which you can use in range-based |
---|
760 | /// for loops, stl algorithms, etc. |
---|
761 | /// For example if g is a BpGraph and u is a Node, you can write: |
---|
762 | ///\code |
---|
763 | /// for(auto a: g.outArcs(u)) |
---|
764 | /// doSomething(a); |
---|
765 | ///\endcode |
---|
766 | LemonRangeWrapper2<OutArcIt, BpGraph, Node> outArcs(const Node& u) const { |
---|
767 | return LemonRangeWrapper2<OutArcIt, BpGraph, Node>(*this, u); |
---|
768 | } |
---|
769 | |
---|
770 | |
---|
771 | /// Iterator class for the incoming arcs of a node. |
---|
772 | |
---|
773 | /// This iterator goes trough the \e incoming directed arcs of a |
---|
774 | /// certain node of a graph. |
---|
775 | /// Its usage is quite simple, for example, you can count the number |
---|
776 | /// of incoming arcs of a node \c n |
---|
777 | /// in a graph \c g of type \c %BpGraph as follows. |
---|
778 | ///\code |
---|
779 | /// int count=0; |
---|
780 | /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
---|
781 | ///\endcode |
---|
782 | class InArcIt : public Arc { |
---|
783 | public: |
---|
784 | /// Default constructor |
---|
785 | |
---|
786 | /// Default constructor. |
---|
787 | /// \warning It sets the iterator to an undefined value. |
---|
788 | InArcIt() { } |
---|
789 | /// Copy constructor. |
---|
790 | |
---|
791 | /// Copy constructor. |
---|
792 | /// |
---|
793 | InArcIt(const InArcIt& e) : Arc(e) { } |
---|
794 | /// Assignment operator |
---|
795 | |
---|
796 | /// Assignment operator. |
---|
797 | /// |
---|
798 | const InArcIt &operator=(const InArcIt&) { return *this; } |
---|
799 | /// %Invalid constructor \& conversion. |
---|
800 | |
---|
801 | /// Initializes the iterator to be invalid. |
---|
802 | /// \sa Invalid for more details. |
---|
803 | InArcIt(Invalid) { } |
---|
804 | /// Sets the iterator to the first incoming arc. |
---|
805 | |
---|
806 | /// Sets the iterator to the first incoming arc of the given node. |
---|
807 | /// |
---|
808 | InArcIt(const BpGraph& g, const Node& n) { |
---|
809 | ::lemon::ignore_unused_variable_warning(n); |
---|
810 | ::lemon::ignore_unused_variable_warning(g); |
---|
811 | } |
---|
812 | /// Sets the iterator to the given arc. |
---|
813 | |
---|
814 | /// Sets the iterator to the given arc of the given graph. |
---|
815 | /// |
---|
816 | InArcIt(const BpGraph&, const Arc&) { } |
---|
817 | /// Next incoming arc |
---|
818 | |
---|
819 | /// Assign the iterator to the next |
---|
820 | /// incoming arc of the corresponding node. |
---|
821 | InArcIt& operator++() { return *this; } |
---|
822 | }; |
---|
823 | |
---|
824 | /// \brief Gets the collection of the incoming directed arcs of a |
---|
825 | /// certain node of the graph. |
---|
826 | /// |
---|
827 | /// This function can be used for iterating on the |
---|
828 | /// incoming arcs of a certain node of the graph. It returns a wrapped |
---|
829 | /// InArcIt, which looks like an STL container |
---|
830 | /// (by having begin() and end()) which you can use in range-based |
---|
831 | /// for loops, stl algorithms, etc. |
---|
832 | /// For example if g is a BpGraph and u is a Node, you can write: |
---|
833 | ///\code |
---|
834 | /// for(auto a: g.inArcs(u)) |
---|
835 | /// doSomething(a); |
---|
836 | ///\endcode |
---|
837 | LemonRangeWrapper2<InArcIt, BpGraph, Node> inArcs(const Node& u) const { |
---|
838 | return LemonRangeWrapper2<InArcIt, BpGraph, Node>(*this, u); |
---|
839 | } |
---|
840 | |
---|
841 | |
---|
842 | /// \brief Standard graph map type for the nodes. |
---|
843 | /// |
---|
844 | /// Standard graph map type for the nodes. |
---|
845 | /// It conforms to the ReferenceMap concept. |
---|
846 | template<class T> |
---|
847 | class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
---|
848 | { |
---|
849 | public: |
---|
850 | |
---|
