1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAX_MATCHING_H |
---|
20 | #define LEMON_MAX_MATCHING_H |
---|
21 | |
---|
22 | #include <vector> |
---|
23 | #include <queue> |
---|
24 | #include <set> |
---|
25 | #include <limits> |
---|
26 | |
---|
27 | #include <lemon/core.h> |
---|
28 | #include <lemon/unionfind.h> |
---|
29 | #include <lemon/bin_heap.h> |
---|
30 | #include <lemon/maps.h> |
---|
31 | |
---|
32 | ///\ingroup matching |
---|
33 | ///\file |
---|
34 | ///\brief Maximum matching algorithms in graph. |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | ///\ingroup matching |
---|
39 | /// |
---|
40 | ///\brief Edmonds' alternating forest maximum matching algorithm. |
---|
41 | /// |
---|
42 | ///This class provides Edmonds' alternating forest matching |
---|
43 | ///algorithm. The starting matching (if any) can be passed to the |
---|
44 | ///algorithm using some of init functions. |
---|
45 | /// |
---|
46 | ///The dual side of a matching is a map of the nodes to |
---|
47 | ///MaxMatching::DecompType, having values \c D, \c A and \c C |
---|
48 | ///showing the Gallai-Edmonds decomposition of the digraph. The nodes |
---|
49 | ///in \c D induce a digraph with factor-critical components, the nodes |
---|
50 | ///in \c A form the barrier, and the nodes in \c C induce a digraph |
---|
51 | ///having a perfect matching. This decomposition can be attained by |
---|
52 | ///calling \c decomposition() after running the algorithm. |
---|
53 | /// |
---|
54 | ///\param Digraph The graph type the algorithm runs on. |
---|
55 | template <typename Graph> |
---|
56 | class MaxMatching { |
---|
57 | |
---|
58 | protected: |
---|
59 | |
---|
60 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
---|
61 | |
---|
62 | typedef typename Graph::template NodeMap<int> UFECrossRef; |
---|
63 | typedef UnionFindEnum<UFECrossRef> UFE; |
---|
64 | typedef std::vector<Node> NV; |
---|
65 | |
---|
66 | typedef typename Graph::template NodeMap<int> EFECrossRef; |
---|
67 | typedef ExtendFindEnum<EFECrossRef> EFE; |
---|
68 | |
---|
69 | public: |
---|
70 | |
---|
71 | ///\brief Indicates the Gallai-Edmonds decomposition of the digraph. |
---|
72 | /// |
---|
73 | ///Indicates the Gallai-Edmonds decomposition of the digraph, which |
---|
74 | ///shows an upper bound on the size of a maximum matching. The |
---|
75 | ///nodes with DecompType \c D induce a digraph with factor-critical |
---|
76 | ///components, the nodes in \c A form the canonical barrier, and the |
---|
77 | ///nodes in \c C induce a digraph having a perfect matching. |
---|
78 | enum DecompType { |
---|
79 | D=0, |
---|
80 | A=1, |
---|
81 | C=2 |
---|
82 | }; |
---|
83 | |
---|
84 | protected: |
---|
85 | |
---|
86 | static const int HEUR_density=2; |
---|
87 | const Graph& g; |
---|
88 | typename Graph::template NodeMap<Node> _mate; |
---|
89 | typename Graph::template NodeMap<DecompType> position; |
---|
90 | |
---|
91 | public: |
---|
92 | |
---|
93 | MaxMatching(const Graph& _g) |
---|
94 | : g(_g), _mate(_g), position(_g) {} |
---|
95 | |
---|
96 | ///\brief Sets the actual matching to the empty matching. |
---|
97 | /// |
---|
98 | ///Sets the actual matching to the empty matching. |
---|
99 | /// |
---|
100 | void init() { |
---|
101 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
102 | _mate.set(v,INVALID); |
---|
103 | position.set(v,C); |
---|
104 | } |
---|
105 | } |
---|
106 | |
---|
107 | ///\brief Finds a greedy matching for initial matching. |
---|
108 | /// |
---|
109 | ///For initial matchig it finds a maximal greedy matching. |
---|
110 | void greedyInit() { |
---|
111 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
112 | _mate.set(v,INVALID); |
---|
113 | position.set(v,C); |
---|
114 | } |
---|
115 | for(NodeIt v(g); v!=INVALID; ++v) |
---|
116 | if ( _mate[v]==INVALID ) { |
---|
117 | for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) { |
---|
118 | Node y=g.runningNode(e); |
---|
119 | if ( _mate[y]==INVALID && y!=v ) { |
---|
120 | _mate.set(v,y); |
---|
121 | _mate.set(y,v); |
---|
122 | break; |
---|
123 | } |
---|
124 | } |
---|
125 | } |
---|
126 | } |
---|
127 | |
---|
128 | ///\brief Initialize the matching from each nodes' mate. |
---|
129 | /// |
---|
130 | ///Initialize the matching from a \c Node valued \c Node map. This |
---|
131 | ///map must be \e symmetric, i.e. if \c map[u]==v then \c |
---|
132 | ///map[v]==u must hold, and \c uv will be an arc of the initial |
---|
133 | ///matching. |
---|
134 | template <typename MateMap> |
---|
135 | void mateMapInit(MateMap& map) { |
---|
136 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
