1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_DIJKSTRA_H |
---|
20 | #define LEMON_DIJKSTRA_H |
---|
21 | |
---|
22 | ///\ingroup shortest_path |
---|
23 | ///\file |
---|
24 | ///\brief Dijkstra algorithm. |
---|
25 | |
---|
26 | #include <limits> |
---|
27 | #include <lemon/list_graph.h> |
---|
28 | #include <lemon/bin_heap.h> |
---|
29 | #include <lemon/bits/path_dump.h> |
---|
30 | #include <lemon/core.h> |
---|
31 | #include <lemon/error.h> |
---|
32 | #include <lemon/maps.h> |
---|
33 | #include <lemon/path.h> |
---|
34 | |
---|
35 | namespace lemon { |
---|
36 | |
---|
37 | /// \brief Default operation traits for the Dijkstra algorithm class. |
---|
38 | /// |
---|
39 | /// This operation traits class defines all computational operations and |
---|
40 | /// constants which are used in the Dijkstra algorithm. |
---|
41 | template <typename Value> |
---|
42 | struct DijkstraDefaultOperationTraits { |
---|
43 | /// \brief Gives back the zero value of the type. |
---|
44 | static Value zero() { |
---|
45 | return static_cast<Value>(0); |
---|
46 | } |
---|
47 | /// \brief Gives back the sum of the given two elements. |
---|
48 | static Value plus(const Value& left, const Value& right) { |
---|
49 | return left + right; |
---|
50 | } |
---|
51 | /// \brief Gives back true only if the first value is less than the second. |
---|
52 | static bool less(const Value& left, const Value& right) { |
---|
53 | return left < right; |
---|
54 | } |
---|
55 | }; |
---|
56 | |
---|
57 | /// \brief Widest path operation traits for the Dijkstra algorithm class. |
---|
58 | /// |
---|
59 | /// This operation traits class defines all computational operations and |
---|
60 | /// constants which are used in the Dijkstra algorithm for widest path |
---|
61 | /// computation. |
---|
62 | /// |
---|
63 | /// \see DijkstraDefaultOperationTraits |
---|
64 | template <typename Value> |
---|
65 | struct DijkstraWidestPathOperationTraits { |
---|
66 | /// \brief Gives back the maximum value of the type. |
---|
67 | static Value zero() { |
---|
68 | return std::numeric_limits<Value>::max(); |
---|
69 | } |
---|
70 | /// \brief Gives back the minimum of the given two elements. |
---|
71 | static Value plus(const Value& left, const Value& right) { |
---|
72 | return std::min(left, right); |
---|
73 | } |
---|
74 | /// \brief Gives back true only if the first value is less than the second. |
---|
75 | static bool less(const Value& left, const Value& right) { |
---|
76 | return left < right; |
---|
77 | } |
---|
78 | }; |
---|
79 | |
---|
80 | ///Default traits class of Dijkstra class. |
---|
81 | |
---|
82 | ///Default traits class of Dijkstra class. |
---|
83 | ///\tparam GR The type of the digraph. |
---|
84 | ///\tparam LM The type of the length map. |
---|
85 | template<class GR, class LM> |
---|
86 | struct DijkstraDefaultTraits |
---|
87 | { |
---|
88 | ///The type of the digraph the algorithm runs on. |
---|
89 | typedef GR Digraph; |
---|
90 | |
---|
91 | ///The type of the map that stores the arc lengths. |
---|
92 | |
---|
93 | ///The type of the map that stores the arc lengths. |
---|
94 | ///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
---|
95 | typedef LM LengthMap; |
---|
96 | ///The type of the length of the arcs. |
---|
97 | typedef typename LM::Value Value; |
---|
98 | |
---|
99 | /// Operation traits for Dijkstra algorithm. |
---|
100 | |
---|
101 | /// This class defines the operations that are used in the algorithm. |
---|
102 | /// \see DijkstraDefaultOperationTraits |
---|
103 | typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
---|
104 | |
---|
105 | /// The cross reference type used by the heap. |
---|
106 | |
---|
107 | /// The cross reference type used by the heap. |
---|
108 | /// Usually it is \c Digraph::NodeMap<int>. |
---|
109 | typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
---|
110 | ///Instantiates a \ref HeapCrossRef. |
---|
111 | |
---|
112 | ///This function instantiates a \ref HeapCrossRef. |
---|
113 | /// \param g is the digraph, to which we would like to define the |
---|
114 | /// \ref HeapCrossRef. |
---|
115 | static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
---|
116 | { |
---|
117 | return new HeapCrossRef(g); |
---|
118 | } |
---|
119 | |
---|
120 | ///The heap type used by the Dijkstra algorithm. |
---|
121 | |
---|
122 | ///The heap type used by the Dijkstra algorithm. |
---|
123 | /// |
---|
124 | ///\sa BinHeap |
---|
125 | ///\sa Dijkstra |
---|
126 | typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
---|
127 | ///Instantiates a \ref Heap. |
---|
128 | |
---|
129 | ///This function instantiates a \ref Heap. |
---|
130 | static Heap *createHeap(HeapCrossRef& r) |
---|
131 | { |
---|
132 | return new Heap(r); |
---|
133 | } |
---|
134 | |
---|
135 | ///\brief The type of the map that stores the predecessor |
---|
136 | ///arcs of the shortest paths. |
---|
137 | /// |
---|
138 | ///The type of the map that stores the predecessor |
---|
139 | ///arcs of the shortest paths. |
---|
140 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
141 | typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
---|
142 | ///Instantiates a PredMap. |
---|
143 | |
---|
144 | ///This function instantiates a PredMap. |
---|
145 | ///\param g is the digraph, to which we would like to define the |
---|
146 | ///PredMap. |
---|
147 | static PredMap *createPredMap(const Digraph &g) |
---|
148 | { |
---|
149 | return new PredMap(g); |
---|
150 | } |
---|
151 | |
---|
152 | ///The type of the map that indicates which nodes are processed. |
---|
153 | |
---|
154 | ///The type of the map that indicates which nodes are processed. |
---|
155 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
156 | ///By default it is a NullMap. |
---|
157 | typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
---|
158 | ///Instantiates a ProcessedMap. |
---|
159 | |
---|
160 | ///This function instantiates a ProcessedMap. |
---|
161 | ///\param g is the digraph, to which |
---|
162 | ///we would like to define the ProcessedMap |
---|
163 | #ifdef DOXYGEN |
---|
164 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
165 | #else |
---|
166 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
167 | #endif |
---|
168 | { |
---|
169 | return new ProcessedMap(); |
---|
170 | } |
---|
171 | |
---|
172 | ///The type of the map that stores the distances of the nodes. |
---|
173 | |
---|
174 | ///The type of the map that stores the distances of the nodes. |
---|
175 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
176 | typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
---|
177 | ///Instantiates a DistMap. |
---|
178 | |
---|
179 | ///This function instantiates a DistMap. |
