1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_DFS_H |
---|
20 | #define LEMON_DFS_H |
---|
21 | |
---|
22 | ///\ingroup search |
---|
23 | ///\file |
---|
24 | ///\brief DFS algorithm. |
---|
25 | |
---|
26 | #include <lemon/list_graph.h> |
---|
27 | #include <lemon/bits/path_dump.h> |
---|
28 | #include <lemon/core.h> |
---|
29 | #include <lemon/error.h> |
---|
30 | #include <lemon/assert.h> |
---|
31 | #include <lemon/maps.h> |
---|
32 | #include <lemon/path.h> |
---|
33 | |
---|
34 | namespace lemon { |
---|
35 | |
---|
36 | ///Default traits class of Dfs class. |
---|
37 | |
---|
38 | ///Default traits class of Dfs class. |
---|
39 | ///\tparam GR Digraph type. |
---|
40 | template<class GR> |
---|
41 | struct DfsDefaultTraits |
---|
42 | { |
---|
43 | ///The type of the digraph the algorithm runs on. |
---|
44 | typedef GR Digraph; |
---|
45 | |
---|
46 | ///\brief The type of the map that stores the predecessor |
---|
47 | ///arcs of the %DFS paths. |
---|
48 | /// |
---|
49 | ///The type of the map that stores the predecessor |
---|
50 | ///arcs of the %DFS paths. |
---|
51 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
52 | typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
---|
53 | ///Instantiates a \ref PredMap. |
---|
54 | |
---|
55 | ///This function instantiates a \ref PredMap. |
---|
56 | ///\param g is the digraph, to which we would like to define the |
---|
57 | ///\ref PredMap. |
---|
58 | static PredMap *createPredMap(const Digraph &g) |
---|
59 | { |
---|
60 | return new PredMap(g); |
---|
61 | } |
---|
62 | |
---|
63 | ///The type of the map that indicates which nodes are processed. |
---|
64 | |
---|
65 | ///The type of the map that indicates which nodes are processed. |
---|
66 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
67 | typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
---|
68 | ///Instantiates a \ref ProcessedMap. |
---|
69 | |
---|
70 | ///This function instantiates a \ref ProcessedMap. |
---|
71 | ///\param g is the digraph, to which |
---|
72 | ///we would like to define the \ref ProcessedMap |
---|
73 | #ifdef DOXYGEN |
---|
74 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
75 | #else |
---|
76 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
77 | #endif |
---|
78 | { |
---|
79 | return new ProcessedMap(); |
---|
80 | } |
---|
81 | |
---|
82 | ///The type of the map that indicates which nodes are reached. |
---|
83 | |
---|
84 | ///The type of the map that indicates which nodes are reached. |
---|
85 | ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
86 | typedef typename Digraph::template NodeMap<bool> ReachedMap; |
---|
87 | ///Instantiates a \ref ReachedMap. |
---|
88 | |
---|
89 | ///This function instantiates a \ref ReachedMap. |
---|
90 | ///\param g is the digraph, to which |
---|
91 | ///we would like to define the \ref ReachedMap. |
---|
92 | static ReachedMap *createReachedMap(const Digraph &g) |
---|
93 | { |
---|
94 | return new ReachedMap(g); |
---|
95 | } |
---|
96 | |
---|
97 | ///The type of the map that stores the distances of the nodes. |
---|
98 | |
---|
99 | ///The type of the map that stores the distances of the nodes. |
---|
100 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
101 | typedef typename Digraph::template NodeMap<int> DistMap; |
---|
102 | ///Instantiates a \ref DistMap. |
---|
103 | |
---|
104 | ///This function instantiates a \ref DistMap. |
---|
105 | ///\param g is the digraph, to which we would like to define the |
---|
106 | ///\ref DistMap. |
---|
107 | static DistMap *createDistMap(const Digraph &g) |
---|
108 | { |
---|
109 | return new DistMap(g); |
---|
110 | } |
---|
111 | }; |
---|
112 | |
---|
113 | ///%DFS algorithm class. |
---|
114 | |
---|
115 | ///\ingroup search |
---|
116 | ///This class provides an efficient implementation of the %DFS algorithm. |
---|
117 | /// |
---|
118 | ///There is also a \ref dfs() "function-type interface" for the DFS |
---|
119 | ///algorithm, which is convenient in the simplier cases and it can be |
---|
120 | ///used easier. |
---|
121 | /// |
---|
122 | ///\tparam GR The type of the digraph the algorithm runs on. |
---|
123 | ///The default value is \ref ListDigraph. The value of GR is not used |
---|
124 | ///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
---|
125 | ///\tparam TR Traits class to set various data types used by the algorithm. |
---|
126 | ///The default traits class is |
---|
127 | ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
---|
128 | ///See \ref DfsDefaultTraits for the documentation of |
---|
129 | ///a Dfs traits class. |
---|
130 | #ifdef DOXYGEN |
---|
131 | template <typename GR, |
---|
132 | typename TR> |
---|
133 | #else |
---|
134 | template <typename GR=ListDigraph, |
---|
135 | typename TR=DfsDefaultTraits<GR> > |
---|
136 | #endif |
---|
137 | class Dfs { |
---|
138 | public: |
---|
139 | ///\ref Exception for uninitialized parameters. |
---|
140 | |
---|
141 | ///This error represents problems in the initialization of the |
---|
142 | ///parameters of the algorithm. |
---|
143 | class UninitializedParameter : public lemon::UninitializedParameter { |
---|
144 | public: |
---|
145 | virtual const char* what() const throw() { |
---|
146 | return "lemon::Dfs::UninitializedParameter"; |
---|
147 | } |
---|
148 | }; |
---|
149 | |
---|
150 | ///The type of the digraph the algorithm runs on. |
---|
151 | typedef typename TR::Digraph Digraph; |
---|
152 | |
---|
153 | ///\brief The type of the map that stores the predecessor arcs of the |
---|
154 | ///DFS paths. |
---|
155 | typedef typename TR::PredMap PredMap; |
---|
156 | ///The type of the map that stores the distances of the nodes. |
---|
157 | typedef typename TR::DistMap DistMap; |
---|
158 | ///The type of the map that indicates which nodes are reached. |
---|
159 | typedef typename TR::ReachedMap ReachedMap; |
---|
160 | ///The type of the map that indicates which nodes are processed. |
---|
161 | typedef typename TR::ProcessedMap ProcessedMap; |
---|
162 | ///The type of the paths. |
---|
163 | typedef PredMapPath<Digraph, PredMap> Path; |
---|
164 | |
---|
165 | ///The traits class. |
---|
166 | typedef TR Traits; |
---|
167 | |
---|
168 | private: |
---|
169 | |
---|
170 | typedef typename Digraph::Node Node; |
---|
171 | typedef typename Digraph::NodeIt NodeIt; |
---|
172 | typedef typename Digraph::Arc Arc; |
---|
173 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
174 | |
---|
175 | //Pointer to the underlying digraph. |
---|
176 | const Digraph *G; |
---|
177 | //Pointer to the map of predecessor arcs. |
---|
178 | PredMap *_pred; |
---|
179 | //Indicates if _pred is locally allocated (true) or not. |
---|
180 | bool local_pred; |
---|
181 | //Pointer to the map of distances. |
---|
182 | DistMap *_dist; |
---|
183 | //Indicates if _dist is locally allocated (true) or not. |
---|
184 | bool local_dist; |
---|
185 | //Pointer to the map of reached status of the nodes. |
---|
186 | ReachedMap *_reached; |
---|
187 | //Indicates if _reached is locally allocated (true) or not. |
---|
188 | bool local_reached; |
---|
189 | //Pointer to the map of processed status of the nodes. |
---|
190 | ProcessedMap *_processed; |
---|
191 | //Indicates if _processed is locally allocated (true) or not. |
---|
192 | bool local_processed; |
---|
193 | |
---|
194 | std::vector<typename Digraph::OutArcIt> _stack; |
---|
195 | int _stack_head; |
---|
196 | |
---|
197 | //Creates the maps if necessary. |
---|
198 | void create_maps() |
---|
199 | { |
---|
200 | if(!_pred) { |
---|
201 | local_pred = true; |
---|
202 | _pred = Traits::createPredMap(*G); |
---|
203 | } |
---|
204 | if(!_dist) { |
---|
205 | local_dist = true; |
---|
206 | _dist = Traits::createDistMap(*G); |
---|
207 | } |
---|
208 | if(!_reached) { |
---|
209 | local_reached = true; |
---|
210 | _reached = Traits::createReachedMap(*G); |
---|
211 | } |
---|
212 | if(!_processed) { |
---|
213 | local_processed = true; |
---|
214 | _processed = Traits::createProcessedMap(*G); |
---|
215 | } |
---|
216 | } |
---|
217 | |
---|
218 | protected: |
---|
219 | |
---|
220 | Dfs() {} |
---|
221 | |
---|
222 | public: |
---|
223 | |
---|