851 | /// Constructor |
---|
852 | explicit NodeMap(const BpGraph&) { } |
---|
853 | /// Constructor with given initial value |
---|
854 | NodeMap(const BpGraph&, T) { } |
---|
855 | |
---|
856 | private: |
---|
857 | ///Copy constructor |
---|
858 | NodeMap(const NodeMap& nm) : |
---|
859 | ReferenceMap<Node, T, T&, const T&>(nm) { } |
---|
860 | ///Assignment operator |
---|
861 | template <typename CMap> |
---|
862 | NodeMap& operator=(const CMap&) { |
---|
863 | checkConcept<ReadMap<Node, T>, CMap>(); |
---|
864 | return *this; |
---|
865 | } |
---|
866 | }; |
---|
867 | |
---|
868 | /// \brief Standard graph map type for the red nodes. |
---|
869 | /// |
---|
870 | /// Standard graph map type for the red nodes. |
---|
871 | /// It conforms to the ReferenceMap concept. |
---|
872 | template<class T> |
---|
873 | class RedNodeMap : public ReferenceMap<Node, T, T&, const T&> |
---|
874 | { |
---|
875 | public: |
---|
876 | |
---|
877 | /// Constructor |
---|
878 | explicit RedNodeMap(const BpGraph&) { } |
---|
879 | /// Constructor with given initial value |
---|
880 | RedNodeMap(const BpGraph&, T) { } |
---|
881 | |
---|
882 | private: |
---|
883 | ///Copy constructor |
---|
884 | RedNodeMap(const RedNodeMap& nm) : |
---|
885 | ReferenceMap<Node, T, T&, const T&>(nm) { } |
---|
886 | ///Assignment operator |
---|
887 | template <typename CMap> |
---|
888 | RedNodeMap& operator=(const CMap&) { |
---|
889 | checkConcept<ReadMap<Node, T>, CMap>(); |
---|
890 | return *this; |
---|
891 | } |
---|
892 | }; |
---|
893 | |
---|
894 | /// \brief Standard graph map type for the blue nodes. |
---|
895 | /// |
---|
896 | /// Standard graph map type for the blue nodes. |
---|
897 | /// It conforms to the ReferenceMap concept. |
---|
898 | template<class T> |
---|
899 | class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&> |
---|
900 | { |
---|
901 | public: |
---|
902 | |
---|
903 | /// Constructor |
---|
904 | explicit BlueNodeMap(const BpGraph&) { } |
---|
905 | /// Constructor with given initial value |
---|
906 | BlueNodeMap(const BpGraph&, T) { } |
---|
907 | |
---|
908 | private: |
---|
909 | ///Copy constructor |
---|
910 | BlueNodeMap(const BlueNodeMap& nm) : |
---|
911 | ReferenceMap<Node, T, T&, const T&>(nm) { } |
---|
912 | ///Assignment operator |
---|
913 | template <typename CMap> |
---|
914 | BlueNodeMap& operator=(const CMap&) { |
---|
915 | checkConcept<ReadMap<Node, T>, CMap>(); |
---|
916 | return *this; |
---|
917 | } |
---|
918 | }; |
---|
919 | |
---|
920 | /// \brief Standard graph map type for the arcs. |
---|
921 | /// |
---|
922 | /// Standard graph map type for the arcs. |
---|
923 | /// It conforms to the ReferenceMap concept. |
---|
924 | template<class T> |
---|
925 | class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
---|
926 | { |
---|
927 | public: |
---|
928 | |
---|
929 | /// Constructor |
---|
930 | explicit ArcMap(const BpGraph&) { } |
---|
931 | /// Constructor with given initial value |
---|
932 | ArcMap(const BpGraph&, T) { } |
---|
933 | |
---|
934 | private: |
---|
935 | ///Copy constructor |
---|
936 | ArcMap(const ArcMap& em) : |
---|
937 | ReferenceMap<Arc, T, T&, const T&>(em) { } |
---|
938 | ///Assignment operator |
---|
939 | template <typename CMap> |
---|
940 | ArcMap& operator=(const CMap&) { |
---|
941 | checkConcept<ReadMap<Arc, T>, CMap>(); |
---|
942 | return *this; |
---|
943 | } |
---|
944 | }; |
---|
945 | |
---|
946 | /// \brief Standard graph map type for the edges. |
---|
947 | /// |
---|
948 | /// Standard graph map type for the edges. |
---|
949 | /// It conforms to the ReferenceMap concept. |
---|
950 | template<class T> |
---|
951 | class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
---|
952 | { |
---|
953 | public: |
---|
954 | |
---|
955 | /// Constructor |
---|
956 | explicit EdgeMap(const BpGraph&) { } |
