[758] | 1 | /* -*- C++ -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
| 4 | * |
---|
| 5 | * Copyright (C) 2003-2008 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
[764] | 19 | #ifndef LEMON_HOWARD_H |
---|
| 20 | #define LEMON_HOWARD_H |
---|
[758] | 21 | |
---|
[768] | 22 | /// \ingroup min_mean_cycle |
---|
[758] | 23 | /// |
---|
| 24 | /// \file |
---|
| 25 | /// \brief Howard's algorithm for finding a minimum mean cycle. |
---|
| 26 | |
---|
| 27 | #include <vector> |
---|
[763] | 28 | #include <limits> |
---|
[758] | 29 | #include <lemon/core.h> |
---|
| 30 | #include <lemon/path.h> |
---|
| 31 | #include <lemon/tolerance.h> |
---|
| 32 | #include <lemon/connectivity.h> |
---|
| 33 | |
---|
| 34 | namespace lemon { |
---|
| 35 | |
---|
[764] | 36 | /// \brief Default traits class of Howard class. |
---|
[761] | 37 | /// |
---|
[764] | 38 | /// Default traits class of Howard class. |
---|
[761] | 39 | /// \tparam GR The type of the digraph. |
---|
| 40 | /// \tparam LEN The type of the length map. |
---|
| 41 | /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
---|
| 42 | #ifdef DOXYGEN |
---|
| 43 | template <typename GR, typename LEN> |
---|
| 44 | #else |
---|
| 45 | template <typename GR, typename LEN, |
---|
| 46 | bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
---|
| 47 | #endif |
---|
[764] | 48 | struct HowardDefaultTraits |
---|
[761] | 49 | { |
---|
| 50 | /// The type of the digraph |
---|
| 51 | typedef GR Digraph; |
---|
| 52 | /// The type of the length map |
---|
| 53 | typedef LEN LengthMap; |
---|
| 54 | /// The type of the arc lengths |
---|
| 55 | typedef typename LengthMap::Value Value; |
---|
| 56 | |
---|
| 57 | /// \brief The large value type used for internal computations |
---|
| 58 | /// |
---|
| 59 | /// The large value type used for internal computations. |
---|
| 60 | /// It is \c long \c long if the \c Value type is integer, |
---|
| 61 | /// otherwise it is \c double. |
---|
| 62 | /// \c Value must be convertible to \c LargeValue. |
---|
| 63 | typedef double LargeValue; |
---|
| 64 | |
---|
| 65 | /// The tolerance type used for internal computations |
---|
| 66 | typedef lemon::Tolerance<LargeValue> Tolerance; |
---|
| 67 | |
---|
| 68 | /// \brief The path type of the found cycles |
---|
| 69 | /// |
---|
| 70 | /// The path type of the found cycles. |
---|
| 71 | /// It must conform to the \ref lemon::concepts::Path "Path" concept |
---|
| 72 | /// and it must have an \c addBack() function. |
---|
| 73 | typedef lemon::Path<Digraph> Path; |
---|
| 74 | }; |
---|
| 75 | |
---|
| 76 | // Default traits class for integer value types |
---|
| 77 | template <typename GR, typename LEN> |
---|
[764] | 78 | struct HowardDefaultTraits<GR, LEN, true> |
---|
[761] | 79 | { |
---|
| 80 | typedef GR Digraph; |
---|
| 81 | typedef LEN LengthMap; |
---|
| 82 | typedef typename LengthMap::Value Value; |
---|
| 83 | #ifdef LEMON_HAVE_LONG_LONG |
---|
| 84 | typedef long long LargeValue; |
---|
| 85 | #else |
---|
| 86 | typedef long LargeValue; |
---|
| 87 | #endif |
---|
| 88 | typedef lemon::Tolerance<LargeValue> Tolerance; |
---|
| 89 | typedef lemon::Path<Digraph> Path; |
---|
| 90 | }; |
---|
| 91 | |
---|
| 92 | |
---|
[768] | 93 | /// \addtogroup min_mean_cycle |
---|
[758] | 94 | /// @{ |
---|
| 95 | |
---|
| 96 | /// \brief Implementation of Howard's algorithm for finding a minimum |
---|
| 97 | /// mean cycle. |
---|
| 98 | /// |
---|