224 | typedef Dfs Create; |
---|
225 | |
---|
226 | ///\name Named template parameters |
---|
227 | |
---|
228 | ///@{ |
---|
229 | |
---|
230 | template <class T> |
---|
231 | struct SetPredMapTraits : public Traits { |
---|
232 | typedef T PredMap; |
---|
233 | static PredMap *createPredMap(const Digraph &) |
---|
234 | { |
---|
235 | throw UninitializedParameter(); |
---|
236 | } |
---|
237 | }; |
---|
238 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
239 | ///\ref PredMap type. |
---|
240 | /// |
---|
241 | ///\ref named-templ-param "Named parameter" for setting |
---|
242 | ///\ref PredMap type. |
---|
243 | template <class T> |
---|
244 | struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
---|
245 | typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
---|
246 | }; |
---|
247 | |
---|
248 | template <class T> |
---|
249 | struct SetDistMapTraits : public Traits { |
---|
250 | typedef T DistMap; |
---|
251 | static DistMap *createDistMap(const Digraph &) |
---|
252 | { |
---|
253 | throw UninitializedParameter(); |
---|
254 | } |
---|
255 | }; |
---|
256 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
257 | ///\ref DistMap type. |
---|
258 | /// |
---|
259 | ///\ref named-templ-param "Named parameter" for setting |
---|
260 | ///\ref DistMap type. |
---|
261 | template <class T> |
---|
262 | struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
---|
263 | typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
---|
264 | }; |
---|
265 | |
---|
266 | template <class T> |
---|
267 | struct SetReachedMapTraits : public Traits { |
---|
268 | typedef T ReachedMap; |
---|
269 | static ReachedMap *createReachedMap(const Digraph &) |
---|
270 | { |
---|
271 | throw UninitializedParameter(); |
---|
272 | } |
---|
273 | }; |
---|
274 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
275 | ///\ref ReachedMap type. |
---|
276 | /// |
---|
277 | ///\ref named-templ-param "Named parameter" for setting |
---|
278 | ///\ref ReachedMap type. |
---|
279 | template <class T> |
---|
280 | struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
---|
281 | typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
---|
282 | }; |
---|
283 | |
---|
284 | template <class T> |
---|
285 | struct SetProcessedMapTraits : public Traits { |
---|
286 | typedef T ProcessedMap; |
---|
287 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
288 | { |
---|
289 | throw UninitializedParameter(); |
---|
290 | } |
---|
291 | }; |
---|
292 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
293 | ///\ref ProcessedMap type. |
---|
294 | /// |
---|
295 | ///\ref named-templ-param "Named parameter" for setting |
---|
296 | ///\ref ProcessedMap type. |
---|
297 | template <class T> |
---|
298 | struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
---|
299 | typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
---|
300 | }; |
---|
301 | |
---|
302 | struct SetStandardProcessedMapTraits : public Traits { |
---|
303 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
---|
304 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
305 | { |
---|
306 | return new ProcessedMap(g); |
---|
307 | } |
---|
308 | }; |
---|
309 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
310 | ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
---|
311 | /// |
---|
312 | ///\ref named-templ-param "Named parameter" for setting |
---|
313 | ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
---|
314 | ///If you don't set it explicitly, it will be automatically allocated. |
---|
315 | struct SetStandardProcessedMap : |
---|
316 | public Dfs< Digraph, SetStandardProcessedMapTraits > { |
---|
317 | typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
---|
318 | }; |
---|
319 | |
---|
320 | ///@} |
---|
321 | |
---|
322 | public: |
---|
323 | |
---|
324 | ///Constructor. |
---|
325 | |
---|
326 | ///Constructor. |
---|
327 | ///\param g The digraph the algorithm runs on. |
---|
328 | Dfs(const Digraph &g) : |
---|
329 | G(&g), |
---|
330 | _pred(NULL), local_pred(false), |
---|
331 | _dist(NULL), local_dist(false), |
---|
332 | _reached(NULL), local_reached(false), |
---|
333 | _processed(NULL), local_processed(false) |
---|
334 | { } |
---|
335 | |
---|
336 | ///Destructor. |
---|
337 | ~Dfs() |
---|
338 | { |
---|
339 | if(local_pred) delete _pred; |
---|
340 | if(local_dist) delete _dist; |
---|
341 | if(local_reached) delete _reached; |
---|
342 | if(local_processed) delete _processed; |
---|
343 | } |
---|
344 | |
---|
345 | ///Sets the map that stores the predecessor arcs. |
---|
346 | |
---|
347 | ///Sets the map that stores the predecessor arcs. |
---|
348 | ///If you don't use this function before calling \ref run(), |
---|
349 | ///it will allocate one. The destructor deallocates this |
---|
350 | ///automatically allocated map, of course. |
---|
351 | ///\return <tt> (*this) </tt> |
---|
352 | Dfs &predMap(PredMap &m) |
---|
353 | { |
---|
354 | if(local_pred) { |
---|
355 | delete _pred; |
---|
356 | local_pred=false; |
---|
357 | } |
---|
358 | _pred = &m; |
---|
359 | return *this; |
---|
360 | } |
---|
361 | |
---|
362 | ///Sets the map that indicates which nodes are reached. |
---|
363 | |
---|
364 | ///Sets the map that indicates which nodes are reached. |
---|
365 | ///If you don't use this function before calling \ref run(), |
---|
366 | ///it will allocate one. The destructor deallocates this |
---|
367 | ///automatically allocated map, of course. |
---|
368 | ///\return <tt> (*this) </tt> |
---|
369 | Dfs &reachedMap(ReachedMap &m) |
---|
370 | { |
---|
371 | if(local_reached) { |
---|
372 | delete _reached; |
---|
373 | local_reached=false; |
---|
374 | } |
---|
375 | _reached = &m; |
---|
376 | return *this; |
---|
377 | } |
---|
378 | |
---|
379 | ///Sets the map that indicates which nodes are processed. |
---|
380 | |
---|
381 | ///Sets the map that indicates which nodes are processed. |
---|
382 | ///If you don't use this function before calling \ref run(), |
---|
383 | ///it will allocate one. The destructor deallocates this |
---|
384 | ///automatically allocated map, of course. |
---|
385 | ///\return <tt> (*this) </tt> |
---|
386 | Dfs &processedMap(ProcessedMap &m) |
---|
387 | { |
---|
388 | if(local_processed) { |
---|
389 | delete _processed; |
---|
390 | local_processed=false; |
---|
391 | } |
---|
392 | _processed = &m; |
---|
393 | return *this; |
---|
394 | } |
---|
395 | |
---|
396 | ///Sets the map that stores the distances of the nodes. |
---|
397 | |
---|
398 | ///Sets the map that stores the distances of the nodes calculated by |
---|
399 | ///the algorithm. |
---|
400 | ///If you don't use this function before calling \ref run(), |
---|
401 | ///it will allocate one. The destructor deallocates this |
---|
402 | ///automatically allocated map, of course. |
---|
403 | ///\return <tt> (*this) </tt> |
---|
404 | Dfs &distMap(DistMap &m) |
---|
405 | { |
---|
406 | if(local_dist) { |
---|
407 | delete _dist; |
---|
408 | local_dist=false; |
---|
409 | } |
---|
410 | _dist = &m; |
---|
411 | return *this; |
---|
412 | } |
---|
413 | |
---|
414 | public: |
---|
415 | |
---|
416 | ///\name Execution control |
---|
417 | ///The simplest way to execute the algorithm is to use |
---|
418 | ///one of the member functions called \ref lemon::Dfs::run() "run()". |
---|
419 | ///\n |
---|
420 | ///If you need more control on the execution, first you must call |
---|
421 | ///\ref lemon::Dfs::init() "init()", then you can add a source node |
---|
422 | ///with \ref lemon::Dfs::addSource() "addSource()". |
---|
423 | ///Finally \ref lemon::Dfs::start() "start()" will perform the |
---|
424 | ///actual path computation. |
---|
425 | |
---|
426 | ///@{ |
---|
427 | |
---|
428 | ///Initializes the internal data structures. |
---|
429 | |
---|
430 | ///Initializes the internal data structures. |
---|
431 | /// |
---|
432 | void init() |
---|
433 | { |
---|
434 | create_maps(); |
---|
435 | _stack.resize(countNodes(*G)); |
---|
436 | _stack_head=-1; |
---|
437 | for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
---|
438 | _pred->set(u,INVALID); |
---|
439 | _reached->set(u,false); |
---|
440 | _processed->set(u,false); |
---|
441 | } |