---|
180 | ///\param g is the digraph, to which we would like to define |
---|
181 | ///the DistMap |
---|
182 | static DistMap *createDistMap(const Digraph &g) |
---|
183 | { |
---|
184 | return new DistMap(g); |
---|
185 | } |
---|
186 | }; |
---|
187 | |
---|
188 | ///%Dijkstra algorithm class. |
---|
189 | |
---|
190 | /// \ingroup shortest_path |
---|
191 | ///This class provides an efficient implementation of the %Dijkstra algorithm. |
---|
192 | /// |
---|
193 | ///The arc lengths are passed to the algorithm using a |
---|
194 | ///\ref concepts::ReadMap "ReadMap", |
---|
195 | ///so it is easy to change it to any kind of length. |
---|
196 | ///The type of the length is determined by the |
---|
197 | ///\ref concepts::ReadMap::Value "Value" of the length map. |
---|
198 | ///It is also possible to change the underlying priority heap. |
---|
199 | /// |
---|
200 | ///There is also a \ref dijkstra() "function-type interface" for the |
---|
201 | ///%Dijkstra algorithm, which is convenient in the simplier cases and |
---|
202 | ///it can be used easier. |
---|
203 | /// |
---|
204 | ///\tparam GR The type of the digraph the algorithm runs on. |
---|
205 | ///The default value is \ref ListDigraph. |
---|
206 | ///The value of GR is not used directly by \ref Dijkstra, it is only |
---|
207 | ///passed to \ref DijkstraDefaultTraits. |
---|
208 | ///\tparam LM A readable arc map that determines the lengths of the |
---|
209 | ///arcs. It is read once for each arc, so the map may involve in |
---|
210 | ///relatively time consuming process to compute the arc lengths if |
---|
211 | ///it is necessary. The default map type is \ref |
---|
212 | ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
---|
213 | ///The value of LM is not used directly by \ref Dijkstra, it is only |
---|
214 | ///passed to \ref DijkstraDefaultTraits. |
---|
215 | ///\tparam TR Traits class to set various data types used by the algorithm. |
---|
216 | ///The default traits class is \ref DijkstraDefaultTraits |
---|
217 | ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
---|
218 | ///for the documentation of a Dijkstra traits class. |
---|
219 | #ifdef DOXYGEN |
---|
220 | template <typename GR, typename LM, typename TR> |
---|
221 | #else |
---|
222 | template <typename GR=ListDigraph, |
---|
223 | typename LM=typename GR::template ArcMap<int>, |
---|
224 | typename TR=DijkstraDefaultTraits<GR,LM> > |
---|
225 | #endif |
---|
226 | class Dijkstra { |
---|
227 | public: |
---|
228 | |
---|
229 | ///The type of the digraph the algorithm runs on. |
---|
230 | typedef typename TR::Digraph Digraph; |
---|
231 | |
---|
232 | ///The type of the length of the arcs. |
---|
233 | typedef typename TR::LengthMap::Value Value; |
---|
234 | ///The type of the map that stores the arc lengths. |
---|
235 | typedef typename TR::LengthMap LengthMap; |
---|
236 | ///\brief The type of the map that stores the predecessor arcs of the |
---|
237 | ///shortest paths. |
---|
238 | typedef typename TR::PredMap PredMap; |
---|
239 | ///The type of the map that stores the distances of the nodes. |
---|
240 | typedef typename TR::DistMap DistMap; |
---|
241 | ///The type of the map that indicates which nodes are processed. |
---|
242 | typedef typename TR::ProcessedMap ProcessedMap; |
---|
243 | ///The type of the paths. |
---|
244 | typedef PredMapPath<Digraph, PredMap> Path; |
---|
245 | ///The cross reference type used for the current heap. |
---|
246 | typedef typename TR::HeapCrossRef HeapCrossRef; |
---|
247 | ///The heap type used by the algorithm. |
---|
248 | typedef typename TR::Heap Heap; |
---|
249 | ///The operation traits class. |
---|
250 | typedef typename TR::OperationTraits OperationTraits; |
---|
251 | |
---|
252 | ///The traits class. |
---|
253 | typedef TR Traits; |
---|
254 | |
---|
255 | private: |
---|
256 | |
---|
257 | typedef typename Digraph::Node Node; |
---|
258 | typedef typename Digraph::NodeIt NodeIt; |
---|
259 | typedef typename Digraph::Arc Arc; |
---|
260 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
261 | |
---|
262 | //Pointer to the underlying digraph. |
---|
263 | const Digraph *G; |
---|
264 | //Pointer to the length map. |
---|
265 | const LengthMap *length; |
---|
266 | //Pointer to the map of predecessors arcs. |
---|
267 | PredMap *_pred; |
---|
268 | //Indicates if _pred is locally allocated (true) or not. |
---|
269 | bool local_pred; |
---|
270 | //Pointer to the map of distances. |
---|
271 | DistMap *_dist; |
---|
272 | //Indicates if _dist is locally allocated (true) or not. |
---|
273 | bool local_dist; |
---|
274 | //Pointer to the map of processed status of the nodes. |
---|
275 | ProcessedMap *_processed; |
---|
276 | //Indicates if _processed is locally allocated (true) or not. |
---|
277 | bool local_processed; |
---|
278 | //Pointer to the heap cross references. |
---|
279 | HeapCrossRef *_heap_cross_ref; |
---|
280 | //Indicates if _heap_cross_ref is locally allocated (true) or not. |
---|
281 | bool local_heap_cross_ref; |
---|
282 | //Pointer to the heap. |
---|
283 | Heap *_heap; |
---|
284 | //Indicates if _heap is locally allocated (true) or not. |
---|
285 | bool local_heap; |
---|
286 | |
---|
287 | //Creates the maps if necessary. |
---|
288 | void create_maps() |
---|
289 | { |
---|
290 | if(!_pred) { |
---|
291 | local_pred = true; |
---|
292 | _pred = Traits::createPredMap(*G); |
---|
293 | } |
---|
294 | if(!_dist) { |
---|
295 | local_dist = true; |
---|
296 | _dist = Traits::createDistMap(*G); |
---|
297 | } |
---|
298 | if(!_processed) { |
---|
299 | local_processed = true; |
---|
300 | _processed = Traits::createProcessedMap(*G); |
---|
301 | } |
---|
302 | if (!_heap_cross_ref) { |
---|
303 | local_heap_cross_ref = true; |
---|
304 | _heap_cross_ref = Traits::createHeapCrossRef(*G); |
---|
305 | } |
---|
306 | if (!_heap) { |
---|
307 | local_heap = true; |
---|
308 | _heap = Traits::createHeap(*_heap_cross_ref); |
---|
309 | } |
---|
310 | } |
---|
311 | |
---|
312 | public: |
---|
313 | |
---|
314 | typedef Dijkstra Create; |
---|
315 | |
---|
316 | ///\name Named template parameters |
---|
317 | |
---|
318 | ///@{ |
---|
319 | |
---|
320 | template <class T> |
---|
321 | struct SetPredMapTraits : public Traits { |
---|
322 | typedef T PredMap; |
---|
323 | static PredMap *createPredMap(const Digraph &) |
---|
324 | { |
---|
325 | LEMON_ASSERT(false, "PredMap is not initialized"); |
---|
326 | return 0; // ignore warnings |
---|
327 | } |
---|
328 | }; |
---|
329 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
330 | ///PredMap type. |
---|
331 | /// |
---|
332 | ///\ref named-templ-param "Named parameter" for setting |
---|
333 | ///PredMap type. |
---|