137 | _mate.set(v,map[v]); |
---|
138 | position.set(v,C); |
---|
139 | } |
---|
140 | } |
---|
141 | |
---|
142 | ///\brief Initialize the matching from a node map with the |
---|
143 | ///incident matching arcs. |
---|
144 | /// |
---|
145 | ///Initialize the matching from an \c Edge valued \c Node map. \c |
---|
146 | ///map[v] must be an \c Edge incident to \c v. This map must have |
---|
147 | ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c |
---|
148 | ///g.oppositeNode(v,map[v])==u holds, and now some arc joining \c |
---|
149 | ///u to \c v will be an arc of the matching. |
---|
150 | template<typename MatchingMap> |
---|
151 | void matchingMapInit(MatchingMap& map) { |
---|
152 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
153 | position.set(v,C); |
---|
154 | Edge e=map[v]; |
---|
155 | if ( e!=INVALID ) |
---|
156 | _mate.set(v,g.oppositeNode(v,e)); |
---|
157 | else |
---|
158 | _mate.set(v,INVALID); |
---|
159 | } |
---|
160 | } |
---|
161 | |
---|
162 | ///\brief Initialize the matching from the map containing the |
---|
163 | ///undirected matching arcs. |
---|
164 | /// |
---|
165 | ///Initialize the matching from a \c bool valued \c Edge map. This |
---|
166 | ///map must have the property that there are no two incident arcs |
---|
167 | ///\c e, \c f with \c map[e]==map[f]==true. The arcs \c e with \c |
---|
168 | ///map[e]==true form the matching. |
---|
169 | template <typename MatchingMap> |
---|
170 | void matchingInit(MatchingMap& map) { |
---|
171 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
172 | _mate.set(v,INVALID); |
---|
173 | position.set(v,C); |
---|
174 | } |
---|
175 | for(EdgeIt e(g); e!=INVALID; ++e) { |
---|
176 | if ( map[e] ) { |
---|
177 | Node u=g.u(e); |
---|
178 | Node v=g.v(e); |
---|
179 | _mate.set(u,v); |
---|
180 | _mate.set(v,u); |
---|
181 | } |
---|
182 | } |
---|
183 | } |
---|
184 | |
---|
185 | |
---|
186 | ///\brief Runs Edmonds' algorithm. |
---|
187 | /// |
---|
188 | ///Runs Edmonds' algorithm for sparse digraphs (number of arcs < |
---|
189 | ///2*number of nodes), and a heuristical Edmonds' algorithm with a |
---|
190 | ///heuristic of postponing shrinks for dense digraphs. |
---|
191 | void run() { |
---|
192 | if (countEdges(g) < HEUR_density * countNodes(g)) { |
---|
193 | greedyInit(); |
---|
194 | startSparse(); |
---|
195 | } else { |
---|
196 | init(); |
---|
197 | startDense(); |
---|
198 | } |
---|
199 | } |
---|
200 | |
---|
201 | |
---|
202 | ///\brief Starts Edmonds' algorithm. |
---|
203 | /// |
---|
204 | ///If runs the original Edmonds' algorithm. |
---|
205 | void startSparse() { |
---|
206 | |
---|
207 | typename Graph::template NodeMap<Node> ear(g,INVALID); |
---|
208 | //undefined for the base nodes of the blossoms (i.e. for the |
---|
209 | //representative elements of UFE blossom) and for the nodes in C |
---|
210 | |
---|
211 | UFECrossRef blossom_base(g); |
---|
212 | UFE blossom(blossom_base); |
---|
213 | NV rep(countNodes(g)); |
---|
214 | |
---|
215 | EFECrossRef tree_base(g); |
---|
216 | EFE tree(tree_base); |
---|
217 | |
---|
218 | //If these UFE's would be members of the class then also |
---|
219 | //blossom_base and tree_base should be a member. |
---|
220 | |
---|
221 | //We build only one tree and the other vertices uncovered by the |
---|
222 | //matching belong to C. (They can be considered as singleton |
---|
223 | //trees.) If this tree can be augmented or no more |
---|
224 | //grow/augmentation/shrink is possible then we return to this |
---|
225 | //"for" cycle. |
---|
226 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
227 | if (position[v]==C && _mate[v]==INVALID) { |
---|
228 | rep[blossom.insert(v)] = v; |
---|
229 | tree.insert(v); |
---|
230 | position.set(v,D); |
---|
231 | normShrink(v, ear, blossom, rep, tree); |
---|
232 | } |
---|
233 | } |
---|
234 | } |
---|
235 | |
---|
236 | ///\brief Starts Edmonds' algorithm. |
---|
237 | /// |
---|
238 | ///It runs Edmonds' algorithm with a heuristic of postponing |
---|
239 | ///shrinks, giving a faster algorithm for dense digraphs. |
---|
240 | void startDense() { |
---|
241 | |
---|
242 | typename Graph::template NodeMap<Node> ear(g,INVALID); |
---|
243 | //undefined for the base nodes of the blossoms (i.e. for the |
---|
244 | //representative elements of UFE blossom) and for the nodes in C |
---|
245 | |
---|
246 | UFECrossRef blossom_base(g); |
---|
247 | UFE blossom(blossom_base); |
---|
248 | NV rep(countNodes(g)); |
---|
249 | |
---|
250 | EFECrossRef tree_base(g); |
---|
251 | EFE tree(tree_base); |
---|
252 | |
---|
253 | //If these UFE's would be members of the class then also |