---|
442 | } |
---|
443 | |
---|
444 | ///Adds a new source node. |
---|
445 | |
---|
446 | ///Adds a new source node to the set of nodes to be processed. |
---|
447 | /// |
---|
448 | ///\pre The stack must be empty. (Otherwise the algorithm gives |
---|
449 | ///false results.) |
---|
450 | /// |
---|
451 | ///\warning Distances will be wrong (or at least strange) in case of |
---|
452 | ///multiple sources. |
---|
453 | void addSource(Node s) |
---|
454 | { |
---|
455 | LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
---|
456 | if(!(*_reached)[s]) |
---|
457 | { |
---|
458 | _reached->set(s,true); |
---|
459 | _pred->set(s,INVALID); |
---|
460 | OutArcIt e(*G,s); |
---|
461 | if(e!=INVALID) { |
---|
462 | _stack[++_stack_head]=e; |
---|
463 | _dist->set(s,_stack_head); |
---|
464 | } |
---|
465 | else { |
---|
466 | _processed->set(s,true); |
---|
467 | _dist->set(s,0); |
---|
468 | } |
---|
469 | } |
---|
470 | } |
---|
471 | |
---|
472 | ///Processes the next arc. |
---|
473 | |
---|
474 | ///Processes the next arc. |
---|
475 | /// |
---|
476 | ///\return The processed arc. |
---|
477 | /// |
---|
478 | ///\pre The stack must not be empty. |
---|
479 | Arc processNextArc() |
---|
480 | { |
---|
481 | Node m; |
---|
482 | Arc e=_stack[_stack_head]; |
---|
483 | if(!(*_reached)[m=G->target(e)]) { |
---|
484 | _pred->set(m,e); |
---|
485 | _reached->set(m,true); |
---|
486 | ++_stack_head; |
---|
487 | _stack[_stack_head] = OutArcIt(*G, m); |
---|
488 | _dist->set(m,_stack_head); |
---|
489 | } |
---|
490 | else { |
---|
491 | m=G->source(e); |
---|
492 | ++_stack[_stack_head]; |
---|
493 | } |
---|
494 | while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
---|
495 | _processed->set(m,true); |
---|
496 | --_stack_head; |
---|
497 | if(_stack_head>=0) { |
---|
498 | m=G->source(_stack[_stack_head]); |
---|
499 | ++_stack[_stack_head]; |
---|
500 | } |
---|
501 | } |
---|
502 | return e; |
---|
503 | } |
---|
504 | |
---|
505 | ///Next arc to be processed. |
---|
506 | |
---|
507 | ///Next arc to be processed. |
---|
508 | /// |
---|
509 | ///\return The next arc to be processed or \c INVALID if the stack |
---|
510 | ///is empty. |
---|
511 | OutArcIt nextArc() const |
---|
512 | { |
---|
513 | return _stack_head>=0?_stack[_stack_head]:INVALID; |
---|
514 | } |
---|
515 | |
---|
516 | ///\brief Returns \c false if there are nodes |
---|
517 | ///to be processed. |
---|
518 | /// |
---|
519 | ///Returns \c false if there are nodes |
---|
520 | ///to be processed in the queue (stack). |
---|
521 | bool emptyQueue() const { return _stack_head<0; } |
---|
522 | |
---|
523 | ///Returns the number of the nodes to be processed. |
---|
524 | |
---|
525 | ///Returns the number of the nodes to be processed in the queue (stack). |
---|
526 | int queueSize() const { return _stack_head+1; } |
---|
527 | |
---|
528 | ///Executes the algorithm. |
---|
529 | |
---|
530 | ///Executes the algorithm. |
---|
531 | /// |
---|
532 | ///This method runs the %DFS algorithm from the root node |
---|
533 | ///in order to compute the DFS path to each node. |
---|
534 | /// |
---|
535 | /// The algorithm computes |
---|
536 | ///- the %DFS tree, |
---|
537 | ///- the distance of each node from the root in the %DFS tree. |
---|
538 | /// |
---|
539 | ///\pre init() must be called and a root node should be |
---|
540 | ///added with addSource() before using this function. |
---|
541 | /// |
---|
542 | ///\note <tt>d.start()</tt> is just a shortcut of the following code. |
---|
543 | ///\code |
---|
544 | /// while ( !d.emptyQueue() ) { |
---|
545 | /// d.processNextArc(); |
---|
546 | /// } |
---|
547 | ///\endcode |
---|
548 | void start() |
---|
549 | { |
---|
550 | while ( !emptyQueue() ) processNextArc(); |
---|
551 | } |
---|
552 | |
---|
553 | ///Executes the algorithm until the given target node is reached. |
---|
554 | |
---|
555 | ///Executes the algorithm until the given target node is reached. |
---|
556 | /// |
---|
557 | ///This method runs the %DFS algorithm from the root node |
---|
558 | ///in order to compute the DFS path to \c t. |
---|
559 | /// |
---|
560 | ///The algorithm computes |
---|
561 | ///- the %DFS path to \c t, |
---|
562 | ///- the distance of \c t from the root in the %DFS tree. |
---|
563 | /// |
---|
564 | ///\pre init() must be called and a root node should be |
---|
565 | ///added with addSource() before using this function. |
---|
566 | void start(Node t) |
---|
567 | { |
---|
568 | while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
---|
569 | processNextArc(); |
---|
570 | } |
---|
571 | |
---|
572 | ///Executes the algorithm until a condition is met. |
---|
573 | |
---|
574 | ///Executes the algorithm until a condition is met. |
---|
575 | /// |
---|
576 | ///This method runs the %DFS algorithm from the root node |
---|
577 | ///until an arc \c a with <tt>am[a]</tt> true is found. |
---|
578 | /// |
---|
579 | ///\param am A \c bool (or convertible) arc map. The algorithm |
---|
580 | ///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
---|
581 | /// |
---|
582 | ///\return The reached arc \c a with <tt>am[a]</tt> true or |
---|
583 | ///\c INVALID if no such arc was found. |
---|
584 | /// |
---|
585 | ///\pre init() must be called and a root node should be |
---|
586 | ///added with addSource() before using this function. |
---|
587 | /// |
---|
588 | ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
---|
589 | ///not a node map. |
---|
590 | template<class ArcBoolMap> |
---|
591 | Arc start(const ArcBoolMap &am) |
---|
592 | { |
---|
593 | while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
---|
594 | processNextArc(); |
---|
595 | return emptyQueue() ? INVALID : _stack[_stack_head]; |
---|
596 | } |
---|
597 | |
---|
598 | ///Runs the algorithm from the given source node. |
---|
599 | |
---|
600 | ///This method runs the %DFS algorithm from node \c s |
---|
601 | ///in order to compute the DFS path to each node. |
---|
602 | /// |
---|
603 | ///The algorithm computes |
---|
604 | ///- the %DFS tree, |
---|
605 | ///- the distance of each node from the root in the %DFS tree. |
---|
606 | /// |
---|
607 | ///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
---|
608 | ///\code |
---|
609 | /// d.init(); |
---|
610 | /// d.addSource(s); |
---|
611 | /// d.start(); |
---|
612 | ///\endcode |
---|
613 | void run(Node s) { |
---|
614 | init(); |
---|
615 | addSource(s); |
---|
616 | start(); |
---|
617 | } |
---|
618 | |
---|
619 | ///Finds the %DFS path between \c s and \c t. |
---|
620 | |
---|
621 | ///This method runs the %DFS algorithm from node \c s |
---|
622 | ///in order to compute the DFS path to node \c t |
---|
623 | ///(it stops searching when \c t is processed) |
---|
624 | /// |
---|
625 | ///\return \c true if \c t is reachable form \c s. |
---|
626 | /// |
---|
627 | ///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
---|
628 | ///just a shortcut of the following code. |
---|
629 | ///\code |
---|
630 | /// d.init(); |
---|
631 | /// d.addSource(s); |
---|
632 | /// d.start(t); |
---|
633 | ///\endcode |
---|
634 | bool run(Node s,Node t) { |
---|
635 | init(); |
---|
636 | addSource(s); |
---|
637 | start(t); |
---|
638 | return reached(t); |
---|
639 | } |
---|
640 | |
---|
641 | ///Runs the algorithm to visit all nodes in the digraph. |
---|
642 | |
---|
643 | ///This method runs the %DFS algorithm in order to compute the |
---|
644 | ///%DFS path to each node. |
---|
645 | /// |
---|
646 | ///The algorithm computes |
---|
647 | ///- the %DFS tree, |
---|
648 | ///- the distance of each node from the root in the %DFS tree. |
---|
649 | /// |
---|
650 | ///\note <tt>d.run()</tt> is just a shortcut of the following code. |
---|
651 | ///\code |
---|
652 | /// d.init(); |
---|
653 | /// for (NodeIt n(digraph); n != INVALID; ++n) { |
---|
654 | /// if (!d.reached(n)) { |
---|
655 | /// d.addSource(n); |
---|
656 | /// d.start(); |
---|
657 | /// } |
---|
658 | /// } |
---|
659 | ///\endcode |
---|
660 | void run() { |
---|
661 | init(); |
---|
662 | for (NodeIt it(*G); it != INVALID; ++it) { |
---|
663 | if (!reached(it)) { |
---|
664 | addSource(it); |
---|
665 | start(); |
---|