334 | template <class T> |
---|
335 | struct SetPredMap |
---|
336 | : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
---|
337 | typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
---|
338 | }; |
---|
339 | |
---|
340 | template <class T> |
---|
341 | struct SetDistMapTraits : public Traits { |
---|
342 | typedef T DistMap; |
---|
343 | static DistMap *createDistMap(const Digraph &) |
---|
344 | { |
---|
345 | LEMON_ASSERT(false, "DistMap is not initialized"); |
---|
346 | return 0; // ignore warnings |
---|
347 | } |
---|
348 | }; |
---|
349 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
350 | ///DistMap type. |
---|
351 | /// |
---|
352 | ///\ref named-templ-param "Named parameter" for setting |
---|
353 | ///DistMap type. |
---|
354 | template <class T> |
---|
355 | struct SetDistMap |
---|
356 | : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
---|
357 | typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
---|
358 | }; |
---|
359 | |
---|
360 | template <class T> |
---|
361 | struct SetProcessedMapTraits : public Traits { |
---|
362 | typedef T ProcessedMap; |
---|
363 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
364 | { |
---|
365 | LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
---|
366 | return 0; // ignore warnings |
---|
367 | } |
---|
368 | }; |
---|
369 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
370 | ///ProcessedMap type. |
---|
371 | /// |
---|
372 | ///\ref named-templ-param "Named parameter" for setting |
---|
373 | ///ProcessedMap type. |
---|
374 | template <class T> |
---|
375 | struct SetProcessedMap |
---|
376 | : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
---|
377 | typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
---|
378 | }; |
---|
379 | |
---|
380 | struct SetStandardProcessedMapTraits : public Traits { |
---|
381 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
---|
382 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
383 | { |
---|
384 | return new ProcessedMap(g); |
---|
385 | } |
---|
386 | }; |
---|
387 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
388 | ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
---|
389 | /// |
---|
390 | ///\ref named-templ-param "Named parameter" for setting |
---|
391 | ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
---|
392 | ///If you don't set it explicitly, it will be automatically allocated. |
---|
393 | struct SetStandardProcessedMap |
---|
394 | : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
---|
395 | typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
---|
396 | Create; |
---|
397 | }; |
---|
398 | |
---|
399 | template <class H, class CR> |
---|
400 | struct SetHeapTraits : public Traits { |
---|
401 | typedef CR HeapCrossRef; |
---|
402 | typedef H Heap; |
---|
403 | static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
---|
404 | LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
---|
405 | return 0; // ignore warnings |
---|
406 | } |
---|
407 | static Heap *createHeap(HeapCrossRef &) |
---|
408 | { |
---|
409 | LEMON_ASSERT(false, "Heap is not initialized"); |
---|
410 | return 0; // ignore warnings |
---|
411 | } |
---|
412 | }; |
---|
413 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
414 | ///heap and cross reference type |
---|
415 | /// |
---|
416 | ///\ref named-templ-param "Named parameter" for setting heap and cross |
---|
417 | ///reference type. |
---|
418 | template <class H, class CR = typename Digraph::template NodeMap<int> > |
---|
419 | struct SetHeap |
---|
420 | : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
---|
421 | typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
---|
422 | }; |
---|
423 | |
---|
424 | template <class H, class CR> |
---|
425 | struct SetStandardHeapTraits : public Traits { |
---|
426 | typedef CR HeapCrossRef; |
---|
427 | typedef H Heap; |
---|
428 | static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
---|
429 | return new HeapCrossRef(G); |
---|
430 | } |
---|
431 | static Heap *createHeap(HeapCrossRef &R) |
---|
432 | { |
---|
433 | return new Heap(R); |
---|
434 | } |
---|
435 | }; |
---|
436 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
437 | ///heap and cross reference type with automatic allocation |
---|
438 | /// |
---|
439 | ///\ref named-templ-param "Named parameter" for setting heap and cross |
---|
440 | ///reference type. It can allocate the heap and the cross reference |
---|
441 | ///object if the cross reference's constructor waits for the digraph as |
---|
442 | ///parameter and the heap's constructor waits for the cross reference. |
---|
443 | template <class H, class CR = typename Digraph::template NodeMap<int> > |
---|
444 | struct SetStandardHeap |
---|
445 | : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
---|
446 | typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
---|
447 | Create; |
---|
448 | }; |
---|
449 | |
---|
450 | template <class T> |
---|
451 | struct SetOperationTraitsTraits : public Traits { |
---|
452 | typedef T OperationTraits; |
---|
453 | }; |
---|
454 | |
---|
455 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
456 | ///\ref OperationTraits type |
---|
457 | /// |
---|
458 | ///\ref named-templ-param "Named parameter" for setting |
---|
459 | ///\ref OperationTraits type. |
---|
460 | template <class T> |
---|
461 | struct SetOperationTraits |
---|
462 | : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
---|
463 | typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
---|
464 | Create; |
---|
465 | }; |
---|
466 | |
---|
467 | ///@} |
---|
468 | |
---|
469 | protected: |
---|
470 | |
---|
471 | Dijkstra() {} |
---|
472 | |
---|
473 | public: |
---|
474 | |
---|
475 | ///Constructor. |
---|
476 | |
---|
477 | ///Constructor. |
---|
478 | ///\param _g The digraph the algorithm runs on. |
---|
479 | ///\param _length The length map used by the algorithm. |
---|
480 | Dijkstra(const Digraph& _g, const LengthMap& _length) : |
---|
481 | G(&_g), length(&_length), |
---|
482 | _pred(NULL), local_pred(false), |
---|
483 | _dist(NULL), local_dist(false), |
---|
484 | _processed(NULL), local_processed(false), |
---|
485 | _heap_cross_ref(NULL), local_heap_cross_ref(false), |
---|
486 | _heap(NULL), local_heap(false) |
---|
487 | { } |
---|
488 | |
---|
489 | ///Destructor. |
---|
490 | ~Dijkstra() |
---|
491 | { |
---|
492 | if(local_pred) delete _pred; |
---|
493 | if(local_dist) delete _dist; |
---|
494 | if(local_processed) delete _processed; |
---|
495 | if(local_heap_cross_ref) delete _heap_cross_ref; |
---|
496 | if(local_heap) delete _heap; |
---|
497 | } |
---|
498 | |
---|
499 | ///Sets the length map. |
---|
500 | |
---|
501 | ///Sets the length map. |
---|
502 | ///\return <tt> (*this) </tt> |
