/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_CONCEPTS_DIGRAPH_H #define LEMON_CONCEPTS_DIGRAPH_H ///\ingroup graph_concepts ///\file ///\brief The concept of directed graphs. #include #include #include #include namespace lemon { namespace concepts { /// \ingroup graph_concepts /// /// \brief Class describing the concept of directed graphs. /// /// This class describes the common interface of all directed /// graphs (digraphs). /// /// Like all concept classes, it only provides an interface /// without any sensible implementation. So any general algorithm for /// directed graphs should compile with this class, but it will not /// run properly, of course. /// An actual digraph implementation like \ref ListDigraph or /// \ref SmartDigraph may have additional functionality. /// /// \sa Graph class Digraph { private: /// Diraphs are \e not copy constructible. Use DigraphCopy instead. Digraph(const Digraph &) {} /// \brief Assignment of a digraph to another one is \e not allowed. /// Use DigraphCopy instead. void operator=(const Digraph &) {} public: /// Default constructor. Digraph() { } /// The node type of the digraph /// This class identifies a node of the digraph. It also serves /// as a base class of the node iterators, /// thus they convert to this type. class Node { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Node) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Node) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the nodes; this order has nothing to do with the iteration /// ordering of the nodes. bool operator<(Node) const { return false; } }; /// Iterator class for the nodes. /// This iterator goes through each node of the digraph. /// Its usage is quite simple, for example, you can count the number /// of nodes in a digraph \c g of type \c %Digraph like this: ///\code /// int count=0; /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class NodeIt : public Node { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt& n) : Node(n) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of the given digraph. /// explicit NodeIt(const Digraph&) { } /// Sets the iterator to the given node. /// Sets the iterator to the given node of the given digraph. /// NodeIt(const Digraph&, const Node&) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The arc type of the digraph /// This class identifies an arc of the digraph. It also serves /// as a base class of the arc iterators, /// thus they will convert to this type. class Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Arc() { } /// Copy constructor. /// Copy constructor. /// Arc(const Arc&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Arc(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Arc) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Arc) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the arcs; this order has nothing to do with the iteration /// ordering of the arcs. bool operator<(Arc) const { return false; } }; /// Iterator class for the outgoing arcs of a node. /// This iterator goes trough the \e outgoing arcs of a certain node /// of a digraph. /// Its usage is quite simple, for example, you can count the number /// of outgoing arcs of a node \c n /// in a digraph \c g of type \c %Digraph as follows. ///\code /// int count=0; /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; ///\endcode class OutArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. OutArcIt() { } /// Copy constructor. /// Copy constructor. /// OutArcIt(const OutArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. OutArcIt(Invalid) { } /// Sets the iterator to the first outgoing arc. /// Sets the iterator to the first outgoing arc of the given node. /// OutArcIt(const Digraph&, const Node&) { } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given digraph. /// OutArcIt(const Digraph&, const Arc&) { } /// Next outgoing arc /// Assign the iterator to the next /// outgoing arc of the corresponding node. OutArcIt& operator++() { return *this; } }; /// Iterator class for the incoming arcs of a node. /// This iterator goes trough the \e incoming arcs of a certain node /// of a digraph. /// Its usage is quite simple, for example, you can count the number /// of incoming arcs of a node \c n /// in a digraph \c g of type \c %Digraph as follows. ///\code /// int count=0; /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; ///\endcode class InArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. InArcIt() { } /// Copy constructor. /// Copy constructor. /// InArcIt(const InArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. InArcIt(Invalid) { } /// Sets the iterator to the first incoming arc. /// Sets the iterator to the first incoming arc of the given node. /// InArcIt(const Digraph&, const