666 | } |
---|
667 | } |
---|
668 | } |
---|
669 | |
---|
670 | ///@} |
---|
671 | |
---|
672 | ///\name Query Functions |
---|
673 | ///The result of the %DFS algorithm can be obtained using these |
---|
674 | ///functions.\n |
---|
675 | ///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
---|
676 | ///"start()" must be called before using them. |
---|
677 | |
---|
678 | ///@{ |
---|
679 | |
---|
680 | ///The DFS path to a node. |
---|
681 | |
---|
682 | ///Returns the DFS path to a node. |
---|
683 | /// |
---|
684 | ///\warning \c t should be reachable from the root. |
---|
685 | /// |
---|
686 | ///\pre Either \ref run() or \ref start() must be called before |
---|
687 | ///using this function. |
---|
688 | Path path(Node t) const { return Path(*G, *_pred, t); } |
---|
689 | |
---|
690 | ///The distance of a node from the root. |
---|
691 | |
---|
692 | ///Returns the distance of a node from the root. |
---|
693 | /// |
---|
694 | ///\warning If node \c v is not reachable from the root, then |
---|
695 | ///the return value of this function is undefined. |
---|
696 | /// |
---|
697 | ///\pre Either \ref run() or \ref start() must be called before |
---|
698 | ///using this function. |
---|
699 | int dist(Node v) const { return (*_dist)[v]; } |
---|
700 | |
---|
701 | ///Returns the 'previous arc' of the %DFS tree for a node. |
---|
702 | |
---|
703 | ///This function returns the 'previous arc' of the %DFS tree for the |
---|
704 | ///node \c v, i.e. it returns the last arc of a %DFS path from the |
---|
705 | ///root to \c v. It is \c INVALID |
---|
706 | ///if \c v is not reachable from the root(s) or if \c v is a root. |
---|
707 | /// |
---|
708 | ///The %DFS tree used here is equal to the %DFS tree used in |
---|
709 | ///\ref predNode(). |
---|
710 | /// |
---|
711 | ///\pre Either \ref run() or \ref start() must be called before using |
---|
712 | ///this function. |
---|
713 | Arc predArc(Node v) const { return (*_pred)[v];} |
---|
714 | |
---|
715 | ///Returns the 'previous node' of the %DFS tree. |
---|
716 | |
---|
717 | ///This function returns the 'previous node' of the %DFS |
---|
718 | ///tree for the node \c v, i.e. it returns the last but one node |
---|
719 | ///from a %DFS path from the root to \c v. It is \c INVALID |
---|
720 | ///if \c v is not reachable from the root(s) or if \c v is a root. |
---|
721 | /// |
---|
722 | ///The %DFS tree used here is equal to the %DFS tree used in |
---|
723 | ///\ref predArc(). |
---|
724 | /// |
---|
725 | ///\pre Either \ref run() or \ref start() must be called before |
---|
726 | ///using this function. |
---|
727 | Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
---|
728 | G->source((*_pred)[v]); } |
---|
729 | |
---|
730 | ///\brief Returns a const reference to the node map that stores the |
---|
731 | ///distances of the nodes. |
---|
732 | /// |
---|
733 | ///Returns a const reference to the node map that stores the |
---|
734 | ///distances of the nodes calculated by the algorithm. |
---|
735 | /// |
---|
736 | ///\pre Either \ref run() or \ref init() |
---|
737 | ///must be called before using this function. |
---|
738 | const DistMap &distMap() const { return *_dist;} |
---|
739 | |
---|
740 | ///\brief Returns a const reference to the node map that stores the |
---|
741 | ///predecessor arcs. |
---|
742 | /// |
---|
743 | ///Returns a const reference to the node map that stores the predecessor |
---|
744 | ///arcs, which form the DFS tree. |
---|
745 | /// |
---|
746 | ///\pre Either \ref run() or \ref init() |
---|
747 | ///must be called before using this function. |
---|
748 | const PredMap &predMap() const { return *_pred;} |
---|
749 | |
---|
750 | ///Checks if a node is reachable from the root(s). |
---|
751 | |
---|
752 | ///Returns \c true if \c v is reachable from the root(s). |
---|
753 | ///\pre Either \ref run() or \ref start() |
---|
754 | ///must be called before using this function. |
---|
755 | bool reached(Node v) const { return (*_reached)[v]; } |
---|
756 | |
---|
757 | ///@} |
---|
758 | }; |
---|
759 | |
---|
760 | ///Default traits class of dfs() function. |
---|
761 | |
---|
762 | ///Default traits class of dfs() function. |
---|
763 | ///\tparam GR Digraph type. |
---|
764 | template<class GR> |
---|
765 | struct DfsWizardDefaultTraits |
---|
766 | { |
---|
767 | ///The type of the digraph the algorithm runs on. |
---|
768 | typedef GR Digraph; |
---|
769 | |
---|
770 | ///\brief The type of the map that stores the predecessor |
---|
771 | ///arcs of the %DFS paths. |
---|
772 | /// |
---|
773 | ///The type of the map that stores the predecessor |
---|
774 | ///arcs of the %DFS paths. |
---|
775 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
776 | typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
---|
777 | ///Instantiates a \ref PredMap. |
---|
778 | |
---|
779 | ///This function instantiates a \ref PredMap. |
---|
780 | ///\param g is the digraph, to which we would like to define the |
---|
781 | ///\ref PredMap. |
---|
782 | static PredMap *createPredMap(const Digraph &g) |
---|
783 | { |
---|
784 | return new PredMap(g); |
---|
785 | } |
---|
786 | |
---|
787 | ///The type of the map that indicates which nodes are processed. |
---|
788 | |
---|
789 | ///The type of the map that indicates which nodes are processed. |
---|
790 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
791 | ///By default it is a NullMap. |
---|
792 | typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
---|
793 | ///Instantiates a \ref ProcessedMap. |
---|
794 | |
---|
795 | ///This function instantiates a \ref ProcessedMap. |
---|
796 | ///\param g is the digraph, to which |
---|
797 | ///we would like to define the \ref ProcessedMap. |
---|
798 | #ifdef DOXYGEN |
---|
799 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
800 | #else |
---|
801 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
802 | #endif |
---|
803 | { |
---|
804 | return new ProcessedMap(); |
---|
805 | } |
---|
806 | |
---|
807 | ///The type of the map that indicates which nodes are reached. |
---|
808 | |
---|
809 | ///The type of the map that indicates which nodes are reached. |
---|
810 | ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
811 | typedef typename Digraph::template NodeMap<bool> ReachedMap; |
---|
812 | ///Instantiates a \ref ReachedMap. |
---|
813 | |
---|
814 | ///This function instantiates a \ref ReachedMap. |
---|
815 | ///\param g is the digraph, to which |
---|
816 | ///we would like to define the \ref ReachedMap. |
---|
817 | static ReachedMap *createReachedMap(const Digraph &g) |
---|
818 | { |
---|
819 | return new ReachedMap(g); |
---|
820 | } |
---|
821 | |
---|
822 | ///The type of the map that stores the distances of the nodes. |
---|
823 | |
---|
824 | ///The type of the map that stores the distances of the nodes. |
---|
825 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
826 | typedef typename Digraph::template NodeMap<int> DistMap; |
---|
827 | ///Instantiates a \ref DistMap. |
---|
828 | |
---|
829 | ///This function instantiates a \ref DistMap. |
---|
830 | ///\param g is the digraph, to which we would like to define |
---|
831 | ///the \ref DistMap |
---|
832 | static DistMap *createDistMap(const Digraph &g) |
---|
833 | { |
---|
834 | return new DistMap(g); |
---|
835 | } |
---|
836 | |
---|
837 | ///The type of the DFS paths. |
---|
838 | |
---|
839 | ///The type of the DFS paths. |
---|
840 | ///It must meet the \ref concepts::Path "Path" concept. |
---|
841 | typedef lemon::Path<Digraph> Path; |
---|
842 | }; |
---|
843 | |
---|
844 | /// Default traits class used by \ref DfsWizard |
---|
845 | |
---|
846 | /// To make it easier to use Dfs algorithm |
---|
847 | /// we have created a wizard class. |
---|
848 | /// This \ref DfsWizard class needs default traits, |
---|
849 | /// as well as the \ref Dfs class. |
---|
850 | /// The \ref DfsWizardBase is a class to be the default traits of the |
---|
851 | /// \ref DfsWizard class. |
---|
852 | template<class GR> |
---|
853 | class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
---|
854 | { |
---|
855 | |
---|
856 | typedef DfsWizardDefaultTraits<GR> Base; |
---|
857 | protected: |