---|
254 | //blossom_base and tree_base should be a member. |
---|
255 | |
---|
256 | //We build only one tree and the other vertices uncovered by the |
---|
257 | //matching belong to C. (They can be considered as singleton |
---|
258 | //trees.) If this tree can be augmented or no more |
---|
259 | //grow/augmentation/shrink is possible then we return to this |
---|
260 | //"for" cycle. |
---|
261 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
262 | if ( position[v]==C && _mate[v]==INVALID ) { |
---|
263 | rep[blossom.insert(v)] = v; |
---|
264 | tree.insert(v); |
---|
265 | position.set(v,D); |
---|
266 | lateShrink(v, ear, blossom, rep, tree); |
---|
267 | } |
---|
268 | } |
---|
269 | } |
---|
270 | |
---|
271 | |
---|
272 | |
---|
273 | ///\brief Returns the size of the actual matching stored. |
---|
274 | /// |
---|
275 | ///Returns the size of the actual matching stored. After \ref |
---|
276 | ///run() it returns the size of a maximum matching in the digraph. |
---|
277 | int size() const { |
---|
278 | int s=0; |
---|
279 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
280 | if ( _mate[v]!=INVALID ) { |
---|
281 | ++s; |
---|
282 | } |
---|
283 | } |
---|
284 | return s/2; |
---|
285 | } |
---|
286 | |
---|
287 | |
---|
288 | ///\brief Returns the mate of a node in the actual matching. |
---|
289 | /// |
---|
290 | ///Returns the mate of a \c node in the actual matching. |
---|
291 | ///Returns INVALID if the \c node is not covered by the actual matching. |
---|
292 | Node mate(const Node& node) const { |
---|
293 | return _mate[node]; |
---|
294 | } |
---|
295 | |
---|
296 | ///\brief Returns the matching arc incident to the given node. |
---|
297 | /// |
---|
298 | ///Returns the matching arc of a \c node in the actual matching. |
---|
299 | ///Returns INVALID if the \c node is not covered by the actual matching. |
---|
300 | Edge matchingArc(const Node& node) const { |
---|
301 | if (_mate[node] == INVALID) return INVALID; |
---|
302 | Node n = node < _mate[node] ? node : _mate[node]; |
---|
303 | for (IncEdgeIt e(g, n); e != INVALID; ++e) { |
---|
304 | if (g.oppositeNode(n, e) == _mate[n]) { |
---|
305 | return e; |
---|
306 | } |
---|
307 | } |
---|
308 | return INVALID; |
---|
309 | } |
---|
310 | |
---|
311 | /// \brief Returns the class of the node in the Edmonds-Gallai |
---|
312 | /// decomposition. |
---|
313 | /// |
---|
314 | /// Returns the class of the node in the Edmonds-Gallai |
---|
315 | /// decomposition. |
---|
316 | DecompType decomposition(const Node& n) { |
---|
317 | return position[n] == A; |
---|
318 | } |
---|
319 | |
---|
320 | /// \brief Returns true when the node is in the barrier. |
---|
321 | /// |
---|
322 | /// Returns true when the node is in the barrier. |
---|
323 | bool barrier(const Node& n) { |
---|
324 | return position[n] == A; |
---|
325 | } |
---|
326 | |
---|
327 | ///\brief Gives back the matching in a \c Node of mates. |
---|
328 | /// |
---|
329 | ///Writes the stored matching to a \c Node valued \c Node map. The |
---|
330 | ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c |
---|
331 | ///map[v]==u will hold, and now \c uv is an arc of the matching. |
---|
332 | template <typename MateMap> |
---|
333 | void mateMap(MateMap& map) const { |
---|
334 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
335 | map.set(v,_mate[v]); |
---|
336 | } |
---|
337 | } |
---|
338 | |
---|
339 | ///\brief Gives back the matching in an \c Edge valued \c Node |
---|
340 | ///map. |
---|
341 | /// |
---|
342 | ///Writes the stored matching to an \c Edge valued \c Node |
---|
343 | ///map. \c map[v] will be an \c Edge incident to \c v. This |
---|
344 | ///map will have the property that if \c g.oppositeNode(u,map[u]) |
---|
345 | ///== v then \c map[u]==map[v] holds, and now this arc is an arc |
---|
346 | ///of the matching. |
---|
347 | template <typename MatchingMap> |
---|
348 | void matchingMap(MatchingMap& map) const { |
---|
349 | typename Graph::template NodeMap<bool> todo(g,true); |
---|
350 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
351 | if (_mate[v]!=INVALID && v < _mate[v]) { |
---|
352 | Node u=_mate[v]; |
---|
353 | for(IncEdgeIt e(g,v); e!=INVALID; ++e) { |
---|
354 | if ( g.runningNode(e) == u ) { |
---|
355 | map.set(u,e); |
---|
356 | map.set(v,e); |
---|
357 | todo.set(u,false); |
---|
358 | todo.set(v,false); |
---|
359 | break; |
---|
360 | } |
---|
361 | } |
---|
362 | } |
---|
363 | } |
---|
364 | } |
---|
365 | |
---|
366 | |
---|
367 | ///\brief Gives back the matching in a \c bool valued \c Edge |
---|
368 | ///map. |
---|
369 | /// |
---|