---|
503 | Dijkstra &lengthMap(const LengthMap &m) |
---|
504 | { |
---|
505 | length = &m; |
---|
506 | return *this; |
---|
507 | } |
---|
508 | |
---|
509 | ///Sets the map that stores the predecessor arcs. |
---|
510 | |
---|
511 | ///Sets the map that stores the predecessor arcs. |
---|
512 | ///If you don't use this function before calling \ref run(), |
---|
513 | ///it will allocate one. The destructor deallocates this |
---|
514 | ///automatically allocated map, of course. |
---|
515 | ///\return <tt> (*this) </tt> |
---|
516 | Dijkstra &predMap(PredMap &m) |
---|
517 | { |
---|
518 | if(local_pred) { |
---|
519 | delete _pred; |
---|
520 | local_pred=false; |
---|
521 | } |
---|
522 | _pred = &m; |
---|
523 | return *this; |
---|
524 | } |
---|
525 | |
---|
526 | ///Sets the map that indicates which nodes are processed. |
---|
527 | |
---|
528 | ///Sets the map that indicates which nodes are processed. |
---|
529 | ///If you don't use this function before calling \ref run(), |
---|
530 | ///it will allocate one. The destructor deallocates this |
---|
531 | ///automatically allocated map, of course. |
---|
532 | ///\return <tt> (*this) </tt> |
---|
533 | Dijkstra &processedMap(ProcessedMap &m) |
---|
534 | { |
---|
535 | if(local_processed) { |
---|
536 | delete _processed; |
---|
537 | local_processed=false; |
---|
538 | } |
---|
539 | _processed = &m; |
---|
540 | return *this; |
---|
541 | } |
---|
542 | |
---|
543 | ///Sets the map that stores the distances of the nodes. |
---|
544 | |
---|
545 | ///Sets the map that stores the distances of the nodes calculated by the |
---|
546 | ///algorithm. |
---|
547 | ///If you don't use this function before calling \ref run(), |
---|
548 | ///it will allocate one. The destructor deallocates this |
---|
549 | ///automatically allocated map, of course. |
---|
550 | ///\return <tt> (*this) </tt> |
---|
551 | Dijkstra &distMap(DistMap &m) |
---|
552 | { |
---|
553 | if(local_dist) { |
---|
554 | delete _dist; |
---|
555 | local_dist=false; |
---|
556 | } |
---|
557 | _dist = &m; |
---|
558 | return *this; |
---|
559 | } |
---|
560 | |
---|
561 | ///Sets the heap and the cross reference used by algorithm. |
---|
562 | |
---|
563 | ///Sets the heap and the cross reference used by algorithm. |
---|
564 | ///If you don't use this function before calling \ref run(), |
---|
565 | ///it will allocate one. The destructor deallocates this |
---|
566 | ///automatically allocated heap and cross reference, of course. |
---|
567 | ///\return <tt> (*this) </tt> |
---|
568 | Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
---|
569 | { |
---|
570 | if(local_heap_cross_ref) { |
---|
571 | delete _heap_cross_ref; |
---|
572 | local_heap_cross_ref=false; |
---|
573 | } |
---|
574 | _heap_cross_ref = &cr; |
---|
575 | if(local_heap) { |
---|
576 | delete _heap; |
---|
577 | local_heap=false; |
---|
578 | } |
---|
579 | _heap = &hp; |
---|
580 | return *this; |
---|
581 | } |
---|
582 | |
---|
583 | private: |
---|
584 | |
---|
585 | void finalizeNodeData(Node v,Value dst) |
---|
586 | { |
---|
587 | _processed->set(v,true); |
---|
588 | _dist->set(v, dst); |
---|
589 | } |
---|
590 | |
---|
591 | public: |
---|
592 | |
---|
593 | ///\name Execution control |
---|
594 | ///The simplest way to execute the algorithm is to use one of the |
---|
595 | ///member functions called \ref lemon::Dijkstra::run() "run()". |
---|
596 | ///\n |
---|
597 | ///If you need more control on the execution, first you must call |
---|
598 | ///\ref lemon::Dijkstra::init() "init()", then you can add several |
---|
599 | ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()". |
---|
600 | ///Finally \ref lemon::Dijkstra::start() "start()" will perform the |
---|
601 | ///actual path computation. |
---|
602 | |
---|
603 | ///@{ |
---|
604 | |
---|
605 | ///Initializes the internal data structures. |
---|
606 | |
---|
607 | ///Initializes the internal data structures. |
---|
608 | /// |
---|
609 | void init() |
---|
610 | { |
---|
611 | create_maps(); |
---|
612 | _heap->clear(); |
---|
613 | for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
---|
614 | _pred->set(u,INVALID); |
---|
615 | _processed->set(u,false); |
---|
616 | _heap_cross_ref->set(u,Heap::PRE_HEAP); |
---|
617 | } |
---|
618 | } |
---|
619 | |
---|
620 | ///Adds a new source node. |
---|
621 | |
---|
622 | ///Adds a new source node to the priority heap. |
---|
623 | ///The optional second parameter is the initial distance of the node. |
---|
624 | /// |
---|
625 | ///The function checks if the node has already been added to the heap and |
---|
626 | ///it is pushed to the heap only if either it was not in the heap |
---|
627 | ///or the shortest path found till then is shorter than \c dst. |
---|
628 | void addSource(Node s,Value dst=OperationTraits::zero()) |
---|
629 | { |
---|
630 | if(_heap->state(s) != Heap::IN_HEAP) { |
---|
631 | _heap->push(s,dst); |
---|
632 | } else if(OperationTraits::less((*_heap)[s], dst)) { |
---|
633 | _heap->set(s,dst); |
---|
634 | _pred->set(s,INVALID); |
---|
635 | } |
---|
636 | } |
---|
637 | |
---|
638 | ///Processes the next node in the priority heap |
---|
639 | |
---|
640 | ///Processes the next node in the priority heap. |
---|
641 | /// |
---|
642 | ///\return The processed node. |
---|
643 | /// |
---|
644 | ///\warning The priority heap must not be empty. |
---|
645 | Node processNextNode() |
---|
646 | { |
---|
647 | Node v=_heap->top(); |
---|
648 | Value oldvalue=_heap->prio(); |
---|
649 | _heap->pop(); |
---|
650 | finalizeNodeData(v,oldvalue); |
---|
651 | |
---|
652 | for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
---|
653 | Node w=G->target(e); |
---|
654 | switch(_heap->state(w)) { |
---|
655 | case Heap::PRE_HEAP: |
---|
656 | _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
---|
657 | _pred->set(w,e); |
---|
658 | break; |
---|
659 | case Heap::IN_HEAP: |
---|
660 | { |
---|
661 | Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
---|
662 | if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
---|
663 | _heap->decrease(w, newvalue); |
---|
664 | _pred->set(w,e); |
---|
665 | } |
---|
666 | } |
---|
667 | break; |
---|
668 | case Heap::POST_HEAP: |
---|
669 | break; |
---|
670 | } |
---|
671 | } |
---|
672 | return v; |
---|
673 | } |
---|
674 | |
---|
675 | ///The next node to be processed. |
---|
676 | |
---|
677 | ///Returns the next node to be processed or \c INVALID if the |
---|
678 | ///priority heap is empty. |
---|
679 | Node nextNode() const |
---|
680 | { |
---|
681 | return !_heap->empty()?_heap->top():INVALID; |
---|
682 | } |
---|
683 | |
---|
684 | ///\brief Returns \c false if there are nodes |
---|
685 | ///to be processed. |