---|
858 | //The type of the nodes in the digraph. |
---|
859 | typedef typename Base::Digraph::Node Node; |
---|
860 | |
---|
861 | //Pointer to the digraph the algorithm runs on. |
---|
862 | void *_g; |
---|
863 | //Pointer to the map of reached nodes. |
---|
864 | void *_reached; |
---|
865 | //Pointer to the map of processed nodes. |
---|
866 | void *_processed; |
---|
867 | //Pointer to the map of predecessors arcs. |
---|
868 | void *_pred; |
---|
869 | //Pointer to the map of distances. |
---|
870 | void *_dist; |
---|
871 | //Pointer to the DFS path to the target node. |
---|
872 | void *_path; |
---|
873 | //Pointer to the distance of the target node. |
---|
874 | int *_di; |
---|
875 | |
---|
876 | public: |
---|
877 | /// Constructor. |
---|
878 | |
---|
879 | /// This constructor does not require parameters, therefore it initiates |
---|
880 | /// all of the attributes to \c 0. |
---|
881 | DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
---|
882 | _dist(0), _path(0), _di(0) {} |
---|
883 | |
---|
884 | /// Constructor. |
---|
885 | |
---|
886 | /// This constructor requires one parameter, |
---|
887 | /// others are initiated to \c 0. |
---|
888 | /// \param g The digraph the algorithm runs on. |
---|
889 | DfsWizardBase(const GR &g) : |
---|
890 | _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
---|
891 | _reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
---|
892 | |
---|
893 | }; |
---|
894 | |
---|
895 | /// Auxiliary class for the function-type interface of DFS algorithm. |
---|
896 | |
---|
897 | /// This auxiliary class is created to implement the |
---|
898 | /// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
---|
899 | /// It does not have own \ref run() method, it uses the functions |
---|
900 | /// and features of the plain \ref Dfs. |
---|
901 | /// |
---|
902 | /// This class should only be used through the \ref dfs() function, |
---|
903 | /// which makes it easier to use the algorithm. |
---|
904 | template<class TR> |
---|
905 | class DfsWizard : public TR |
---|
906 | { |
---|
907 | typedef TR Base; |
---|
908 | |
---|
909 | ///The type of the digraph the algorithm runs on. |
---|
910 | typedef typename TR::Digraph Digraph; |
---|
911 | |
---|
912 | typedef typename Digraph::Node Node; |
---|
913 | typedef typename Digraph::NodeIt NodeIt; |
---|
914 | typedef typename Digraph::Arc Arc; |
---|
915 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
916 | |
---|
917 | ///\brief The type of the map that stores the predecessor |
---|
918 | ///arcs of the DFS paths. |
---|
919 | typedef typename TR::PredMap PredMap; |
---|
920 | ///\brief The type of the map that stores the distances of the nodes. |
---|
921 | typedef typename TR::DistMap DistMap; |
---|
922 | ///\brief The type of the map that indicates which nodes are reached. |
---|
923 | typedef typename TR::ReachedMap ReachedMap; |
---|
924 | ///\brief The type of the map that indicates which nodes are processed. |
---|
925 | typedef typename TR::ProcessedMap ProcessedMap; |
---|
926 | ///The type of the DFS paths |
---|
927 | typedef typename TR::Path Path; |
---|
928 | |
---|
929 | public: |
---|
930 | |
---|
931 | /// Constructor. |
---|
932 | DfsWizard() : TR() {} |
---|
933 | |
---|
934 | /// Constructor that requires parameters. |
---|
935 | |
---|
936 | /// Constructor that requires parameters. |
---|
937 | /// These parameters will be the default values for the traits class. |
---|
938 | /// \param g The digraph the algorithm runs on. |
---|
939 | DfsWizard(const Digraph &g) : |
---|
940 | TR(g) {} |
---|
941 | |
---|
942 | ///Copy constructor |
---|
943 | DfsWizard(const TR &b) : TR(b) {} |
---|
944 | |
---|
945 | ~DfsWizard() {} |
---|
946 | |
---|
947 | ///Runs DFS algorithm from the given source node. |
---|
948 | |
---|
949 | ///This method runs DFS algorithm from node \c s |
---|
950 | ///in order to compute the DFS path to each node. |
---|
951 | void run(Node s) |
---|
952 | { |
---|
953 | Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
---|
954 | if (Base::_pred) |
---|
955 | alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
956 | if (Base::_dist) |
---|
957 | alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
958 | if (Base::_reached) |
---|
959 | alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
---|
960 | if (Base::_processed) |
---|
961 | alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
---|
962 | if (s!=INVALID) |
---|
963 | alg.run(s); |
---|
964 | else |
---|
965 | alg.run(); |
---|
966 | } |
---|
967 | |
---|
968 | ///Finds the DFS path between \c s and \c t. |
---|
969 | |
---|
970 | ///This method runs DFS algorithm from node \c s |
---|
971 | ///in order to compute the DFS path to node \c t |
---|
972 | ///(it stops searching when \c t is processed). |
---|
973 | /// |
---|
974 | ///\return \c true if \c t is reachable form \c s. |
---|
975 | bool run(Node s, Node t) |
---|
976 | { |
---|
977 | if (s==INVALID || t==INVALID) throw UninitializedParameter(); |
---|
978 | Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
---|
979 | if (Base::_pred) |
---|
980 | alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
981 | if (Base::_dist) |
---|
982 | alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
983 | if (Base::_reached) |
---|
984 | alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
---|
985 | if (Base::_processed) |
---|
986 | alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
---|
987 | alg.run(s,t); |
---|
988 | if (Base::_path) |
---|
989 | *reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
---|
990 | if (Base::_di) |
---|
991 | *Base::_di = alg.dist(t); |
---|
992 | return alg.reached(t); |
---|
993 | } |
---|
994 | |
---|
995 | ///Runs DFS algorithm to visit all nodes in the digraph. |
---|
996 | |
---|
997 | ///This method runs DFS algorithm in order to compute |
---|
998 | ///the DFS path to each node. |
---|
999 | void run() |
---|
1000 | { |
---|
1001 | run(INVALID); |
---|
1002 | } |
---|
1003 | |
---|
1004 | template<class T> |
---|
1005 | struct SetPredMapBase : public Base { |
---|
1006 | typedef T PredMap; |
---|
1007 | static PredMap *createPredMap(const Digraph &) { return 0; }; |
---|
1008 | SetPredMapBase(const TR &b) : TR(b) {} |
---|
1009 | }; |
---|
1010 | ///\brief \ref named-func-param "Named parameter" |
---|
1011 | ///for setting \ref PredMap object. |
---|
1012 | /// |
---|
1013 | ///\ref named-func-param "Named parameter" |
---|
1014 | ///for setting \ref PredMap object. |
---|
1015 | template<class T> |
---|
1016 | DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
---|
1017 | { |
---|
1018 | Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1019 | return DfsWizard<SetPredMapBase<T> >(*this); |
---|
1020 | } |
---|
1021 | |
---|
1022 | template<class T> |
---|
1023 | struct SetReachedMapBase : public Base { |
---|
1024 | typedef T ReachedMap; |
---|
1025 | static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
---|
1026 | SetReachedMapBase(const TR &b) : TR(b) {} |
---|
1027 | }; |
---|
1028 | ///\brief \ref named-func-param "Named parameter" |
---|
1029 | ///for setting \ref ReachedMap object. |
---|
1030 | /// |
---|
1031 | /// \ref named-func-param "Named parameter" |
---|
1032 | ///for setting \ref ReachedMap object. |
---|
1033 | template<class T> |
---|
1034 | DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
---|
1035 | { |
---|
1036 | Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1037 | return DfsWizard<SetReachedMapBase<T> >(*this); |
---|
1038 | } |
---|
1039 | |
---|
1040 | template<class T> |
---|
1041 | struct SetDistMapBase : public Base { |
---|
1042 | typedef T DistMap; |
---|
1043 | static DistMap *createDistMap(const Digraph &) { return 0; }; |
---|
1044 | SetDistMapBase(const TR &b) : TR(b) {} |
---|
1045 | }; |
---|
1046 | ///\brief \ref named-func-param "Named parameter" |
---|
1047 | ///for setting \ref DistMap object. |
---|
1048 | /// |
---|
1049 | /// \ref named-func-param "Named parameter" |
---|
1050 | ///for setting \ref DistMap object. |
---|
1051 | template<class T> |
---|
1052 | DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
---|
1053 | { |
---|