---|
957 | /// Constructor with given initial value |
---|
958 | EdgeMap(const BpGraph&, T) { } |
---|
959 | |
---|
960 | private: |
---|
961 | ///Copy constructor |
---|
962 | EdgeMap(const EdgeMap& em) : |
---|
963 | ReferenceMap<Edge, T, T&, const T&>(em) {} |
---|
964 | ///Assignment operator |
---|
965 | template <typename CMap> |
---|
966 | EdgeMap& operator=(const CMap&) { |
---|
967 | checkConcept<ReadMap<Edge, T>, CMap>(); |
---|
968 | return *this; |
---|
969 | } |
---|
970 | }; |
---|
971 | |
---|
972 | /// \brief Gives back %true for red nodes. |
---|
973 | /// |
---|
974 | /// Gives back %true for red nodes. |
---|
975 | bool red(const Node&) const { return true; } |
---|
976 | |
---|
977 | /// \brief Gives back %true for blue nodes. |
---|
978 | /// |
---|
979 | /// Gives back %true for blue nodes. |
---|
980 | bool blue(const Node&) const { return true; } |
---|
981 | |
---|
982 | /// \brief Converts the node to red node object. |
---|
983 | /// |
---|
984 | /// This function converts unsafely the node to red node |
---|
985 | /// object. It should be called only if the node is from the red |
---|
986 | /// partition or INVALID. |
---|
987 | RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); } |
---|
988 | |
---|
989 | /// \brief Converts the node to blue node object. |
---|
990 | /// |
---|
991 | /// This function converts unsafely the node to blue node |
---|
992 | /// object. It should be called only if the node is from the red |
---|
993 | /// partition or INVALID. |
---|
994 | BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); } |
---|
995 | |
---|
996 | /// \brief Converts the node to red node object. |
---|
997 | /// |
---|
998 | /// This function converts safely the node to red node |
---|
999 | /// object. If the node is not from the red partition, then it |
---|
1000 | /// returns INVALID. |
---|
1001 | RedNode asRedNode(const Node&) const { return RedNode(); } |
---|
1002 | |
---|
1003 | /// \brief Converts the node to blue node object. |
---|
1004 | /// |
---|
1005 | /// This function converts unsafely the node to blue node |
---|
1006 | /// object. If the node is not from the blue partition, then it |
---|
1007 | /// returns INVALID. |
---|
1008 | BlueNode asBlueNode(const Node&) const { return BlueNode(); } |
---|
1009 | |
---|
1010 | /// \brief Gives back the red end node of the edge. |
---|
1011 | /// |
---|
1012 | /// Gives back the red end node of the edge. |
---|
1013 | RedNode redNode(const Edge&) const { return RedNode(); } |
---|
1014 | |
---|
1015 | /// \brief Gives back the blue end node of the edge. |
---|
1016 | /// |
---|
1017 | /// Gives back the blue end node of the edge. |
---|
1018 | BlueNode blueNode(const Edge&) const { return BlueNode(); } |
---|
1019 | |
---|
1020 | /// \brief The first node of the edge. |
---|
1021 | /// |
---|
1022 | /// It is a synonim for the \c redNode(). |
---|
1023 | Node u(Edge) const { return INVALID; } |
---|
1024 | |
---|
1025 | /// \brief The second node of the edge. |
---|
1026 | /// |
---|
1027 | /// It is a synonim for the \c blueNode(). |
---|
1028 | Node v(Edge) const { return INVALID; } |
---|
1029 | |
---|
1030 | /// \brief The source node of the arc. |
---|
1031 | /// |
---|
1032 | /// Returns the source node of the given arc. |
---|
1033 | Node source(Arc) const { return INVALID; } |
---|
1034 | |
---|
1035 | /// \brief The target node of the arc. |
---|
1036 | /// |
---|
1037 | /// Returns the target node of the given arc. |
---|
1038 | Node target(Arc) const { return INVALID; } |
---|
1039 | |
---|
1040 | /// \brief The ID of the node. |
---|
1041 | /// |
---|
1042 | /// Returns the ID of the given node. |
---|
1043 | int id(Node) const { return -1; } |
---|
1044 | |
---|
1045 | /// \brief The red ID of the node. |
---|
1046 | /// |
---|