[764] | 99 | /// This class implements Howard's policy iteration algorithm for finding |
---|
[771] | 100 | /// a directed cycle of minimum mean length (cost) in a digraph |
---|
| 101 | /// \ref amo93networkflows, \ref dasdan98minmeancycle. |
---|
[768] | 102 | /// This class provides the most efficient algorithm for the |
---|
| 103 | /// minimum mean cycle problem, though the best known theoretical |
---|
| 104 | /// bound on its running time is exponential. |
---|
[758] | 105 | /// |
---|
| 106 | /// \tparam GR The type of the digraph the algorithm runs on. |
---|
| 107 | /// \tparam LEN The type of the length map. The default |
---|
| 108 | /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
---|
| 109 | #ifdef DOXYGEN |
---|
[761] | 110 | template <typename GR, typename LEN, typename TR> |
---|
[758] | 111 | #else |
---|
| 112 | template < typename GR, |
---|
[761] | 113 | typename LEN = typename GR::template ArcMap<int>, |
---|
[764] | 114 | typename TR = HowardDefaultTraits<GR, LEN> > |
---|
[758] | 115 | #endif |
---|
[764] | 116 | class Howard |
---|
[758] | 117 | { |
---|
| 118 | public: |
---|
| 119 | |
---|
[761] | 120 | /// The type of the digraph |
---|
| 121 | typedef typename TR::Digraph Digraph; |
---|
[758] | 122 | /// The type of the length map |
---|
[761] | 123 | typedef typename TR::LengthMap LengthMap; |
---|
[758] | 124 | /// The type of the arc lengths |
---|
[761] | 125 | typedef typename TR::Value Value; |
---|
| 126 | |
---|
| 127 | /// \brief The large value type |
---|
| 128 | /// |
---|
| 129 | /// The large value type used for internal computations. |
---|
[764] | 130 | /// Using the \ref HowardDefaultTraits "default traits class", |
---|
[761] | 131 | /// it is \c long \c long if the \c Value type is integer, |
---|
| 132 | /// otherwise it is \c double. |
---|
| 133 | typedef typename TR::LargeValue LargeValue; |
---|
| 134 | |
---|
| 135 | /// The tolerance type |
---|
| 136 | typedef typename TR::Tolerance Tolerance; |
---|
| 137 | |
---|
| 138 | /// \brief The path type of the found cycles |
---|
| 139 | /// |
---|
| 140 | /// The path type of the found cycles. |
---|
[764] | 141 | /// Using the \ref HowardDefaultTraits "default traits class", |
---|
[761] | 142 | /// it is \ref lemon::Path "Path<Digraph>". |
---|
| 143 | typedef typename TR::Path Path; |
---|
| 144 | |
---|
[764] | 145 | /// The \ref HowardDefaultTraits "traits class" of the algorithm |
---|
[761] | 146 | typedef TR Traits; |
---|
[758] | 147 | |
---|
| 148 | private: |
---|
| 149 | |
---|
| 150 | TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
---|
| 151 | |
---|
| 152 | // The digraph the algorithm runs on |
---|
| 153 | const Digraph &_gr; |
---|
| 154 | // The length of the arcs |
---|
| 155 | const LengthMap &_length; |
---|
| 156 | |
---|
[760] | 157 | // Data for the found cycles |
---|
| 158 | bool _curr_found, _best_found; |
---|
[761] | 159 | LargeValue _curr_length, _best_length; |
---|
[760] | 160 | int _curr_size, _best_size; |
---|
| 161 | Node _curr_node, _best_node; |
---|
| 162 | |
---|
[758] | 163 | Path *_cycle_path; |
---|
[760] | 164 | bool _local_path; |
---|
[758] | 165 | |
---|
[760] | 166 | // Internal data used by the algorithm |
---|
| 167 | typename Digraph::template NodeMap<Arc> _policy; |
---|
| 168 | typename Digraph::template NodeMap<bool> _reached; |
---|
| 169 | typename Digraph::template NodeMap<int> _level; |
---|
[761] | 170 | typename Digraph::template NodeMap<LargeValue> _dist; |
---|
[758] | 171 | |
---|