1054 | Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1055 | return DfsWizard<SetDistMapBase<T> >(*this); |
---|
1056 | } |
---|
1057 | |
---|
1058 | template<class T> |
---|
1059 | struct SetProcessedMapBase : public Base { |
---|
1060 | typedef T ProcessedMap; |
---|
1061 | static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
---|
1062 | SetProcessedMapBase(const TR &b) : TR(b) {} |
---|
1063 | }; |
---|
1064 | ///\brief \ref named-func-param "Named parameter" |
---|
1065 | ///for setting \ref ProcessedMap object. |
---|
1066 | /// |
---|
1067 | /// \ref named-func-param "Named parameter" |
---|
1068 | ///for setting \ref ProcessedMap object. |
---|
1069 | template<class T> |
---|
1070 | DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
---|
1071 | { |
---|
1072 | Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1073 | return DfsWizard<SetProcessedMapBase<T> >(*this); |
---|
1074 | } |
---|
1075 | |
---|
1076 | template<class T> |
---|
1077 | struct SetPathBase : public Base { |
---|
1078 | typedef T Path; |
---|
1079 | SetPathBase(const TR &b) : TR(b) {} |
---|
1080 | }; |
---|
1081 | ///\brief \ref named-func-param "Named parameter" |
---|
1082 | ///for getting the DFS path to the target node. |
---|
1083 | /// |
---|
1084 | ///\ref named-func-param "Named parameter" |
---|
1085 | ///for getting the DFS path to the target node. |
---|
1086 | template<class T> |
---|
1087 | DfsWizard<SetPathBase<T> > path(const T &t) |
---|
1088 | { |
---|
1089 | Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1090 | return DfsWizard<SetPathBase<T> >(*this); |
---|
1091 | } |
---|
1092 | |
---|
1093 | ///\brief \ref named-func-param "Named parameter" |
---|
1094 | ///for getting the distance of the target node. |
---|
1095 | /// |
---|
1096 | ///\ref named-func-param "Named parameter" |
---|
1097 | ///for getting the distance of the target node. |
---|
1098 | DfsWizard dist(const int &d) |
---|
1099 | { |
---|
1100 | Base::_di=const_cast<int*>(&d); |
---|
1101 | return *this; |
---|
1102 | } |
---|
1103 | |
---|
1104 | }; |
---|
1105 | |
---|
1106 | ///Function-type interface for DFS algorithm. |
---|
1107 | |
---|
1108 | ///\ingroup search |
---|
1109 | ///Function-type interface for DFS algorithm. |
---|
1110 | /// |
---|
1111 | ///This function also has several \ref named-func-param "named parameters", |
---|
1112 | ///they are declared as the members of class \ref DfsWizard. |
---|
1113 | ///The following examples show how to use these parameters. |
---|
1114 | ///\code |
---|
1115 | /// // Compute the DFS tree |
---|
1116 | /// dfs(g).predMap(preds).distMap(dists).run(s); |
---|
1117 | /// |
---|
1118 | /// // Compute the DFS path from s to t |
---|
1119 | /// bool reached = dfs(g).path(p).dist(d).run(s,t); |
---|
1120 | ///\endcode |
---|
1121 | |
---|
1122 | ///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
---|
1123 | ///to the end of the parameter list. |
---|
1124 | ///\sa DfsWizard |
---|
1125 | ///\sa Dfs |
---|
1126 | template<class GR> |
---|
1127 | DfsWizard<DfsWizardBase<GR> > |
---|
1128 | dfs(const GR &digraph) |
---|
1129 | { |
---|
1130 | return DfsWizard<DfsWizardBase<GR> >(digraph); |
---|
1131 | } |
---|
1132 | |
---|
1133 | #ifdef DOXYGEN |
---|
1134 | /// \brief Visitor class for DFS. |
---|
1135 | /// |
---|
1136 | /// This class defines the interface of the DfsVisit events, and |
---|
1137 | /// it could be the base of a real visitor class. |
---|
1138 | template <typename _Digraph> |
---|
1139 | struct DfsVisitor { |
---|
1140 | typedef _Digraph Digraph; |
---|
1141 | typedef typename Digraph::Arc Arc; |
---|
1142 | typedef typename Digraph::Node Node; |
---|
1143 | /// \brief Called for the source node of the DFS. |
---|
1144 | /// |
---|
1145 | /// This function is called for the source node of the DFS. |
---|
1146 | void start(const Node& node) {} |
---|
1147 | /// \brief Called when the source node is leaved. |
---|
1148 | /// |
---|
1149 | /// This function is called when the source node is leaved. |
---|
1150 | void stop(const Node& node) {} |
---|
1151 | /// \brief Called when a node is reached first time. |
---|
1152 | /// |
---|
1153 | /// This function is called when a node is reached first time. |
---|
1154 | void reach(const Node& node) {} |
---|
1155 | /// \brief Called when an arc reaches a new node. |
---|
1156 | /// |
---|
1157 | /// This function is called when the DFS finds an arc whose target node |
---|
1158 | /// is not reached yet. |
---|
1159 | void discover(const Arc& arc) {} |
---|
1160 | /// \brief Called when an arc is examined but its target node is |
---|
1161 | /// already discovered. |
---|
1162 | /// |
---|
1163 | /// This function is called when an arc is examined but its target node is |
---|
1164 | /// already discovered. |
---|
1165 | void examine(const Arc& arc) {} |
---|
1166 | /// \brief Called when the DFS steps back from a node. |
---|
1167 | /// |
---|
1168 | /// This function is called when the DFS steps back from a node. |
---|
1169 | void leave(const Node& node) {} |
---|
1170 | /// \brief Called when the DFS steps back on an arc. |
---|
1171 | /// |
---|
1172 | /// This function is called when the DFS steps back on an arc. |
---|
1173 | void backtrack(const Arc& arc) {} |
---|
1174 | }; |
---|
1175 | #else |
---|
1176 | template <typename _Digraph> |
---|
1177 | struct DfsVisitor { |
---|
1178 | typedef _Digraph Digraph; |
---|
1179 | typedef typename Digraph::Arc Arc; |
---|
1180 | typedef typename Digraph::Node Node; |
---|
1181 | void start(const Node&) {} |
---|
1182 | void stop(const Node&) {} |
---|
1183 | void reach(const Node&) {} |
---|
1184 | void discover(const Arc&) {} |
---|
1185 | void examine(const Arc&) {} |
---|
1186 | void leave(const Node&) {} |
---|
1187 | void backtrack(const Arc&) {} |
---|
1188 | |
---|
1189 | template <typename _Visitor> |
---|
1190 | struct Constraints { |
---|
1191 | void constraints() { |
---|
1192 | Arc arc; |
---|
1193 | Node node; |
---|
1194 | visitor.start(node); |
---|
1195 | visitor.stop(arc); |
---|
1196 | visitor.reach(node); |
---|
1197 | visitor.discover(arc); |
---|
1198 | visitor.examine(arc); |
---|
1199 | visitor.leave(node); |
---|
1200 | visitor.backtrack(arc); |
---|
1201 | } |
---|
1202 | _Visitor& visitor; |
---|
1203 | }; |
---|
1204 | }; |
---|
1205 | #endif |
---|
1206 | |
---|
1207 | /// \brief Default traits class of DfsVisit class. |
---|
1208 | /// |
---|
1209 | /// Default traits class of DfsVisit class. |
---|
1210 | /// \tparam _Digraph The type of the digraph the algorithm runs on. |
---|
1211 | template<class _Digraph> |
---|
1212 | struct DfsVisitDefaultTraits { |
---|
1213 | |
---|
1214 | /// \brief The type of the digraph the algorithm runs on. |
---|
1215 | typedef _Digraph Digraph; |
---|
1216 | |
---|
1217 | /// \brief The type of the map that indicates which nodes are reached. |
---|
1218 | /// |
---|
1219 | /// The type of the map that indicates which nodes are reached. |
---|
1220 | /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
1221 | typedef typename Digraph::template NodeMap<bool> ReachedMap; |
---|
1222 | |
---|
1223 | /// \brief Instantiates a \ref ReachedMap. |
---|
1224 | /// |
---|
1225 | /// This function instantiates a \ref ReachedMap. |
---|
1226 | /// \param digraph is the digraph, to which |
---|
1227 | /// we would like to define the \ref ReachedMap. |
---|
1228 | static ReachedMap *createReachedMap(const Digraph &digraph) { |
---|
1229 | return new ReachedMap(digraph); |
---|
1230 | } |
---|
1231 | |
---|
1232 | }; |
---|
1233 | |
---|
1234 | /// \ingroup search |
---|
1235 | /// |
---|
1236 | /// \brief %DFS algorithm class with visitor interface. |
---|
1237 | /// |
---|
1238 | /// This class provides an efficient implementation of the %DFS algorithm |
---|
1239 | /// with visitor interface. |
---|
1240 | /// |
---|
1241 | /// The %DfsVisit class provides an alternative interface to the Dfs |
---|
1242 | /// class. It works with callback mechanism, the DfsVisit object calls |
---|
1243 | /// the member functions of the \c Visitor class on every DFS event. |
---|
1244 | /// |
---|
1245 | /// This interface of the DFS algorithm should be used in special cases |
---|