---|
686 | /// |
---|
687 | ///Returns \c false if there are nodes |
---|
688 | ///to be processed in the priority heap. |
---|
689 | bool emptyQueue() const { return _heap->empty(); } |
---|
690 | |
---|
691 | ///Returns the number of the nodes to be processed in the priority heap |
---|
692 | |
---|
693 | ///Returns the number of the nodes to be processed in the priority heap. |
---|
694 | /// |
---|
695 | int queueSize() const { return _heap->size(); } |
---|
696 | |
---|
697 | ///Executes the algorithm. |
---|
698 | |
---|
699 | ///Executes the algorithm. |
---|
700 | /// |
---|
701 | ///This method runs the %Dijkstra algorithm from the root node(s) |
---|
702 | ///in order to compute the shortest path to each node. |
---|
703 | /// |
---|
704 | ///The algorithm computes |
---|
705 | ///- the shortest path tree (forest), |
---|
706 | ///- the distance of each node from the root(s). |
---|
707 | /// |
---|
708 | ///\pre init() must be called and at least one root node should be |
---|
709 | ///added with addSource() before using this function. |
---|
710 | /// |
---|
711 | ///\note <tt>d.start()</tt> is just a shortcut of the following code. |
---|
712 | ///\code |
---|
713 | /// while ( !d.emptyQueue() ) { |
---|
714 | /// d.processNextNode(); |
---|
715 | /// } |
---|
716 | ///\endcode |
---|
717 | void start() |
---|
718 | { |
---|
719 | while ( !emptyQueue() ) processNextNode(); |
---|
720 | } |
---|
721 | |
---|
722 | ///Executes the algorithm until the given target node is processed. |
---|
723 | |
---|
724 | ///Executes the algorithm until the given target node is processed. |
---|
725 | /// |
---|
726 | ///This method runs the %Dijkstra algorithm from the root node(s) |
---|
727 | ///in order to compute the shortest path to \c t. |
---|
728 | /// |
---|
729 | ///The algorithm computes |
---|
730 | ///- the shortest path to \c t, |
---|
731 | ///- the distance of \c t from the root(s). |
---|
732 | /// |
---|
733 | ///\pre init() must be called and at least one root node should be |
---|
734 | ///added with addSource() before using this function. |
---|
735 | void start(Node t) |
---|
736 | { |
---|
737 | while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
---|
738 | if ( !_heap->empty() ) { |
---|
739 | finalizeNodeData(_heap->top(),_heap->prio()); |
---|
740 | _heap->pop(); |
---|
741 | } |
---|
742 | } |
---|
743 | |
---|
744 | ///Executes the algorithm until a condition is met. |
---|
745 | |
---|
746 | ///Executes the algorithm until a condition is met. |
---|
747 | /// |
---|
748 | ///This method runs the %Dijkstra algorithm from the root node(s) in |
---|
749 | ///order to compute the shortest path to a node \c v with |
---|
750 | /// <tt>nm[v]</tt> true, if such a node can be found. |
---|
751 | /// |
---|
752 | ///\param nm A \c bool (or convertible) node map. The algorithm |
---|
753 | ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
---|
754 | /// |
---|
755 | ///\return The reached node \c v with <tt>nm[v]</tt> true or |
---|
756 | ///\c INVALID if no such node was found. |
---|
757 | /// |
---|
758 | ///\pre init() must be called and at least one root node should be |
---|
759 | ///added with addSource() before using this function. |
---|
760 | template<class NodeBoolMap> |
---|
761 | Node start(const NodeBoolMap &nm) |
---|
762 | { |
---|
763 | while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
---|
764 | if ( _heap->empty() ) return INVALID; |
---|
765 | finalizeNodeData(_heap->top(),_heap->prio()); |
---|
766 | return _heap->top(); |
---|
767 | } |
---|
768 | |
---|
769 | ///Runs the algorithm from the given source node. |
---|
770 | |
---|
771 | ///This method runs the %Dijkstra algorithm from node \c s |
---|
772 | ///in order to compute the shortest path to each node. |
---|
773 | /// |
---|
774 | ///The algorithm computes |
---|
775 | ///- the shortest path tree, |
---|
776 | ///- the distance of each node from the root. |
---|
777 | /// |
---|
778 | ///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
---|
779 | ///\code |
---|
780 | /// d.init(); |
---|
781 | /// d.addSource(s); |
---|
782 | /// d.start(); |
---|
783 | ///\endcode |
---|
784 | void run(Node s) { |
---|
785 | init(); |
---|
786 | addSource(s); |
---|
787 | start(); |
---|
788 | } |
---|
789 | |
---|
790 | ///Finds the shortest path between \c s and \c t. |
---|
791 | |
---|
792 | ///This method runs the %Dijkstra algorithm from node \c s |
---|
793 | ///in order to compute the shortest path to node \c t |
---|
794 | ///(it stops searching when \c t is processed). |
---|
795 | /// |
---|
796 | ///\return \c true if \c t is reachable form \c s. |
---|
797 | /// |
---|
798 | ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
---|
799 | ///shortcut of the following code. |
---|
800 | ///\code |
---|
801 | /// d.init(); |
---|
802 | /// d.addSource(s); |
---|
803 | /// d.start(t); |
---|
804 | ///\endcode |
---|
805 | bool run(Node s,Node t) { |
---|
806 | init(); |
---|
807 | addSource(s); |
---|
808 | start(t); |
---|
809 | return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
---|
810 | } |
---|
811 | |
---|
812 | ///@} |
---|
813 | |
---|
814 | ///\name Query Functions |
---|
815 | ///The result of the %Dijkstra algorithm can be obtained using these |
---|
816 | ///functions.\n |
---|
817 | ///Either \ref lemon::Dijkstra::run() "run()" or |
---|
818 | ///\ref lemon::Dijkstra::start() "start()" must be called before |
---|
819 | ///using them. |
---|
820 | |
---|
821 | ///@{ |
---|
822 | |
---|
823 | ///The shortest path to a node. |
---|
824 | |
---|
825 | ///Returns the shortest path to a node. |
---|
826 | /// |
---|
827 | ///\warning \c t should be reachable from the root(s). |
---|
828 | /// |
---|
829 | ///\pre Either \ref run() or \ref start() must be called before |
---|
830 | ///using this function. |
---|
831 | Path path(Node t) const { return Path(*G, *_pred, t); } |
---|
832 | |
---|
833 | ///The distance of a node from the root(s). |
---|
834 | |
---|
835 | ///Returns the distance of a node from the root(s). |
---|
836 | /// |
---|
837 | ///\warning If node \c v is not reachable from the root(s), then |
---|
838 | ///the return value of this function is undefined. |
---|
839 | /// |
---|
840 | ///\pre Either \ref run() or \ref start() must be called before |
---|
841 | ///using this function. |
---|
842 | Value dist(Node v) const { return (*_dist)[v]; } |
---|
843 | |
---|
844 | ///Returns the 'previous arc' of the shortest path tree for a node. |
---|
845 | |
---|
846 | ///This function returns the 'previous arc' of the shortest path |
---|
847 | ///tree for the node \c v, i.e. it returns the last arc of a |
---|
848 | ///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