[760] | 172 | // Data for storing the strongly connected components |
---|
| 173 | int _comp_num; |
---|
[758] | 174 | typename Digraph::template NodeMap<int> _comp; |
---|
[760] | 175 | std::vector<std::vector<Node> > _comp_nodes; |
---|
| 176 | std::vector<Node>* _nodes; |
---|
| 177 | typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
---|
| 178 | |
---|
| 179 | // Queue used for BFS search |
---|
| 180 | std::vector<Node> _queue; |
---|
| 181 | int _qfront, _qback; |
---|
[761] | 182 | |
---|
| 183 | Tolerance _tolerance; |
---|
| 184 | |
---|
[767] | 185 | // Infinite constant |
---|
| 186 | const LargeValue INF; |
---|
| 187 | |
---|
[761] | 188 | public: |
---|
| 189 | |
---|
| 190 | /// \name Named Template Parameters |
---|
| 191 | /// @{ |
---|
| 192 | |
---|
| 193 | template <typename T> |
---|
| 194 | struct SetLargeValueTraits : public Traits { |
---|
| 195 | typedef T LargeValue; |
---|
| 196 | typedef lemon::Tolerance<T> Tolerance; |
---|
| 197 | }; |
---|
| 198 | |
---|
| 199 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
| 200 | /// \c LargeValue type. |
---|
| 201 | /// |
---|
| 202 | /// \ref named-templ-param "Named parameter" for setting \c LargeValue |
---|
| 203 | /// type. It is used for internal computations in the algorithm. |
---|
| 204 | template <typename T> |
---|
| 205 | struct SetLargeValue |
---|
[764] | 206 | : public Howard<GR, LEN, SetLargeValueTraits<T> > { |
---|
| 207 | typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create; |
---|
[761] | 208 | }; |
---|
| 209 | |
---|
| 210 | template <typename T> |
---|
| 211 | struct SetPathTraits : public Traits { |
---|
| 212 | typedef T Path; |
---|
| 213 | }; |
---|
| 214 | |
---|
| 215 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
| 216 | /// \c %Path type. |
---|
| 217 | /// |
---|
| 218 | /// \ref named-templ-param "Named parameter" for setting the \c %Path |
---|
| 219 | /// type of the found cycles. |
---|
| 220 | /// It must conform to the \ref lemon::concepts::Path "Path" concept |
---|
| 221 | /// and it must have an \c addBack() function. |
---|
| 222 | template <typename T> |
---|
| 223 | struct SetPath |
---|
[764] | 224 | : public Howard<GR, LEN, SetPathTraits<T> > { |
---|
| 225 | typedef Howard<GR, LEN, SetPathTraits<T> > Create; |
---|
[761] | 226 | }; |
---|
[760] | 227 | |
---|
[761] | 228 | /// @} |
---|
[758] | 229 | |
---|
| 230 | public: |
---|
| 231 | |
---|
| 232 | /// \brief Constructor. |
---|
| 233 | /// |
---|
| 234 | /// The constructor of the class. |
---|
| 235 | /// |
---|
| 236 | /// \param digraph The digraph the algorithm runs on. |
---|
| 237 | /// \param length The lengths (costs) of the arcs. |
---|
[764] | 238 | Howard( const Digraph &digraph, |
---|
| 239 | const LengthMap &length ) : |
---|
[767] | 240 | _gr(digraph), _length(length), _best_found(false), |
---|
| 241 | _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
---|
[760] | 242 | _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
---|
[767] | 243 | _comp(digraph), _in_arcs(digraph), |
---|
| 244 | INF(std::numeric_limits<LargeValue>::has_infinity ? |
---|
| 245 | std::numeric_limits<LargeValue>::infinity() : |
---|
| 246 | std::numeric_limits<LargeValue>::max()) |
---|
[758] | 247 | {} |
---|
| 248 | |
---|
| 249 | /// Destructor. |
---|
[764] | 250 | ~Howard() { |
---|
[758] | 251 | if (_local_path) delete _cycle_path; |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | /// \brief Set the path structure for storing the found cycle. |