Node&) { } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given digraph. /// InArcIt(const Digraph&, const Arc&) { } /// Next incoming arc /// Assign the iterator to the next /// incoming arc of the corresponding node. InArcIt& operator++() { return *this; } }; /// Iterator class for the arcs. /// This iterator goes through each arc of the digraph. /// Its usage is quite simple, for example, you can count the number /// of arcs in a digraph \c g of type \c %Digraph as follows: ///\code /// int count=0; /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; ///\endcode class ArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. ArcIt() { } /// Copy constructor. /// Copy constructor. /// ArcIt(const ArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. ArcIt(Invalid) { } /// Sets the iterator to the first arc. /// Sets the iterator to the first arc of the given digraph. /// explicit ArcIt(const Digraph& g) { ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given digraph. /// ArcIt(const Digraph&, const Arc&) { } /// Next arc /// Assign the iterator to the next arc. /// ArcIt& operator++() { return *this; } }; /// \brief The source node of the arc. /// /// Returns the source node of the given arc. Node source(Arc) const { return INVALID; } /// \brief The target node of the arc. /// /// Returns the target node of the given arc. Node target(Arc) const { return INVALID; } /// \brief The ID of the node. /// /// Returns the ID of the given node. int id(Node) const { return -1; } /// \brief The ID of the arc. /// /// Returns the ID of the given arc. int id(Arc) const { return -1; } /// \brief The node with the given ID. /// /// Returns the node with the given ID. /// \pre The argument should be a valid node ID in the digraph. Node nodeFromId(int) const { return INVALID; } /// \brief The arc with the given ID. /// /// Returns the arc with the given ID. /// \pre The argument should be a valid arc ID in the digraph. Arc arcFromId(int) const { return INVALID; } /// \brief An upper bound on the node IDs. /// /// Returns an upper bound on the node IDs. int maxNodeId() const { return -1; } /// \brief An upper bound on the arc IDs. /// /// Returns an upper bound on the arc IDs. int maxArcId() const { return -1; } void first(Node&) const {} void next(Node&) const {} void first(Arc&) const {} void next(Arc&) const {} void firstIn(Arc&, const Node&) const {} void nextIn(Arc&) const {} void firstOut(Arc&, const Node&) const {} void nextOut(Arc&) const {} // The second parameter is dummy. Node fromId(int, Node) const { return INVALID; } // The second parameter is dummy. Arc fromId(int, Arc) const { return INVALID; } // Dummy parameter. int maxId(Node) const { return -1; } // Dummy parameter. int maxId(Arc) const { return -1; } /// \brief The opposite node on the arc. /// /// Returns the opposite node on the given arc. Node oppositeNode(Node, Arc) const { return INVALID; } /// \brief The base node of the iterator. /// /// Returns the base node of the given outgoing arc iterator /// (i.e. the source node of the corresponding arc). Node baseNode(OutArcIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given outgoing arc iterator /// (i.e. the target node of the corresponding arc). Node runningNode(OutArcIt) const { return INVALID; } /// \brief The base node of the iterator. /// /// Returns the base node of the given incoming arc iterator /// (i.e. the target node of the corresponding arc). Node baseNode(InArcIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given incoming arc iterator /// (i.e. the source node of the corresponding arc). Node runningNode(InArcIt) const { return INVALID; } /// \brief Standard graph map type for the nodes. /// /// Standard graph map type for the nodes. /// It conforms to the ReferenceMap concept. template class NodeMap : public ReferenceMap { public: /// Constructor explicit NodeMap(const Digraph&) { } /// Constructor with given initial value NodeMap(const Digraph&, T) { } private: ///Copy constructor NodeMap(const NodeMap& nm) : ReferenceMap(nm) { } ///Assignment operator template NodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the arcs. /// /// Standard graph map type for the arcs. /// It conforms to the ReferenceMap concept. template class ArcMap : public ReferenceMap { public: /// Constructor explicit ArcMap(const Digraph&) { } /// Constructor with given initial value ArcMap(const Digraph&, T) { } private: ///Copy constructor ArcMap(const ArcMap& em) : ReferenceMap(em) { } ///Assignment operator template ArcMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; template struct Constraints { void constraints() { checkConcept(); checkConcept, _Digraph>(); checkConcept, _Digraph>(); checkConcept, _Digraph>(); } }; }; } //namespace concepts } //namespace lemon #endif