---|
849 | ///is not reachable from the root(s) or if \c v is a root. |
---|
850 | /// |
---|
851 | ///The shortest path tree used here is equal to the shortest path |
---|
852 | ///tree used in \ref predNode(). |
---|
853 | /// |
---|
854 | ///\pre Either \ref run() or \ref start() must be called before |
---|
855 | ///using this function. |
---|
856 | Arc predArc(Node v) const { return (*_pred)[v]; } |
---|
857 | |
---|
858 | ///Returns the 'previous node' of the shortest path tree for a node. |
---|
859 | |
---|
860 | ///This function returns the 'previous node' of the shortest path |
---|
861 | ///tree for the node \c v, i.e. it returns the last but one node |
---|
862 | ///from a shortest path from the root(s) to \c v. It is \c INVALID |
---|
863 | ///if \c v is not reachable from the root(s) or if \c v is a root. |
---|
864 | /// |
---|
865 | ///The shortest path tree used here is equal to the shortest path |
---|
866 | ///tree used in \ref predArc(). |
---|
867 | /// |
---|
868 | ///\pre Either \ref run() or \ref start() must be called before |
---|
869 | ///using this function. |
---|
870 | Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
---|
871 | G->source((*_pred)[v]); } |
---|
872 | |
---|
873 | ///\brief Returns a const reference to the node map that stores the |
---|
874 | ///distances of the nodes. |
---|
875 | /// |
---|
876 | ///Returns a const reference to the node map that stores the distances |
---|
877 | ///of the nodes calculated by the algorithm. |
---|
878 | /// |
---|
879 | ///\pre Either \ref run() or \ref init() |
---|
880 | ///must be called before using this function. |
---|
881 | const DistMap &distMap() const { return *_dist;} |
---|
882 | |
---|
883 | ///\brief Returns a const reference to the node map that stores the |
---|
884 | ///predecessor arcs. |
---|
885 | /// |
---|
886 | ///Returns a const reference to the node map that stores the predecessor |
---|
887 | ///arcs, which form the shortest path tree. |
---|
888 | /// |
---|
889 | ///\pre Either \ref run() or \ref init() |
---|
890 | ///must be called before using this function. |
---|
891 | const PredMap &predMap() const { return *_pred;} |
---|
892 | |
---|
893 | ///Checks if a node is reachable from the root(s). |
---|
894 | |
---|
895 | ///Returns \c true if \c v is reachable from the root(s). |
---|
896 | ///\pre Either \ref run() or \ref start() |
---|
897 | ///must be called before using this function. |
---|
898 | bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
---|
899 | Heap::PRE_HEAP; } |
---|
900 | |
---|
901 | ///Checks if a node is processed. |
---|
902 | |
---|
903 | ///Returns \c true if \c v is processed, i.e. the shortest |
---|
904 | ///path to \c v has already found. |
---|
905 | ///\pre Either \ref run() or \ref init() |
---|
906 | ///must be called before using this function. |
---|
907 | bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
---|
908 | Heap::POST_HEAP; } |
---|
909 | |
---|
910 | ///The current distance of a node from the root(s). |
---|
911 | |
---|
912 | ///Returns the current distance of a node from the root(s). |
---|
913 | ///It may be decreased in the following processes. |
---|
914 | ///\pre Either \ref run() or \ref init() |
---|
915 | ///must be called before using this function and |
---|
916 | ///node \c v must be reached but not necessarily processed. |
---|
917 | Value currentDist(Node v) const { |
---|
918 | return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
---|
919 | } |
---|
920 | |
---|
921 | ///@} |
---|
922 | }; |
---|
923 | |
---|
924 | |
---|
925 | ///Default traits class of dijkstra() function. |
---|
926 | |
---|
927 | ///Default traits class of dijkstra() function. |
---|
928 | ///\tparam GR The type of the digraph. |
---|
929 | ///\tparam LM The type of the length map. |
---|
930 | template<class GR, class LM> |
---|
931 | struct DijkstraWizardDefaultTraits |
---|
932 | { |
---|
933 | ///The type of the digraph the algorithm runs on. |
---|
934 | typedef GR Digraph; |
---|
935 | ///The type of the map that stores the arc lengths. |
---|
936 | |
---|
937 | ///The type of the map that stores the arc lengths. |
---|
938 | ///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
---|
939 | typedef LM LengthMap; |
---|
940 | ///The type of the length of the arcs. |
---|
941 | typedef typename LM::Value Value; |
---|
942 | |
---|
943 | /// Operation traits for Dijkstra algorithm. |
---|
944 | |
---|
945 | /// This class defines the operations that are used in the algorithm. |
---|
946 | /// \see DijkstraDefaultOperationTraits |
---|
947 | typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
---|
948 | |
---|
949 | /// The cross reference type used by the heap. |
---|
950 | |
---|
951 | /// The cross reference type used by the heap. |
---|
952 | /// Usually it is \c Digraph::NodeMap<int>. |
---|
953 | typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
---|
954 | ///Instantiates a \ref HeapCrossRef. |
---|
955 | |
---|
956 | ///This function instantiates a \ref HeapCrossRef. |
---|
957 | /// \param g is the digraph, to which we would like to define the |
---|
958 | /// HeapCrossRef. |
---|
959 | static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
---|
960 | { |
---|
961 | return new HeapCrossRef(g); |
---|
962 | } |
---|
963 | |
---|
964 | ///The heap type used by the Dijkstra algorithm. |
---|
965 | |
---|
966 | ///The heap type used by the Dijkstra algorithm. |
---|
967 | /// |
---|
968 | ///\sa BinHeap |
---|
969 | ///\sa Dijkstra |
---|
970 | typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
---|
971 | std::less<Value> > Heap; |
---|
972 | |
---|
973 | ///Instantiates a \ref Heap. |
---|
974 | |
---|
975 | ///This function instantiates a \ref Heap. |
---|
976 | /// \param r is the HeapCrossRef which is used. |
---|
977 | static Heap *createHeap(HeapCrossRef& r) |
---|
978 | { |
---|
979 | return new Heap(r); |
---|
980 | } |
---|
981 | |
---|
982 | ///\brief The type of the map that stores the predecessor |
---|
983 | ///arcs of the shortest paths. |
---|
984 | /// |
---|
985 | ///The type of the map that stores the predecessor |
---|
986 | ///arcs of the shortest paths. |
---|
987 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
988 | typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
---|
989 | ///Instantiates a PredMap. |
---|
990 | |
---|
991 | ///This function instantiates a PredMap. |
---|
992 | ///\param g is the digraph, to which we would like to define the |
---|
993 | ///PredMap. |
---|
994 | static PredMap *createPredMap(const Digraph &g) |
---|
995 | { |
---|
996 | return new PredMap(g); |
---|
997 | } |
---|
998 | |
---|
999 | ///The type of the map that indicates which nodes are processed. |