1047 | /// Returns the red ID of the given node. |
---|
1048 | int id(RedNode) const { return -1; } |
---|
1049 | |
---|
1050 | /// \brief The blue ID of the node. |
---|
1051 | /// |
---|
1052 | /// Returns the blue ID of the given node. |
---|
1053 | int id(BlueNode) const { return -1; } |
---|
1054 | |
---|
1055 | /// \brief The ID of the edge. |
---|
1056 | /// |
---|
1057 | /// Returns the ID of the given edge. |
---|
1058 | int id(Edge) const { return -1; } |
---|
1059 | |
---|
1060 | /// \brief The ID of the arc. |
---|
1061 | /// |
---|
1062 | /// Returns the ID of the given arc. |
---|
1063 | int id(Arc) const { return -1; } |
---|
1064 | |
---|
1065 | /// \brief The node with the given ID. |
---|
1066 | /// |
---|
1067 | /// Returns the node with the given ID. |
---|
1068 | /// \pre The argument should be a valid node ID in the graph. |
---|
1069 | Node nodeFromId(int) const { return INVALID; } |
---|
1070 | |
---|
1071 | /// \brief The edge with the given ID. |
---|
1072 | /// |
---|
1073 | /// Returns the edge with the given ID. |
---|
1074 | /// \pre The argument should be a valid edge ID in the graph. |
---|
1075 | Edge edgeFromId(int) const { return INVALID; } |
---|
1076 | |
---|
1077 | /// \brief The arc with the given ID. |
---|
1078 | /// |
---|
1079 | /// Returns the arc with the given ID. |
---|
1080 | /// \pre The argument should be a valid arc ID in the graph. |
---|
1081 | Arc arcFromId(int) const { return INVALID; } |
---|
1082 | |
---|
1083 | /// \brief An upper bound on the node IDs. |
---|
1084 | /// |
---|
1085 | /// Returns an upper bound on the node IDs. |
---|
1086 | int maxNodeId() const { return -1; } |
---|
1087 | |
---|
1088 | /// \brief An upper bound on the red IDs. |
---|
1089 | /// |
---|
1090 | /// Returns an upper bound on the red IDs. |
---|
1091 | int maxRedId() const { return -1; } |
---|
1092 | |
---|
1093 | /// \brief An upper bound on the blue IDs. |
---|
1094 | /// |
---|
1095 | /// Returns an upper bound on the blue IDs. |
---|
1096 | int maxBlueId() const { return -1; } |
---|
1097 | |
---|
1098 | /// \brief An upper bound on the edge IDs. |
---|
1099 | /// |
---|
1100 | /// Returns an upper bound on the edge IDs. |
---|
1101 | int maxEdgeId() const { return -1; } |
---|
1102 | |
---|
1103 | /// \brief An upper bound on the arc IDs. |
---|
1104 | /// |
---|
1105 | /// Returns an upper bound on the arc IDs. |
---|
1106 | int maxArcId() const { return -1; } |
---|
1107 | |
---|
1108 | /// \brief The direction of the arc. |
---|
1109 | /// |
---|
1110 | /// Returns \c true if the given arc goes from a red node to a blue node. |
---|
1111 | bool direction(Arc) const { return true; } |
---|
1112 | |
---|
1113 | /// \brief Direct the edge. |
---|
1114 | /// |
---|
1115 | /// Direct the given edge. The returned arc |
---|
1116 | /// represents the given edge and its direction comes |
---|
1117 | /// from the bool parameter. If it is \c true, then the source of the node |
---|
1118 | /// will be a red node. |
---|
1119 | Arc direct(Edge, bool) const { |
---|
1120 | return INVALID; |
---|
1121 | } |
---|
1122 | |
---|
1123 | /// \brief Direct the edge. |
---|
1124 | /// |
---|
1125 | /// Direct the given edge. The returned arc represents the given |
---|
1126 | /// edge and its source node is the given node. |
---|
1127 | Arc direct(Edge, Node) const { |
---|
1128 | return INVALID; |
---|
1129 | } |
---|
1130 | |
---|
1131 | /// \brief The oppositely directed arc. |
---|
1132 | /// |
---|
1133 | /// Returns the oppositely directed arc representing the same edge. |
---|
1134 | Arc oppositeArc(Arc) const { return INVALID; } |
---|
1135 | |
---|
1136 | /// \brief The opposite node on the edge. |
---|
1137 | /// |
---|
1138 | /// Returns the opposite node on the given edge. |
---|
1139 | Node oppositeNode(Node, Edge) const { return INVALID; } |
---|