1246 | /// when extra actions have to be performed in connection with certain |
---|
1247 | /// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
---|
1248 | /// instead. |
---|
1249 | /// |
---|
1250 | /// \tparam _Digraph The type of the digraph the algorithm runs on. |
---|
1251 | /// The default value is |
---|
1252 | /// \ref ListDigraph. The value of _Digraph is not used directly by |
---|
1253 | /// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
---|
1254 | /// \tparam _Visitor The Visitor type that is used by the algorithm. |
---|
1255 | /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
---|
1256 | /// does not observe the DFS events. If you want to observe the DFS |
---|
1257 | /// events, you should implement your own visitor class. |
---|
1258 | /// \tparam _Traits Traits class to set various data types used by the |
---|
1259 | /// algorithm. The default traits class is |
---|
1260 | /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
---|
1261 | /// See \ref DfsVisitDefaultTraits for the documentation of |
---|
1262 | /// a DFS visit traits class. |
---|
1263 | #ifdef DOXYGEN |
---|
1264 | template <typename _Digraph, typename _Visitor, typename _Traits> |
---|
1265 | #else |
---|
1266 | template <typename _Digraph = ListDigraph, |
---|
1267 | typename _Visitor = DfsVisitor<_Digraph>, |
---|
1268 | typename _Traits = DfsDefaultTraits<_Digraph> > |
---|
1269 | #endif |
---|
1270 | class DfsVisit { |
---|
1271 | public: |
---|
1272 | |
---|
1273 | /// \brief \ref Exception for uninitialized parameters. |
---|
1274 | /// |
---|
1275 | /// This error represents problems in the initialization |
---|
1276 | /// of the parameters of the algorithm. |
---|
1277 | class UninitializedParameter : public lemon::UninitializedParameter { |
---|
1278 | public: |
---|
1279 | virtual const char* what() const throw() |
---|
1280 | { |
---|
1281 | return "lemon::DfsVisit::UninitializedParameter"; |
---|
1282 | } |
---|
1283 | }; |
---|
1284 | |
---|
1285 | ///The traits class. |
---|
1286 | typedef _Traits Traits; |
---|
1287 | |
---|
1288 | ///The type of the digraph the algorithm runs on. |
---|
1289 | typedef typename Traits::Digraph Digraph; |
---|
1290 | |
---|
1291 | ///The visitor type used by the algorithm. |
---|
1292 | typedef _Visitor Visitor; |
---|
1293 | |
---|
1294 | ///The type of the map that indicates which nodes are reached. |
---|
1295 | typedef typename Traits::ReachedMap ReachedMap; |
---|
1296 | |
---|
1297 | private: |
---|
1298 | |
---|
1299 | typedef typename Digraph::Node Node; |
---|
1300 | typedef typename Digraph::NodeIt NodeIt; |
---|
1301 | typedef typename Digraph::Arc Arc; |
---|
1302 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
1303 | |
---|
1304 | //Pointer to the underlying digraph. |
---|
1305 | const Digraph *_digraph; |
---|
1306 | //Pointer to the visitor object. |
---|
1307 | Visitor *_visitor; |
---|
1308 | //Pointer to the map of reached status of the nodes. |
---|
1309 | ReachedMap *_reached; |
---|
1310 | //Indicates if _reached is locally allocated (true) or not. |
---|
1311 | bool local_reached; |
---|
1312 | |
---|
1313 | std::vector<typename Digraph::Arc> _stack; |
---|
1314 | int _stack_head; |
---|
1315 | |
---|
1316 | //Creates the maps if necessary. |
---|
1317 | void create_maps() { |
---|
1318 | if(!_reached) { |
---|
1319 | local_reached = true; |
---|
1320 | _reached = Traits::createReachedMap(*_digraph); |
---|
1321 | } |
---|
1322 | } |
---|
1323 | |
---|
1324 | protected: |
---|
1325 | |
---|
1326 | DfsVisit() {} |
---|
1327 | |
---|
1328 | public: |
---|
1329 | |
---|
1330 | typedef DfsVisit Create; |
---|
1331 | |
---|
1332 | /// \name Named template parameters |
---|
1333 | |
---|
1334 | ///@{ |
---|
1335 | template <class T> |
---|
1336 | struct SetReachedMapTraits : public Traits { |
---|
1337 | typedef T ReachedMap; |
---|
1338 | static ReachedMap *createReachedMap(const Digraph &digraph) { |
---|
1339 | throw UninitializedParameter(); |
---|
1340 | } |
---|
1341 | }; |
---|
1342 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
1343 | /// ReachedMap type. |
---|
1344 | /// |
---|
1345 | /// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
---|
1346 | template <class T> |
---|
1347 | struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
---|
1348 | SetReachedMapTraits<T> > { |
---|
1349 | typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
---|
1350 | }; |
---|
1351 | ///@} |
---|
1352 | |
---|
1353 | public: |
---|
1354 | |
---|
1355 | /// \brief Constructor. |
---|
1356 | /// |
---|
1357 | /// Constructor. |
---|
1358 | /// |
---|
1359 | /// \param digraph The digraph the algorithm runs on. |
---|
1360 | /// \param visitor The visitor object of the algorithm. |
---|
1361 | DfsVisit(const Digraph& digraph, Visitor& visitor) |
---|
1362 | : _digraph(&digraph), _visitor(&visitor), |
---|
1363 | _reached(0), local_reached(false) {} |
---|
1364 | |
---|
1365 | /// \brief Destructor. |
---|
1366 | ~DfsVisit() { |
---|
1367 | if(local_reached) delete _reached; |
---|
1368 | } |
---|
1369 | |
---|
1370 | /// \brief Sets the map that indicates which nodes are reached. |
---|
1371 | /// |
---|
1372 | /// Sets the map that indicates which nodes are reached. |
---|
1373 | /// If you don't use this function before calling \ref run(), |
---|
1374 | /// it will allocate one. The destructor deallocates this |
---|
1375 | /// automatically allocated map, of course. |
---|
1376 | /// \return <tt> (*this) </tt> |
---|
1377 | DfsVisit &reachedMap(ReachedMap &m) { |
---|
1378 | if(local_reached) { |
---|
1379 | delete _reached; |
---|
1380 | local_reached=false; |
---|
1381 | } |
---|
1382 | _reached = &m; |
---|
1383 | return *this; |
---|
1384 | } |
---|
1385 | |
---|
1386 | public: |
---|
1387 | |
---|
1388 | /// \name Execution control |
---|
1389 | /// The simplest way to execute the algorithm is to use |
---|
1390 | /// one of the member functions called \ref lemon::DfsVisit::run() |
---|
1391 | /// "run()". |
---|
1392 | /// \n |
---|
1393 | /// If you need more control on the execution, first you must call |
---|
1394 | /// \ref lemon::DfsVisit::init() "init()", then you can add several |
---|
1395 | /// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
---|
1396 | /// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
---|
1397 | /// actual path computation. |
---|
1398 | |
---|
1399 | /// @{ |
---|
1400 | |
---|
1401 | /// \brief Initializes the internal data structures. |
---|
1402 | /// |
---|
1403 | /// Initializes the internal data structures. |
---|
1404 | void init() { |
---|
1405 | create_maps(); |
---|
1406 | _stack.resize(countNodes(*_digraph)); |
---|
1407 | _stack_head = -1; |
---|
1408 | for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
---|
1409 | _reached->set(u, false); |
---|
1410 | } |
---|
1411 | } |
---|
1412 | |
---|
1413 | ///Adds a new source node. |
---|
1414 | |
---|
1415 | ///Adds a new source node to the set of nodes to be processed. |
---|
1416 | /// |
---|
1417 | ///\pre The stack must be empty. (Otherwise the algorithm gives |
---|
1418 | ///false results.) |
---|
1419 | /// |
---|
1420 | ///\warning Distances will be wrong (or at least strange) in case of |
---|
1421 | ///multiple sources. |
---|
1422 | void addSource(Node s) |
---|
1423 | { |
---|
1424 | LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
---|
1425 | if(!(*_reached)[s]) { |
---|
1426 | _reached->set(s,true); |
---|
1427 | _visitor->start(s); |
---|
1428 | _visitor->reach(s); |
---|
1429 | Arc e; |
---|
1430 | _digraph->firstOut(e, s); |
---|
1431 | if (e != INVALID) { |
---|
1432 | _stack[++_stack_head] = e; |
---|
1433 | } else { |
---|
1434 | _visitor->leave(s); |
---|
1435 | } |
---|
1436 | } |
---|
1437 | } |
---|
1438 | |
---|
1439 | /// \brief Processes the next arc. |
---|
1440 | /// |
---|
1441 | /// Processes the next arc. |
---|
1442 | /// |
---|
1443 | /// \return The processed arc. |
---|
1444 | /// |
---|
1445 | /// \pre The stack must not be empty. |
---|
1446 | Arc processNextArc() { |
---|
1447 | Arc e = _stack[_stack_head]; |
---|
1448 | Node m = _digraph->target(e); |
---|
1449 | if(!(*_reached)[m]) { |
---|
1450 | _visitor->discover(e); |
---|