---|
1000 | |
---|
1001 | ///The type of the map that indicates which nodes are processed. |
---|
1002 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
1003 | ///By default it is a NullMap. |
---|
1004 | typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
---|
1005 | ///Instantiates a ProcessedMap. |
---|
1006 | |
---|
1007 | ///This function instantiates a ProcessedMap. |
---|
1008 | ///\param g is the digraph, to which |
---|
1009 | ///we would like to define the ProcessedMap. |
---|
1010 | #ifdef DOXYGEN |
---|
1011 | static ProcessedMap *createProcessedMap(const Digraph &g) |
---|
1012 | #else |
---|
1013 | static ProcessedMap *createProcessedMap(const Digraph &) |
---|
1014 | #endif |
---|
1015 | { |
---|
1016 | return new ProcessedMap(); |
---|
1017 | } |
---|
1018 | |
---|
1019 | ///The type of the map that stores the distances of the nodes. |
---|
1020 | |
---|
1021 | ///The type of the map that stores the distances of the nodes. |
---|
1022 | ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
---|
1023 | typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
---|
1024 | ///Instantiates a DistMap. |
---|
1025 | |
---|
1026 | ///This function instantiates a DistMap. |
---|
1027 | ///\param g is the digraph, to which we would like to define |
---|
1028 | ///the DistMap |
---|
1029 | static DistMap *createDistMap(const Digraph &g) |
---|
1030 | { |
---|
1031 | return new DistMap(g); |
---|
1032 | } |
---|
1033 | |
---|
1034 | ///The type of the shortest paths. |
---|
1035 | |
---|
1036 | ///The type of the shortest paths. |
---|
1037 | ///It must meet the \ref concepts::Path "Path" concept. |
---|
1038 | typedef lemon::Path<Digraph> Path; |
---|
1039 | }; |
---|
1040 | |
---|
1041 | /// Default traits class used by \ref DijkstraWizard |
---|
1042 | |
---|
1043 | /// To make it easier to use Dijkstra algorithm |
---|
1044 | /// we have created a wizard class. |
---|
1045 | /// This \ref DijkstraWizard class needs default traits, |
---|
1046 | /// as well as the \ref Dijkstra class. |
---|
1047 | /// The \ref DijkstraWizardBase is a class to be the default traits of the |
---|
1048 | /// \ref DijkstraWizard class. |
---|
1049 | template<class GR,class LM> |
---|
1050 | class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
---|
1051 | { |
---|
1052 | typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
---|
1053 | protected: |
---|
1054 | //The type of the nodes in the digraph. |
---|
1055 | typedef typename Base::Digraph::Node Node; |
---|
1056 | |
---|
1057 | //Pointer to the digraph the algorithm runs on. |
---|
1058 | void *_g; |
---|
1059 | //Pointer to the length map. |
---|
1060 | void *_length; |
---|
1061 | //Pointer to the map of processed nodes. |
---|
1062 | void *_processed; |
---|
1063 | //Pointer to the map of predecessors arcs. |
---|
1064 | void *_pred; |
---|
1065 | //Pointer to the map of distances. |
---|
1066 | void *_dist; |
---|
1067 | //Pointer to the shortest path to the target node. |
---|
1068 | void *_path; |
---|
1069 | //Pointer to the distance of the target node. |
---|
1070 | void *_di; |
---|
1071 | |
---|
1072 | public: |
---|
1073 | /// Constructor. |
---|
1074 | |
---|
1075 | /// This constructor does not require parameters, therefore it initiates |
---|
1076 | /// all of the attributes to \c 0. |
---|
1077 | DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
---|
1078 | _dist(0), _path(0), _di(0) {} |
---|
1079 | |
---|
1080 | /// Constructor. |
---|
1081 | |
---|
1082 | /// This constructor requires two parameters, |
---|
1083 | /// others are initiated to \c 0. |
---|
1084 | /// \param g The digraph the algorithm runs on. |
---|
1085 | /// \param l The length map. |
---|
1086 | DijkstraWizardBase(const GR &g,const LM &l) : |
---|
1087 | _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
---|
1088 | _length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
---|
1089 | _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
---|
1090 | |
---|
1091 | }; |
---|
1092 | |
---|
1093 | /// Auxiliary class for the function-type interface of Dijkstra algorithm. |
---|
1094 | |
---|
1095 | /// This auxiliary class is created to implement the |
---|
1096 | /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
---|
1097 | /// It does not have own \ref run() method, it uses the functions |
---|
1098 | /// and features of the plain \ref Dijkstra. |
---|
1099 | /// |
---|
1100 | /// This class should only be used through the \ref dijkstra() function, |
---|
1101 | /// which makes it easier to use the algorithm. |
---|
1102 | template<class TR> |
---|
1103 | class DijkstraWizard : public TR |
---|
1104 | { |
---|
1105 | typedef TR Base; |
---|
1106 | |
---|
1107 | ///The type of the digraph the algorithm runs on. |
---|
1108 | typedef typename TR::Digraph Digraph; |
---|
1109 | |
---|
1110 | typedef typename Digraph::Node Node; |
---|
1111 | typedef typename Digraph::NodeIt NodeIt; |
---|
1112 | typedef typename Digraph::Arc Arc; |
---|
1113 | typedef typename Digraph::OutArcIt OutArcIt; |
---|
1114 | |
---|
1115 | ///The type of the map that stores the arc lengths. |
---|
1116 | typedef typename TR::LengthMap LengthMap; |
---|
1117 | ///The type of the length of the arcs. |
---|
1118 | typedef typename LengthMap::Value Value; |
---|
1119 | ///\brief The type of the map that stores the predecessor |
---|
1120 | ///arcs of the shortest paths. |
---|
1121 | typedef typename TR::PredMap PredMap; |
---|
1122 | ///The type of the map that stores the distances of the nodes. |
---|
1123 | typedef typename TR::DistMap DistMap; |
---|
1124 | ///The type of the map that indicates which nodes are processed. |
---|
1125 | typedef typename TR::ProcessedMap ProcessedMap; |
---|
1126 | ///The type of the shortest paths |
---|
1127 | typedef typename TR::Path Path; |
---|
1128 | ///The heap type used by the dijkstra algorithm. |
---|
1129 | typedef typename TR::Heap Heap; |
---|
1130 | |
---|
1131 | public: |
---|
1132 | |
---|
1133 | /// Constructor. |
---|
1134 | DijkstraWizard() : TR() {} |
---|
1135 | |
---|
1136 | /// Constructor that requires parameters. |
---|
1137 | |
---|
1138 | /// Constructor that requires parameters. |
---|
1139 | /// These parameters will be the default values for the traits class. |
---|
1140 | /// \param g The digraph the algorithm runs on. |
---|
1141 | /// \param l The length map. |
---|
1142 | DijkstraWizard(const Digraph &g, const LengthMap &l) : |
---|
1143 | TR(g,l) {} |
---|
1144 | |
---|
1145 | ///Copy constructor |
---|
1146 | DijkstraWizard(const TR &b) : TR(b) {} |
---|
1147 | |
---|
1148 | ~DijkstraWizard() {} |
---|
1149 | |
---|
1150 | ///Runs Dijkstra algorithm from the given source node. |
---|
1151 | |
---|