1140 | |
---|
1141 | void first(Node&) const {} |
---|
1142 | void next(Node&) const {} |
---|
1143 | |
---|
1144 | void firstRed(RedNode&) const {} |
---|
1145 | void nextRed(RedNode&) const {} |
---|
1146 | |
---|
1147 | void firstBlue(BlueNode&) const {} |
---|
1148 | void nextBlue(BlueNode&) const {} |
---|
1149 | |
---|
1150 | void first(Edge&) const {} |
---|
1151 | void next(Edge&) const {} |
---|
1152 | |
---|
1153 | void first(Arc&) const {} |
---|
1154 | void next(Arc&) const {} |
---|
1155 | |
---|
1156 | void firstOut(Arc&, Node) const {} |
---|
1157 | void nextOut(Arc&) const {} |
---|
1158 | |
---|
1159 | void firstIn(Arc&, Node) const {} |
---|
1160 | void nextIn(Arc&) const {} |
---|
1161 | |
---|
1162 | void firstInc(Edge &, bool &, const Node &) const {} |
---|
1163 | void nextInc(Edge &, bool &) const {} |
---|
1164 | |
---|
1165 | // The second parameter is dummy. |
---|
1166 | Node fromId(int, Node) const { return INVALID; } |
---|
1167 | // The second parameter is dummy. |
---|
1168 | Edge fromId(int, Edge) const { return INVALID; } |
---|
1169 | // The second parameter is dummy. |
---|
1170 | Arc fromId(int, Arc) const { return INVALID; } |
---|
1171 | |
---|
1172 | // Dummy parameter. |
---|
1173 | int maxId(Node) const { return -1; } |
---|
1174 | // Dummy parameter. |
---|
1175 | int maxId(RedNode) const { return -1; } |
---|
1176 | // Dummy parameter. |
---|
1177 | int maxId(BlueNode) const { return -1; } |
---|
1178 | // Dummy parameter. |
---|
1179 | int maxId(Edge) const { return -1; } |
---|
1180 | // Dummy parameter. |
---|
1181 | int maxId(Arc) const { return -1; } |
---|
1182 | |
---|
1183 | /// \brief The base node of the iterator. |
---|
1184 | /// |
---|
1185 | /// Returns the base node of the given incident edge iterator. |
---|
1186 | Node baseNode(IncEdgeIt) const { return INVALID; } |
---|
1187 | |
---|
1188 | /// \brief The running node of the iterator. |
---|
1189 | /// |
---|
1190 | /// Returns the running node of the given incident edge iterator. |
---|
1191 | Node runningNode(IncEdgeIt) const { return INVALID; } |
---|
1192 | |
---|
1193 | /// \brief The base node of the iterator. |
---|
1194 | /// |
---|
1195 | /// Returns the base node of the given outgoing arc iterator |
---|
1196 | /// (i.e. the source node of the corresponding arc). |
---|
1197 | Node baseNode(OutArcIt) const { return INVALID; } |
---|
1198 | |
---|
1199 | /// \brief The running node of the iterator. |
---|
1200 | /// |
---|
1201 | /// Returns the running node of the given outgoing arc iterator |
---|
1202 | /// (i.e. the target node of the corresponding arc). |
---|
1203 | Node runningNode(OutArcIt) const { return INVALID; } |
---|
1204 | |
---|
1205 | /// \brief The base node of the iterator. |
---|
1206 | /// |
---|
1207 | /// Returns the base node of the given incoming arc iterator |
---|
1208 | /// (i.e. the target node of the corresponding arc). |
---|
1209 | Node baseNode(InArcIt) const { return INVALID; } |
---|
1210 | |
---|
1211 | /// \brief The running node of the iterator. |
---|
1212 | /// |
---|
1213 | /// Returns the running node of the given incoming arc iterator |
---|
1214 | /// (i.e. the source node of the corresponding arc). |
---|
1215 | Node runningNode(InArcIt) const { return INVALID; } |
---|
1216 | |
---|
1217 | template <typename _BpGraph> |
---|
1218 | struct Constraints { |
---|
1219 | void constraints() { |
---|
1220 | checkConcept<BaseBpGraphComponent, _BpGraph>(); |
---|
1221 | checkConcept<IterableBpGraphComponent<>, _BpGraph>(); |
---|
1222 | checkConcept<IDableBpGraphComponent<>, _BpGraph>(); |
---|
1223 | checkConcept<MappableBpGraphComponent<>, _BpGraph>(); |
---|
1224 | } |
---|
1225 | }; |
---|
1226 | |
---|
1227 | }; |
---|
1228 | |
---|
1229 | } |
---|
1230 | |
---|
1231 | } |
---|
1232 | |
---|
1233 | #endif |
---|