370 | ///Writes the matching stored to a \c bool valued \c Arc |
---|
371 | ///map. This map will have the property that there are no two |
---|
372 | ///incident arcs \c e, \c f with \c map[e]==map[f]==true. The |
---|
373 | ///arcs \c e with \c map[e]==true form the matching. |
---|
374 | template<typename MatchingMap> |
---|
375 | void matching(MatchingMap& map) const { |
---|
376 | for(EdgeIt e(g); e!=INVALID; ++e) map.set(e,false); |
---|
377 | |
---|
378 | typename Graph::template NodeMap<bool> todo(g,true); |
---|
379 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
380 | if ( todo[v] && _mate[v]!=INVALID ) { |
---|
381 | Node u=_mate[v]; |
---|
382 | for(IncEdgeIt e(g,v); e!=INVALID; ++e) { |
---|
383 | if ( g.runningNode(e) == u ) { |
---|
384 | map.set(e,true); |
---|
385 | todo.set(u,false); |
---|
386 | todo.set(v,false); |
---|
387 | break; |
---|
388 | } |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | |
---|
395 | ///\brief Returns the canonical decomposition of the digraph after running |
---|
396 | ///the algorithm. |
---|
397 | /// |
---|
398 | ///After calling any run methods of the class, it writes the |
---|
399 | ///Gallai-Edmonds canonical decomposition of the digraph. \c map |
---|
400 | ///must be a node map of \ref DecompType 's. |
---|
401 | template <typename DecompositionMap> |
---|
402 | void decomposition(DecompositionMap& map) const { |
---|
403 | for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]); |
---|
404 | } |
---|
405 | |
---|
406 | ///\brief Returns a barrier on the nodes. |
---|
407 | /// |
---|
408 | ///After calling any run methods of the class, it writes a |
---|
409 | ///canonical barrier on the nodes. The odd component number of the |
---|
410 | ///remaining digraph minus the barrier size is a lower bound for the |
---|
411 | ///uncovered nodes in the digraph. The \c map must be a node map of |
---|
412 | ///bools. |
---|
413 | template <typename BarrierMap> |
---|
414 | void barrier(BarrierMap& barrier) { |
---|
415 | for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A); |
---|
416 | } |
---|
417 | |
---|
418 | private: |
---|
419 | |
---|
420 | |
---|
421 | void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear, |
---|
422 | UFE& blossom, NV& rep, EFE& tree) { |
---|
423 | //We have one tree which we grow, and also shrink but only if it |
---|
424 | //cannot be postponed. If we augment then we return to the "for" |
---|
425 | //cycle of runEdmonds(). |
---|
426 | |
---|
427 | std::queue<Node> Q; //queue of the totally unscanned nodes |
---|
428 | Q.push(v); |
---|
429 | std::queue<Node> R; |
---|
430 | //queue of the nodes which must be scanned for a possible shrink |
---|
431 | |
---|
432 | while ( !Q.empty() ) { |
---|
433 | Node x=Q.front(); |
---|
434 | Q.pop(); |
---|
435 | for( IncEdgeIt e(g,x); e!= INVALID; ++e ) { |
---|
436 | Node y=g.runningNode(e); |
---|
437 | //growOrAugment grows if y is covered by the matching and |
---|
438 | //augments if not. In this latter case it returns 1. |
---|
439 | if (position[y]==C && |
---|
440 | growOrAugment(y, x, ear, blossom, rep, tree, Q)) return; |
---|
441 | } |
---|
442 | R.push(x); |
---|
443 | } |
---|
444 | |
---|
445 | while ( !R.empty() ) { |
---|
446 | Node x=R.front(); |
---|
447 | R.pop(); |
---|
448 | |
---|
449 | for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) { |
---|
450 | Node y=g.runningNode(e); |
---|
451 | |
---|
452 | if ( position[y] == D && blossom.find(x) != blossom.find(y) ) |
---|
453 | //Recall that we have only one tree. |
---|
454 | shrink( x, y, ear, blossom, rep, tree, Q); |
---|
455 | |
---|
456 | while ( !Q.empty() ) { |
---|
457 | Node z=Q.front(); |
---|
458 | Q.pop(); |
---|
459 | for( IncEdgeIt f(g,z); f!= INVALID; ++f ) { |
---|
460 | Node w=g.runningNode(f); |
---|
461 | //growOrAugment grows if y is covered by the matching and |
---|
462 | //augments if not. In this latter case it returns 1. |
---|
463 | if (position[w]==C && |
---|
464 | growOrAugment(w, z, ear, blossom, rep, tree, Q)) return; |
---|
465 | } |
---|
466 | R.push(z); |
---|
467 | } |
---|
468 | } //for e |
---|
469 | } // while ( !R.empty() ) |
---|
470 | } |
---|
471 | |
---|
472 | void normShrink(Node v, typename Graph::template NodeMap<Node>& ear, |
---|
473 | UFE& blossom, NV& rep, EFE& tree) { |
---|
474 | //We have one tree, which we grow and shrink. If we augment then we |
---|
475 | //return to the "for" cycle of runEdmonds(). |
---|
476 | |
---|
477 | std::queue<Node> Q; //queue of the unscanned nodes |
---|
478 | Q.push(v); |
---|
479 | while ( !Q.empty() ) { |
---|
480 | |
---|
481 | Node x=Q.front(); |
---|