1451 | _visitor->reach(m); |
---|
1452 | _reached->set(m, true); |
---|
1453 | _digraph->firstOut(_stack[++_stack_head], m); |
---|
1454 | } else { |
---|
1455 | _visitor->examine(e); |
---|
1456 | m = _digraph->source(e); |
---|
1457 | _digraph->nextOut(_stack[_stack_head]); |
---|
1458 | } |
---|
1459 | while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
---|
1460 | _visitor->leave(m); |
---|
1461 | --_stack_head; |
---|
1462 | if (_stack_head >= 0) { |
---|
1463 | _visitor->backtrack(_stack[_stack_head]); |
---|
1464 | m = _digraph->source(_stack[_stack_head]); |
---|
1465 | _digraph->nextOut(_stack[_stack_head]); |
---|
1466 | } else { |
---|
1467 | _visitor->stop(m); |
---|
1468 | } |
---|
1469 | } |
---|
1470 | return e; |
---|
1471 | } |
---|
1472 | |
---|
1473 | /// \brief Next arc to be processed. |
---|
1474 | /// |
---|
1475 | /// Next arc to be processed. |
---|
1476 | /// |
---|
1477 | /// \return The next arc to be processed or INVALID if the stack is |
---|
1478 | /// empty. |
---|
1479 | Arc nextArc() const { |
---|
1480 | return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
---|
1481 | } |
---|
1482 | |
---|
1483 | /// \brief Returns \c false if there are nodes |
---|
1484 | /// to be processed. |
---|
1485 | /// |
---|
1486 | /// Returns \c false if there are nodes |
---|
1487 | /// to be processed in the queue (stack). |
---|
1488 | bool emptyQueue() const { return _stack_head < 0; } |
---|
1489 | |
---|
1490 | /// \brief Returns the number of the nodes to be processed. |
---|
1491 | /// |
---|
1492 | /// Returns the number of the nodes to be processed in the queue (stack). |
---|
1493 | int queueSize() const { return _stack_head + 1; } |
---|
1494 | |
---|
1495 | /// \brief Executes the algorithm. |
---|
1496 | /// |
---|
1497 | /// Executes the algorithm. |
---|
1498 | /// |
---|
1499 | /// This method runs the %DFS algorithm from the root node |
---|
1500 | /// in order to compute the %DFS path to each node. |
---|
1501 | /// |
---|
1502 | /// The algorithm computes |
---|
1503 | /// - the %DFS tree, |
---|
1504 | /// - the distance of each node from the root in the %DFS tree. |
---|
1505 | /// |
---|
1506 | /// \pre init() must be called and a root node should be |
---|
1507 | /// added with addSource() before using this function. |
---|
1508 | /// |
---|
1509 | /// \note <tt>d.start()</tt> is just a shortcut of the following code. |
---|
1510 | /// \code |
---|
1511 | /// while ( !d.emptyQueue() ) { |
---|
1512 | /// d.processNextArc(); |
---|
1513 | /// } |
---|
1514 | /// \endcode |
---|
1515 | void start() { |
---|
1516 | while ( !emptyQueue() ) processNextArc(); |
---|
1517 | } |
---|
1518 | |
---|
1519 | /// \brief Executes the algorithm until the given target node is reached. |
---|
1520 | /// |
---|
1521 | /// Executes the algorithm until the given target node is reached. |
---|
1522 | /// |
---|
1523 | /// This method runs the %DFS algorithm from the root node |
---|
1524 | /// in order to compute the DFS path to \c t. |
---|
1525 | /// |
---|
1526 | /// The algorithm computes |
---|
1527 | /// - the %DFS path to \c t, |
---|
1528 | /// - the distance of \c t from the root in the %DFS tree. |
---|
1529 | /// |
---|
1530 | /// \pre init() must be called and a root node should be added |
---|
1531 | /// with addSource() before using this function. |
---|
1532 | void start(Node t) { |
---|
1533 | while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
---|
1534 | processNextArc(); |
---|
1535 | } |
---|
1536 | |
---|
1537 | /// \brief Executes the algorithm until a condition is met. |
---|
1538 | /// |
---|
1539 | /// Executes the algorithm until a condition is met. |
---|
1540 | /// |
---|
1541 | /// This method runs the %DFS algorithm from the root node |
---|
1542 | /// until an arc \c a with <tt>am[a]</tt> true is found. |
---|
1543 | /// |
---|
1544 | /// \param am A \c bool (or convertible) arc map. The algorithm |
---|
1545 | /// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
---|
1546 | /// |
---|
1547 | /// \return The reached arc \c a with <tt>am[a]</tt> true or |
---|
1548 | /// \c INVALID if no such arc was found. |
---|
1549 | /// |
---|
1550 | /// \pre init() must be called and a root node should be added |
---|
1551 | /// with addSource() before using this function. |
---|
1552 | /// |
---|
1553 | /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
---|
1554 | /// not a node map. |
---|
1555 | template <typename AM> |
---|
1556 | Arc start(const AM &am) { |
---|
1557 | while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
---|
1558 | processNextArc(); |
---|
1559 | return emptyQueue() ? INVALID : _stack[_stack_head]; |
---|
1560 | } |
---|
1561 | |
---|
1562 | /// \brief Runs the algorithm from the given source node. |
---|
1563 | /// |
---|
1564 | /// This method runs the %DFS algorithm from node \c s. |
---|
1565 | /// in order to compute the DFS path to each node. |
---|
1566 | /// |
---|
1567 | /// The algorithm computes |
---|
1568 | /// - the %DFS tree, |
---|
1569 | /// - the distance of each node from the root in the %DFS tree. |
---|
1570 | /// |
---|
1571 | /// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
---|
1572 | ///\code |
---|
1573 | /// d.init(); |
---|
1574 | /// d.addSource(s); |
---|
1575 | /// d.start(); |
---|
1576 | ///\endcode |
---|
1577 | void run(Node s) { |
---|
1578 | init(); |
---|
1579 | addSource(s); |
---|
1580 | start(); |
---|
1581 | } |
---|
1582 | |
---|
1583 | /// \brief Finds the %DFS path between \c s and \c t. |
---|
1584 | |
---|
1585 | /// This method runs the %DFS algorithm from node \c s |
---|
1586 | /// in order to compute the DFS path to node \c t |
---|
1587 | /// (it stops searching when \c t is processed). |
---|
1588 | /// |
---|
1589 | /// \return \c true if \c t is reachable form \c s. |
---|
1590 | /// |
---|
1591 | /// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
---|
1592 | /// just a shortcut of the following code. |
---|
1593 | ///\code |
---|
1594 | /// d.init(); |
---|
1595 | /// d.addSource(s); |
---|
1596 | /// d.start(t); |
---|
1597 | ///\endcode |
---|
1598 | bool run(Node s,Node t) { |
---|
1599 | init(); |
---|
1600 | addSource(s); |
---|
1601 | start(t); |
---|
1602 | return reached(t); |
---|
1603 | } |
---|
1604 | |
---|
1605 | /// \brief Runs the algorithm to visit all nodes in the digraph. |
---|
1606 | |
---|
1607 | /// This method runs the %DFS algorithm in order to |
---|
1608 | /// compute the %DFS path to each node. |
---|
1609 | /// |
---|
1610 | /// The algorithm computes |
---|
1611 | /// - the %DFS tree, |
---|
1612 | /// - the distance of each node from the root in the %DFS tree. |
---|
1613 | /// |
---|
1614 | /// \note <tt>d.run()</tt> is just a shortcut of the following code. |
---|
1615 | ///\code |
---|
1616 | /// d.init(); |
---|
1617 | /// for (NodeIt n(digraph); n != INVALID; ++n) { |
---|
1618 | /// if (!d.reached(n)) { |
---|
1619 | /// d.addSource(n); |
---|
1620 | /// d.start(); |
---|
1621 | /// } |
---|
1622 | /// } |
---|
1623 | ///\endcode |
---|
1624 | void run() { |
---|
1625 | init(); |
---|
1626 | for (NodeIt it(*_digraph); it != INVALID; ++it) { |
---|
1627 | if (!reached(it)) { |
---|
1628 | addSource(it); |
---|
1629 | start(); |
---|
1630 | } |
---|
1631 | } |
---|
1632 | } |
---|
1633 | |
---|
1634 | ///@} |
---|
1635 | |
---|
1636 | /// \name Query Functions |
---|
1637 | /// The result of the %DFS algorithm can be obtained using these |
---|
1638 | /// functions.\n |
---|
1639 | /// Either \ref lemon::DfsVisit::run() "run()" or |
---|
1640 | /// \ref lemon::DfsVisit::start() "start()" must be called before |
---|
1641 | /// using them. |
---|
1642 | ///@{ |
---|
1643 | |
---|
1644 | /// \brief Checks if a node is reachable from the root(s). |
---|
1645 | /// |
---|
1646 | /// Returns \c true if \c v is reachable from the root(s). |
---|
1647 | /// \pre Either \ref run() or \ref start() |
---|
1648 | /// must be called before using this function. |
---|
1649 | bool reached(Node v) { return (*_reached)[v]; } |
---|
1650 | |
---|
1651 | ///@} |
---|
1652 | |
---|
1653 | }; |
---|
1654 | |
---|
1655 | } //END OF NAMESPACE LEMON |
---|
1656 | |
---|
1657 | #endif |
---|