---|
| 255 | /// |
---|
| 256 | /// This function sets an external path structure for storing the |
---|
| 257 | /// found cycle. |
---|
| 258 | /// |
---|
| 259 | /// If you don't call this function before calling \ref run() or |
---|
[759] | 260 | /// \ref findMinMean(), it will allocate a local \ref Path "path" |
---|
[758] | 261 | /// structure. The destuctor deallocates this automatically |
---|
| 262 | /// allocated object, of course. |
---|
| 263 | /// |
---|
| 264 | /// \note The algorithm calls only the \ref lemon::Path::addBack() |
---|
| 265 | /// "addBack()" function of the given path structure. |
---|
| 266 | /// |
---|
| 267 | /// \return <tt>(*this)</tt> |
---|
[764] | 268 | Howard& cycle(Path &path) { |
---|
[758] | 269 | if (_local_path) { |
---|
| 270 | delete _cycle_path; |
---|
| 271 | _local_path = false; |
---|
| 272 | } |
---|
| 273 | _cycle_path = &path; |
---|
| 274 | return *this; |
---|
| 275 | } |
---|
| 276 | |
---|
[769] | 277 | /// \brief Set the tolerance used by the algorithm. |
---|
| 278 | /// |
---|
| 279 | /// This function sets the tolerance object used by the algorithm. |
---|
| 280 | /// |
---|
| 281 | /// \return <tt>(*this)</tt> |
---|
| 282 | Howard& tolerance(const Tolerance& tolerance) { |
---|
| 283 | _tolerance = tolerance; |
---|
| 284 | return *this; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /// \brief Return a const reference to the tolerance. |
---|
| 288 | /// |
---|
| 289 | /// This function returns a const reference to the tolerance object |
---|
| 290 | /// used by the algorithm. |
---|
| 291 | const Tolerance& tolerance() const { |
---|
| 292 | return _tolerance; |
---|
| 293 | } |
---|
| 294 | |
---|
[758] | 295 | /// \name Execution control |
---|
| 296 | /// The simplest way to execute the algorithm is to call the \ref run() |
---|
| 297 | /// function.\n |
---|
[759] | 298 | /// If you only need the minimum mean length, you may call |
---|
| 299 | /// \ref findMinMean(). |
---|
[758] | 300 | |
---|
| 301 | /// @{ |
---|
| 302 | |
---|
| 303 | /// \brief Run the algorithm. |
---|
| 304 | /// |
---|
| 305 | /// This function runs the algorithm. |
---|
[759] | 306 | /// It can be called more than once (e.g. if the underlying digraph |
---|
| 307 | /// and/or the arc lengths have been modified). |
---|
[758] | 308 | /// |
---|
| 309 | /// \return \c true if a directed cycle exists in the digraph. |
---|
| 310 | /// |
---|
[759] | 311 | /// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
---|
[758] | 312 | /// \code |
---|
[759] | 313 | /// return mmc.findMinMean() && mmc.findCycle(); |
---|
[758] | 314 | /// \endcode |
---|
| 315 | bool run() { |
---|
| 316 | return findMinMean() && findCycle(); |
---|
| 317 | } |
---|
| 318 | |
---|
[759] | 319 | /// \brief Find the minimum cycle mean. |
---|
[758] | 320 | /// |
---|
[759] | 321 | /// This function finds the minimum mean length of the directed |
---|
| 322 | /// cycles in the digraph. |
---|
[758] | 323 | /// |
---|
[759] | 324 | /// \return \c true if a directed cycle exists in the digraph. |
---|
| 325 | bool findMinMean() { |
---|
[760] | 326 | // Initialize and find strongly connected components |
---|
| 327 | init(); |
---|
| 328 | findComponents(); |
---|
| 329 | |
---|
[759] | 330 | // Find the minimum cycle mean in the components |
---|
[758] | 331 | for (int comp = 0; comp < _comp_num; ++comp) { |
---|
[760] | 332 | // Find the minimum mean cycle in the current component |
---|