482 | Q.pop(); |
---|
483 | |
---|
484 | for( IncEdgeIt e(g,x); e!=INVALID; ++e ) { |
---|
485 | Node y=g.runningNode(e); |
---|
486 | |
---|
487 | switch ( position[y] ) { |
---|
488 | case D: //x and y must be in the same tree |
---|
489 | if ( blossom.find(x) != blossom.find(y)) |
---|
490 | //x and y are in the same tree |
---|
491 | shrink(x, y, ear, blossom, rep, tree, Q); |
---|
492 | break; |
---|
493 | case C: |
---|
494 | //growOrAugment grows if y is covered by the matching and |
---|
495 | //augments if not. In this latter case it returns 1. |
---|
496 | if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return; |
---|
497 | break; |
---|
498 | default: break; |
---|
499 | } |
---|
500 | } |
---|
501 | } |
---|
502 | } |
---|
503 | |
---|
504 | void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear, |
---|
505 | UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) { |
---|
506 | //x and y are the two adjacent vertices in two blossoms. |
---|
507 | |
---|
508 | typename Graph::template NodeMap<bool> path(g,false); |
---|
509 | |
---|
510 | Node b=rep[blossom.find(x)]; |
---|
511 | path.set(b,true); |
---|
512 | b=_mate[b]; |
---|
513 | while ( b!=INVALID ) { |
---|
514 | b=rep[blossom.find(ear[b])]; |
---|
515 | path.set(b,true); |
---|
516 | b=_mate[b]; |
---|
517 | } //we go until the root through bases of blossoms and odd vertices |
---|
518 | |
---|
519 | Node top=y; |
---|
520 | Node middle=rep[blossom.find(top)]; |
---|
521 | Node bottom=x; |
---|
522 | while ( !path[middle] ) |
---|
523 | shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q); |
---|
524 | //Until we arrive to a node on the path, we update blossom, tree |
---|
525 | //and the positions of the odd nodes. |
---|
526 | |
---|
527 | Node base=middle; |
---|
528 | top=x; |
---|
529 | middle=rep[blossom.find(top)]; |
---|
530 | bottom=y; |
---|
531 | Node blossom_base=rep[blossom.find(base)]; |
---|
532 | while ( middle!=blossom_base ) |
---|
533 | shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q); |
---|
534 | //Until we arrive to a node on the path, we update blossom, tree |
---|
535 | //and the positions of the odd nodes. |
---|
536 | |
---|
537 | rep[blossom.find(base)] = base; |
---|
538 | } |
---|
539 | |
---|
540 | void shrinkStep(Node& top, Node& middle, Node& bottom, |
---|
541 | typename Graph::template NodeMap<Node>& ear, |
---|
542 | UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) { |
---|
543 | //We traverse a blossom and update everything. |
---|
544 | |
---|
545 | ear.set(top,bottom); |
---|
546 | Node t=top; |
---|
547 | while ( t!=middle ) { |
---|
548 | Node u=_mate[t]; |
---|
549 | t=ear[u]; |
---|
550 | ear.set(t,u); |
---|
551 | } |
---|
552 | bottom=_mate[middle]; |
---|
553 | position.set(bottom,D); |
---|
554 | Q.push(bottom); |
---|
555 | top=ear[bottom]; |
---|
556 | Node oldmiddle=middle; |
---|
557 | middle=rep[blossom.find(top)]; |
---|
558 | tree.erase(bottom); |
---|
559 | tree.erase(oldmiddle); |
---|
560 | blossom.insert(bottom); |
---|
561 | blossom.join(bottom, oldmiddle); |
---|
562 | blossom.join(top, oldmiddle); |
---|
563 | } |
---|
564 | |
---|
565 | |
---|
566 | |
---|
567 | bool growOrAugment(Node& y, Node& x, typename Graph::template |
---|
568 | NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree, |
---|
569 | std::queue<Node>& Q) { |
---|
570 | //x is in a blossom in the tree, y is outside. If y is covered by |
---|
571 | //the matching we grow, otherwise we augment. In this case we |
---|
572 | //return 1. |
---|
573 | |
---|
574 | if ( _mate[y]!=INVALID ) { //grow |
---|
575 | ear.set(y,x); |
---|
576 | Node w=_mate[y]; |
---|
577 | rep[blossom.insert(w)] = w; |
---|
578 | position.set(y,A); |
---|
579 | position.set(w,D); |
---|
580 | int t = tree.find(rep[blossom.find(x)]); |
---|
581 | tree.insert(y,t); |
---|
582 | tree.insert(w,t); |
---|
583 | Q.push(w); |
---|
584 | } else { //augment |
---|
585 | augment(x, ear, blossom, rep, tree); |
---|
586 | _mate.set(x,y); |
---|
587 | _mate.set(y,x); |
---|
588 | return true; |
---|
589 | } |
---|
590 | return false; |
---|
591 | } |
---|
592 | |
---|
593 | void augment(Node x, typename Graph::template NodeMap<Node>& ear, |
---|
594 | UFE& blossom, NV& rep, EFE& tree) { |
---|
595 | Node v=_mate[x]; |
---|
596 | while ( v!=INVALID ) { |
---|
597 | |
---|
598 | Node u=ear[v]; |
---|
599 | _mate.set(v,u); |
---|
600 | Node tmp=v; |
---|
601 | v=_mate[u]; |
---|
602 | _mate.set(u,tmp); |
---|
603 | } |
---|
604 | int y = tree.find(rep[blossom.find(x)]); |
---|
605 | for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) { |
---|
606 | if ( position[tit] == D ) { |