1152 | ///This method runs %Dijkstra algorithm from the given source node |
---|
1153 | ///in order to compute the shortest path to each node. |
---|
1154 | void run(Node s) |
---|
1155 | { |
---|
1156 | Dijkstra<Digraph,LengthMap,TR> |
---|
1157 | dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
---|
1158 | *reinterpret_cast<const LengthMap*>(Base::_length)); |
---|
1159 | if (Base::_pred) |
---|
1160 | dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
1161 | if (Base::_dist) |
---|
1162 | dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
1163 | if (Base::_processed) |
---|
1164 | dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
---|
1165 | dijk.run(s); |
---|
1166 | } |
---|
1167 | |
---|
1168 | ///Finds the shortest path between \c s and \c t. |
---|
1169 | |
---|
1170 | ///This method runs the %Dijkstra algorithm from node \c s |
---|
1171 | ///in order to compute the shortest path to node \c t |
---|
1172 | ///(it stops searching when \c t is processed). |
---|
1173 | /// |
---|
1174 | ///\return \c true if \c t is reachable form \c s. |
---|
1175 | bool run(Node s, Node t) |
---|
1176 | { |
---|
1177 | Dijkstra<Digraph,LengthMap,TR> |
---|
1178 | dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
---|
1179 | *reinterpret_cast<const LengthMap*>(Base::_length)); |
---|
1180 | if (Base::_pred) |
---|
1181 | dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
---|
1182 | if (Base::_dist) |
---|
1183 | dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
---|
1184 | if (Base::_processed) |
---|
1185 | dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
---|
1186 | dijk.run(s,t); |
---|
1187 | if (Base::_path) |
---|
1188 | *reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
---|
1189 | if (Base::_di) |
---|
1190 | *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
---|
1191 | return dijk.reached(t); |
---|
1192 | } |
---|
1193 | |
---|
1194 | template<class T> |
---|
1195 | struct SetPredMapBase : public Base { |
---|
1196 | typedef T PredMap; |
---|
1197 | static PredMap *createPredMap(const Digraph &) { return 0; }; |
---|
1198 | SetPredMapBase(const TR &b) : TR(b) {} |
---|
1199 | }; |
---|
1200 | ///\brief \ref named-func-param "Named parameter" |
---|
1201 | ///for setting PredMap object. |
---|
1202 | /// |
---|
1203 | ///\ref named-func-param "Named parameter" |
---|
1204 | ///for setting PredMap object. |
---|
1205 | template<class T> |
---|
1206 | DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
---|
1207 | { |
---|
1208 | Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1209 | return DijkstraWizard<SetPredMapBase<T> >(*this); |
---|
1210 | } |
---|
1211 | |
---|
1212 | template<class T> |
---|
1213 | struct SetDistMapBase : public Base { |
---|
1214 | typedef T DistMap; |
---|
1215 | static DistMap *createDistMap(const Digraph &) { return 0; }; |
---|
1216 | SetDistMapBase(const TR &b) : TR(b) {} |
---|
1217 | }; |
---|
1218 | ///\brief \ref named-func-param "Named parameter" |
---|
1219 | ///for setting DistMap object. |
---|
1220 | /// |
---|
1221 | ///\ref named-func-param "Named parameter" |
---|
1222 | ///for setting DistMap object. |
---|
1223 | template<class T> |
---|
1224 | DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
---|
1225 | { |
---|
1226 | Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1227 | return DijkstraWizard<SetDistMapBase<T> >(*this); |
---|
1228 | } |
---|
1229 | |
---|
1230 | template<class T> |
---|
1231 | struct SetProcessedMapBase : public Base { |
---|
1232 | typedef T ProcessedMap; |
---|
1233 | static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
---|
1234 | SetProcessedMapBase(const TR &b) : TR(b) {} |
---|
1235 | }; |
---|
1236 | ///\brief \ref named-func-param "Named parameter" |
---|
1237 | ///for setting ProcessedMap object. |
---|
1238 | /// |
---|
1239 | /// \ref named-func-param "Named parameter" |
---|
1240 | ///for setting ProcessedMap object. |
---|
1241 | template<class T> |
---|
1242 | DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
---|
1243 | { |
---|
1244 | Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1245 | return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
---|
1246 | } |
---|
1247 | |
---|
1248 | template<class T> |
---|
1249 | struct SetPathBase : public Base { |
---|
1250 | typedef T Path; |
---|
1251 | SetPathBase(const TR &b) : TR(b) {} |
---|
1252 | }; |
---|
1253 | ///\brief \ref named-func-param "Named parameter" |
---|
1254 | ///for getting the shortest path to the target node. |
---|
1255 | /// |
---|
1256 | ///\ref named-func-param "Named parameter" |
---|
1257 | ///for getting the shortest path to the target node. |
---|
1258 | template<class T> |
---|
1259 | DijkstraWizard<SetPathBase<T> > path(const T &t) |
---|
1260 | { |
---|
1261 | Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
1262 | return DijkstraWizard<SetPathBase<T> >(*this); |
---|
1263 | } |
---|
1264 | |
---|
1265 | ///\brief \ref named-func-param "Named parameter" |
---|
1266 | ///for getting the distance of the target node. |
---|
1267 | /// |
---|
1268 | ///\ref named-func-param "Named parameter" |
---|
1269 | ///for getting the distance of the target node. |
---|
1270 | DijkstraWizard dist(const Value &d) |
---|
1271 | { |
---|
1272 | Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
---|
1273 | return *this; |
---|
1274 | } |
---|
1275 | |
---|
1276 | }; |
---|
1277 | |
---|
1278 | ///Function-type interface for Dijkstra algorithm. |
---|
1279 | |
---|
1280 | /// \ingroup shortest_path |
---|
1281 | ///Function-type interface for Dijkstra algorithm. |
---|
1282 | /// |
---|
1283 | ///This function also has several \ref named-func-param "named parameters", |
---|
1284 | ///they are declared as the members of class \ref DijkstraWizard. |
---|
1285 | ///The following examples show how to use these parameters. |
---|
1286 | ///\code |
---|
1287 | /// // Compute shortest path from node s to each node |
---|
1288 | /// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
---|
1289 | /// |
---|
1290 | /// // Compute shortest path from s to t |
---|
1291 | /// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
---|
1292 | ///\endcode |
---|
1293 | ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
---|
1294 | ///to the end of the parameter list. |
---|
1295 | ///\sa DijkstraWizard |
---|
1296 | ///\sa Dijkstra |
---|
1297 | template<class GR, class LM> |
---|
1298 | DijkstraWizard<DijkstraWizardBase<GR,LM> > |
---|
1299 | dijkstra(const GR &digraph, const LM &length) |
---|
1300 | { |
---|
1301 | return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length); |
---|
1302 | } |
---|
1303 | |
---|
1304 | } //END OF NAMESPACE LEMON |
---|
1305 | |
---|
1306 | #endif |
---|