| 333 | if (!buildPolicyGraph(comp)) continue; |
---|
[758] | 334 | while (true) { |
---|
[760] | 335 | findPolicyCycle(); |
---|
[758] | 336 | if (!computeNodeDistances()) break; |
---|
| 337 | } |
---|
[760] | 338 | // Update the best cycle (global minimum mean cycle) |
---|
[767] | 339 | if ( _curr_found && (!_best_found || |
---|
[760] | 340 | _curr_length * _best_size < _best_length * _curr_size) ) { |
---|
| 341 | _best_found = true; |
---|
| 342 | _best_length = _curr_length; |
---|
| 343 | _best_size = _curr_size; |
---|
| 344 | _best_node = _curr_node; |
---|
| 345 | } |
---|
[758] | 346 | } |
---|
[760] | 347 | return _best_found; |
---|
[758] | 348 | } |
---|
| 349 | |
---|
| 350 | /// \brief Find a minimum mean directed cycle. |
---|
| 351 | /// |
---|
| 352 | /// This function finds a directed cycle of minimum mean length |
---|
| 353 | /// in the digraph using the data computed by findMinMean(). |
---|
| 354 | /// |
---|
| 355 | /// \return \c true if a directed cycle exists in the digraph. |
---|
| 356 | /// |
---|
[759] | 357 | /// \pre \ref findMinMean() must be called before using this function. |
---|
[758] | 358 | bool findCycle() { |
---|
[760] | 359 | if (!_best_found) return false; |
---|
| 360 | _cycle_path->addBack(_policy[_best_node]); |
---|
| 361 | for ( Node v = _best_node; |
---|
| 362 | (v = _gr.target(_policy[v])) != _best_node; ) { |
---|
[758] | 363 | _cycle_path->addBack(_policy[v]); |
---|
| 364 | } |
---|
| 365 | return true; |
---|
| 366 | } |
---|
| 367 | |
---|
| 368 | /// @} |
---|
| 369 | |
---|
| 370 | /// \name Query Functions |
---|
[759] | 371 | /// The results of the algorithm can be obtained using these |
---|
[758] | 372 | /// functions.\n |
---|
| 373 | /// The algorithm should be executed before using them. |
---|
| 374 | |
---|
| 375 | /// @{ |
---|
| 376 | |
---|
| 377 | /// \brief Return the total length of the found cycle. |
---|
| 378 | /// |
---|
| 379 | /// This function returns the total length of the found cycle. |
---|
| 380 | /// |
---|
[760] | 381 | /// \pre \ref run() or \ref findMinMean() must be called before |
---|
[758] | 382 | /// using this function. |
---|
[761] | 383 | LargeValue cycleLength() const { |
---|
[760] | 384 | return _best_length; |
---|
[758] | 385 | } |
---|
| 386 | |
---|
| 387 | /// \brief Return the number of arcs on the found cycle. |
---|
| 388 | /// |
---|
| 389 | /// This function returns the number of arcs on the found cycle. |
---|
| 390 | /// |
---|
[760] | 391 | /// \pre \ref run() or \ref findMinMean() must be called before |
---|
[758] | 392 | /// using this function. |
---|
| 393 | int cycleArcNum() const { |
---|
[760] | 394 | return _best_size; |
---|
[758] | 395 | } |
---|
| 396 | |
---|
| 397 | /// \brief Return the mean length of the found cycle. |
---|
| 398 | /// |
---|
| 399 | /// This function returns the mean length of the found cycle. |
---|
| 400 | /// |
---|
[760] | 401 | /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
---|
[758] | 402 | /// following code. |
---|
| 403 | /// \code |
---|
[760] | 404 | /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
---|
[758] | 405 | /// \endcode |
---|
| 406 | /// |
---|
| 407 | /// \pre \ref run() or \ref findMinMean() must be called before |
---|
| 408 | /// using this function. |
---|
| 409 | double cycleMean() const { |
---|
[760] | 410 | return static_cast<double>(_best_length) / _best_size; |
---|
[758] | 411 | } |
---|
| 412 | |
---|
| 413 | /// \brief Return the found cycle. |