---|
607 | int b = blossom.find(tit); |
---|
608 | for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) { |
---|
609 | position.set(bit, C); |
---|
610 | } |
---|
611 | blossom.eraseClass(b); |
---|
612 | } else position.set(tit, C); |
---|
613 | } |
---|
614 | tree.eraseClass(y); |
---|
615 | |
---|
616 | } |
---|
617 | |
---|
618 | }; |
---|
619 | |
---|
620 | /// \ingroup matching |
---|
621 | /// |
---|
622 | /// \brief Weighted matching in general graphs |
---|
623 | /// |
---|
624 | /// This class provides an efficient implementation of Edmond's |
---|
625 | /// maximum weighted matching algorithm. The implementation is based |
---|
626 | /// on extensive use of priority queues and provides |
---|
627 | /// \f$O(nm\log(n))\f$ time complexity. |
---|
628 | /// |
---|
629 | /// The maximum weighted matching problem is to find undirected |
---|
630 | /// arcs in the digraph with maximum overall weight and no two of |
---|
631 | /// them shares their endpoints. The problem can be formulated with |
---|
632 | /// the next linear program: |
---|
633 | /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
---|
634 | ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] |
---|
635 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
---|
636 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
---|
637 | /// where \f$\delta(X)\f$ is the set of arcs incident to a node in |
---|
638 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in |
---|
639 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of |
---|
640 | /// the nodes. |
---|
641 | /// |
---|
642 | /// The algorithm calculates an optimal matching and a proof of the |
---|
643 | /// optimality. The solution of the dual problem can be used to check |
---|
644 | /// the result of the algorithm. The dual linear problem is the next: |
---|
645 | /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f] |
---|
646 | /// \f[y_u \ge 0 \quad \forall u \in V\f] |
---|
647 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
---|
648 | /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f] |
---|
649 | /// |
---|
650 | /// The algorithm can be executed with \c run() or the \c init() and |
---|
651 | /// then the \c start() member functions. After it the matching can |
---|
652 | /// be asked with \c matching() or mate() functions. The dual |
---|
653 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
---|
654 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
---|
655 | /// "BlossomIt" nested class which is able to iterate on the nodes |
---|
656 | /// of a blossom. If the value type is integral then the dual |
---|
657 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
---|
658 | template <typename _Graph, |
---|
659 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
---|
660 | class MaxWeightedMatching { |
---|
661 | public: |
---|
662 | |
---|
663 | typedef _Graph Graph; |
---|
664 | typedef _WeightMap WeightMap; |
---|
665 | typedef typename WeightMap::Value Value; |
---|
666 | |
---|
667 | /// \brief Scaling factor for dual solution |
---|
668 | /// |
---|
669 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
---|
670 | /// according to the value type. |
---|
671 | static const int dualScale = |
---|
672 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
---|
673 | |
---|
674 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
---|
675 | MatchingMap; |
---|
676 | |
---|
677 | private: |
---|
678 | |
---|
679 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
---|
680 | |
---|
681 | typedef typename Graph::template NodeMap<Value> NodePotential; |
---|
682 | typedef std::vector<Node> BlossomNodeList; |
---|
683 | |
---|
684 | struct BlossomVariable { |
---|
685 | int begin, end; |
---|
686 | Value value; |
---|
687 | |
---|
688 | BlossomVariable(int _begin, int _end, Value _value) |
---|
689 | : begin(_begin), end(_end), value(_value) {} |
---|
690 | |
---|
691 | }; |
---|
692 | |
---|
693 | typedef std::vector<BlossomVariable> BlossomPotential; |
---|
694 | |
---|
695 | const Graph& _graph; |
---|
696 | const WeightMap& _weight; |
---|
697 | |
---|
698 | MatchingMap* _matching; |
---|
699 | |
---|
700 | NodePotential* _node_potential; |
---|
701 | |
---|
702 | BlossomPotential _blossom_potential; |
---|
703 | BlossomNodeList _blossom_node_list; |
---|
704 | |
---|
705 | int _node_num; |
---|
706 | int _blossom_num; |
---|
707 | |
---|
708 | typedef typename Graph::template NodeMap<int> NodeIntMap; |
---|
709 | typedef typename Graph::template ArcMap<int> ArcIntMap; |
---|
710 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
711 | typedef RangeMap<int> IntIntMap; |