---|
| 414 | /// |
---|
| 415 | /// This function returns a const reference to the path structure |
---|
| 416 | /// storing the found cycle. |
---|
| 417 | /// |
---|
| 418 | /// \pre \ref run() or \ref findCycle() must be called before using |
---|
| 419 | /// this function. |
---|
| 420 | const Path& cycle() const { |
---|
| 421 | return *_cycle_path; |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | ///@} |
---|
| 425 | |
---|
| 426 | private: |
---|
| 427 | |
---|
[760] | 428 | // Initialize |
---|
| 429 | void init() { |
---|
| 430 | if (!_cycle_path) { |
---|
| 431 | _local_path = true; |
---|
| 432 | _cycle_path = new Path; |
---|
[758] | 433 | } |
---|
[760] | 434 | _queue.resize(countNodes(_gr)); |
---|
| 435 | _best_found = false; |
---|
| 436 | _best_length = 0; |
---|
| 437 | _best_size = 1; |
---|
| 438 | _cycle_path->clear(); |
---|
| 439 | } |
---|
| 440 | |
---|
| 441 | // Find strongly connected components and initialize _comp_nodes |
---|
| 442 | // and _in_arcs |
---|
| 443 | void findComponents() { |
---|
| 444 | _comp_num = stronglyConnectedComponents(_gr, _comp); |
---|
| 445 | _comp_nodes.resize(_comp_num); |
---|
| 446 | if (_comp_num == 1) { |
---|
| 447 | _comp_nodes[0].clear(); |
---|
| 448 | for (NodeIt n(_gr); n != INVALID; ++n) { |
---|
| 449 | _comp_nodes[0].push_back(n); |
---|
| 450 | _in_arcs[n].clear(); |
---|
| 451 | for (InArcIt a(_gr, n); a != INVALID; ++a) { |
---|
| 452 | _in_arcs[n].push_back(a); |
---|
| 453 | } |
---|
| 454 | } |
---|
| 455 | } else { |
---|
| 456 | for (int i = 0; i < _comp_num; ++i) |
---|
| 457 | _comp_nodes[i].clear(); |
---|
| 458 | for (NodeIt n(_gr); n != INVALID; ++n) { |
---|
| 459 | int k = _comp[n]; |
---|
| 460 | _comp_nodes[k].push_back(n); |
---|
| 461 | _in_arcs[n].clear(); |
---|
| 462 | for (InArcIt a(_gr, n); a != INVALID; ++a) { |
---|
| 463 | if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); |
---|
| 464 | } |
---|
| 465 | } |
---|
[758] | 466 | } |
---|
[760] | 467 | } |
---|
| 468 | |
---|
| 469 | // Build the policy graph in the given strongly connected component |
---|
| 470 | // (the out-degree of every node is 1) |
---|
| 471 | bool buildPolicyGraph(int comp) { |
---|
| 472 | _nodes = &(_comp_nodes[comp]); |
---|
| 473 | if (_nodes->size() < 1 || |
---|
| 474 | (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { |
---|
| 475 | return false; |
---|
[758] | 476 | } |
---|
[760] | 477 | for (int i = 0; i < int(_nodes->size()); ++i) { |
---|
[767] | 478 | _dist[(*_nodes)[i]] = INF; |
---|
[760] | 479 | } |
---|
| 480 | Node u, v; |
---|
| 481 | Arc e; |
---|
| 482 | for (int i = 0; i < int(_nodes->size()); ++i) { |
---|
| 483 | v = (*_nodes)[i]; |
---|
| 484 | for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
---|
| 485 | e = _in_arcs[v][j]; |
---|
| 486 | u = _gr.source(e); |
---|
| 487 | if (_length[e] < _dist[u]) { |
---|
| 488 | _dist[u] = _length[e]; |
---|
| 489 | _policy[u] = e; |
---|
| 490 | } |
---|
[758] | 491 | } |
---|
| 492 | } |
---|
| 493 | return true; |
---|
| 494 | } |
---|
| 495 | |
---|
[760] | 496 | // Find the minimum mean cycle in the policy graph |
---|
| 497 | void findPolicyCycle() { |
---|
| 498 | for (int i = 0; i < int(_nodes->size()); ++i) { |
---|
| 499 | _level[(*_nodes)[i]] = -1; |
---|
| 500 | } |
---|
[761] | 501 | LargeValue clength; |
---|
[758] | 502 | int csize; |
---|
| 503 | Node u, v; |
---|
[760] | 504 | _curr_found = false; |
---|
| 505 | for (int i = 0; i < int(_nodes->size()); ++i) { |