---|
712 | |
---|
713 | enum Status { |
---|
714 | EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
---|
715 | }; |
---|
716 | |
---|
717 | typedef HeapUnionFind<Value, NodeIntMap> BlossomSet; |
---|
718 | struct BlossomData { |
---|
719 | int tree; |
---|
720 | Status status; |
---|
721 | Arc pred, next; |
---|
722 | Value pot, offset; |
---|
723 | Node base; |
---|
724 | }; |
---|
725 | |
---|
726 | NodeIntMap *_blossom_index; |
---|
727 | BlossomSet *_blossom_set; |
---|
728 | RangeMap<BlossomData>* _blossom_data; |
---|
729 | |
---|
730 | NodeIntMap *_node_index; |
---|
731 | ArcIntMap *_node_heap_index; |
---|
732 | |
---|
733 | struct NodeData { |
---|
734 | |
---|
735 | NodeData(ArcIntMap& node_heap_index) |
---|
736 | : heap(node_heap_index) {} |
---|
737 | |
---|
738 | int blossom; |
---|
739 | Value pot; |
---|
740 | BinHeap<Value, ArcIntMap> heap; |
---|
741 | std::map<int, Arc> heap_index; |
---|
742 | |
---|
743 | int tree; |
---|
744 | }; |
---|
745 | |
---|
746 | RangeMap<NodeData>* _node_data; |
---|
747 | |
---|
748 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
---|
749 | |
---|
750 | IntIntMap *_tree_set_index; |
---|
751 | TreeSet *_tree_set; |
---|
752 | |
---|
753 | NodeIntMap *_delta1_index; |
---|
754 | BinHeap<Value, NodeIntMap> *_delta1; |
---|
755 | |
---|
756 | IntIntMap *_delta2_index; |
---|
757 | BinHeap<Value, IntIntMap> *_delta2; |
---|
758 | |
---|
759 | EdgeIntMap *_delta3_index; |
---|
760 | BinHeap<Value, EdgeIntMap> *_delta3; |
---|
761 | |
---|
762 | IntIntMap *_delta4_index; |
---|
763 | BinHeap<Value, IntIntMap> *_delta4; |
---|
764 | |
---|
765 | Value _delta_sum; |
---|
766 | |
---|
767 | void createStructures() { |
---|
768 | _node_num = countNodes(_graph); |
---|
769 | _blossom_num = _node_num * 3 / 2; |
---|
770 | |
---|
771 | if (!_matching) { |
---|
772 | _matching = new MatchingMap(_graph); |
---|
773 | } |
---|
774 | if (!_node_potential) { |
---|
775 | _node_potential = new NodePotential(_graph); |
---|
776 | } |
---|
777 | if (!_blossom_set) { |
---|
778 | _blossom_index = new NodeIntMap(_graph); |
---|
779 | _blossom_set = new BlossomSet(*_blossom_index); |
---|
780 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
---|
781 | } |
---|
782 | |
---|
783 | if (!_node_index) { |
---|
784 | _node_index = new NodeIntMap(_graph); |
---|
785 | _node_heap_index = new ArcIntMap(_graph); |
---|
786 | _node_data = new RangeMap<NodeData>(_node_num, |
---|
787 | NodeData(*_node_heap_index)); |
---|
788 | } |
---|
789 | |
---|
790 | if (!_tree_set) { |
---|
791 | _tree_set_index = new IntIntMap(_blossom_num); |
---|
792 | _tree_set = new TreeSet(*_tree_set_index); |
---|
793 | } |
---|
794 | if (!_delta1) { |
---|
795 | _delta1_index = new NodeIntMap(_graph); |
---|
796 | _delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index); |
---|
797 | } |
---|
798 | if (!_delta2) { |
---|
799 | _delta2_index = new IntIntMap(_blossom_num); |
---|
800 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
---|
801 | } |
---|
802 | if (!_delta3) { |
---|
803 | _delta3_index = new EdgeIntMap(_graph); |
---|
804 | _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index); |
---|
805 | } |
---|
806 | if (!_delta4) { |
---|
807 | _delta4_index = new IntIntMap(_blossom_num); |
---|
808 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
---|
809 | } |
---|
810 | } |
---|
811 | |
---|
812 | void destroyStructures() { |
---|
813 | _node_num = countNodes(_graph); |
---|
814 | _blossom_num = _node_num * 3 / 2; |
---|
815 | |
---|
816 | if (_matching) { |
---|
817 | delete _matching; |
---|
818 | } |
---|
819 | if (_node_potential) { |
---|
820 | delete _node_potential; |
---|
821 | } |
---|
822 | if (_blossom_set) { |
---|
823 | delete _blossom_index; |
---|
824 | delete _blossom_set; |
---|
825 | delete _blossom_data; |
---|
826 | } |
---|
827 | |
---|
828 | if (_node_index) { |
---|
829 | delete _node_index; |
---|
830 | delete _node_heap_index; |
---|
831 | delete _node_data; |
---|
832 | } |
---|
833 | |
---|
834 | if (_tree_set) { |
---|
835 | delete _tree_set_index; |
---|
836 | delete _tree_set; |
---|
837 | } |
---|
838 | if (_delta1) { |
---|
839 | delete _delta1_index; |
---|
840 | delete _delta1; |
---|
841 | } |
---|
842 | if (_delta2) { |
---|
843 | delete _delta2_index; |
---|
844 | delete _delta2; |
---|
845 | } |
---|
846 | if (_delta3) { |
---|
847 | delete _delta3_index; |
---|
848 | delete _delta3; |
---|
849 | } |
---|
850 | if (_delta4) { |
---|
851 | delete _delta4_index; |
---|
852 | delete _delta4; |
---|
853 | } |
---|
854 | } |
---|
855 | |
---|
856 | void matchedToEven(int blossom, int tree) { |