---|
| 506 | u = (*_nodes)[i]; |
---|
| 507 | if (_level[u] >= 0) continue; |
---|
| 508 | for (; _level[u] < 0; u = _gr.target(_policy[u])) { |
---|
| 509 | _level[u] = i; |
---|
| 510 | } |
---|
| 511 | if (_level[u] == i) { |
---|
| 512 | // A cycle is found |
---|
| 513 | clength = _length[_policy[u]]; |
---|
| 514 | csize = 1; |
---|
| 515 | for (v = u; (v = _gr.target(_policy[v])) != u; ) { |
---|
| 516 | clength += _length[_policy[v]]; |
---|
| 517 | ++csize; |
---|
[758] | 518 | } |
---|
[760] | 519 | if ( !_curr_found || |
---|
| 520 | (clength * _curr_size < _curr_length * csize) ) { |
---|
| 521 | _curr_found = true; |
---|
| 522 | _curr_length = clength; |
---|
| 523 | _curr_size = csize; |
---|
| 524 | _curr_node = u; |
---|
[758] | 525 | } |
---|
| 526 | } |
---|
| 527 | } |
---|
| 528 | } |
---|
| 529 | |
---|
[760] | 530 | // Contract the policy graph and compute node distances |
---|
[758] | 531 | bool computeNodeDistances() { |
---|
[760] | 532 | // Find the component of the main cycle and compute node distances |
---|
| 533 | // using reverse BFS |
---|
| 534 | for (int i = 0; i < int(_nodes->size()); ++i) { |
---|
| 535 | _reached[(*_nodes)[i]] = false; |
---|
| 536 | } |
---|
| 537 | _qfront = _qback = 0; |
---|
| 538 | _queue[0] = _curr_node; |
---|
| 539 | _reached[_curr_node] = true; |
---|
| 540 | _dist[_curr_node] = 0; |
---|
[758] | 541 | Node u, v; |
---|
[760] | 542 | Arc e; |
---|
| 543 | while (_qfront <= _qback) { |
---|
| 544 | v = _queue[_qfront++]; |
---|
| 545 | for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
---|
| 546 | e = _in_arcs[v][j]; |
---|
[758] | 547 | u = _gr.source(e); |
---|
[760] | 548 | if (_policy[u] == e && !_reached[u]) { |
---|
| 549 | _reached[u] = true; |
---|
[761] | 550 | _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
---|
[760] | 551 | _queue[++_qback] = u; |
---|
[758] | 552 | } |
---|
| 553 | } |
---|
| 554 | } |
---|
[760] | 555 | |
---|
| 556 | // Connect all other nodes to this component and compute node |
---|
| 557 | // distances using reverse BFS |
---|
| 558 | _qfront = 0; |
---|
| 559 | while (_qback < int(_nodes->size())-1) { |
---|
| 560 | v = _queue[_qfront++]; |
---|
| 561 | for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
---|
| 562 | e = _in_arcs[v][j]; |
---|
| 563 | u = _gr.source(e); |
---|
| 564 | if (!_reached[u]) { |
---|
| 565 | _reached[u] = true; |
---|
| 566 | _policy[u] = e; |
---|
[761] | 567 | _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
---|
[760] | 568 | _queue[++_qback] = u; |
---|
| 569 | } |
---|
| 570 | } |
---|
| 571 | } |
---|
| 572 | |
---|
| 573 | // Improve node distances |
---|
[758] | 574 | bool improved = false; |
---|
[760] | 575 | for (int i = 0; i < int(_nodes->size()); ++i) { |
---|
| 576 | v = (*_nodes)[i]; |
---|
| 577 | for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
---|
| 578 | e = _in_arcs[v][j]; |
---|
| 579 | u = _gr.source(e); |
---|
[761] | 580 | LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; |
---|
| 581 | if (_tolerance.less(delta, _dist[u])) { |
---|
[760] | 582 | _dist[u] = delta; |
---|
| 583 | _policy[u] = e; |
---|
| 584 | improved = true; |
---|
| 585 | } |
---|
[758] | 586 | } |
---|
| 587 | } |
---|
| 588 | return improved; |
---|
| 589 | } |
---|
| 590 | |
---|
[764] | 591 | }; //class Howard |
---|
[758] | 592 | |
---|
| 593 | ///@} |
---|
| 594 | |
---|
| 595 | } //namespace lemon |
---|
| 596 | |
---|
[764] | 597 | #endif //LEMON_HOWARD_H |
---|