---|
857 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
858 | _delta2->erase(blossom); |
---|
859 | } |
---|
860 | |
---|
861 | if (!_blossom_set->trivial(blossom)) { |
---|
862 | (*_blossom_data)[blossom].pot -= |
---|
863 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
---|
864 | } |
---|
865 | |
---|
866 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
867 | n != INVALID; ++n) { |
---|
868 | |
---|
869 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
870 | int ni = (*_node_index)[n]; |
---|
871 | |
---|
872 | (*_node_data)[ni].heap.clear(); |
---|
873 | (*_node_data)[ni].heap_index.clear(); |
---|
874 | |
---|
875 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
---|
876 | |
---|
877 | _delta1->push(n, (*_node_data)[ni].pot); |
---|
878 | |
---|
879 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
880 | Node v = _graph.source(e); |
---|
881 | int vb = _blossom_set->find(v); |
---|
882 | int vi = (*_node_index)[v]; |
---|
883 | |
---|
884 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
885 | dualScale * _weight[e]; |
---|
886 | |
---|
887 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
888 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
889 | _delta3->push(e, rw / 2); |
---|
890 | } |
---|
891 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
892 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
---|
893 | _delta3->push(e, rw); |
---|
894 | } |
---|
895 | } else { |
---|
896 | typename std::map<int, Arc>::iterator it = |
---|
897 | (*_node_data)[vi].heap_index.find(tree); |
---|
898 | |
---|
899 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
900 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
901 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
902 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
903 | it->second = e; |
---|
904 | } |
---|
905 | } else { |
---|
906 | (*_node_data)[vi].heap.push(e, rw); |
---|
907 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
908 | } |
---|
909 | |
---|
910 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
911 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
912 | |
---|
913 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
914 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
915 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
916 | (*_blossom_data)[vb].offset); |
---|
917 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
918 | (*_blossom_data)[vb].offset){ |
---|
919 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
920 | (*_blossom_data)[vb].offset); |
---|
921 | } |
---|
922 | } |
---|
923 | } |
---|
924 | } |
---|
925 | } |
---|
926 | } |
---|
927 | (*_blossom_data)[blossom].offset = 0; |
---|
928 | } |
---|
929 | |
---|
930 | void matchedToOdd(int blossom) { |
---|
931 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
932 | _delta2->erase(blossom); |
---|
933 | } |
---|
934 | (*_blossom_data)[blossom].offset += _delta_sum; |
---|
935 | if (!_blossom_set->trivial(blossom)) { |
---|
936 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
---|
937 | (*_blossom_data)[blossom].offset); |
---|
938 | } |
---|
939 | } |
---|
940 | |
---|
941 | void evenToMatched(int blossom, int tree) { |
---|
942 | if (!_blossom_set->trivial(blossom)) { |
---|
943 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
---|
944 | } |
---|
945 | |
---|
946 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
947 | n != INVALID; ++n) { |
---|
948 | int ni = (*_node_index)[n]; |
---|
949 | (*_node_data)[ni].pot -= _delta_sum; |
---|
950 | |
---|
951 | _delta1->erase(n); |
---|
952 | |
---|
953 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
954 | Node v = _graph.source(e); |
---|
955 | int vb = _blossom_set->find(v); |
---|
956 | int vi = (*_node_index)[v]; |
---|
957 | |
---|
958 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
959 | dualScale * _weight[e]; |
---|
960 | |
---|
961 | if (vb == blossom) { |
---|
962 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
963 | _delta3->erase(e); |
---|
964 | } |
---|
965 | } else if ((*_blossom_data)[vb].status == EVEN) { |
---|
966 | |
---|
967 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
968 | _delta3->erase(e); |
---|
969 | } |
---|
970 | |
---|
971 | int vt = _tree_set->find(vb); |
---|
972 | |
---|
973 | if (vt != tree) { |
---|
974 | |
---|
975 | Arc r = _graph.oppositeArc(e); |
---|
976 | |
---|
977 | typename std::map<int, Arc>::iterator it = |
---|
978 | (*_node_data)[ni].heap_index.find(vt); |
---|
979 | |
---|
980 | if (it != (*_node_data)[ni].heap_index.end()) { |
---|
981 | if ((*_node_data)[ni].heap[it->second] > rw) { |
---|
982 | (*_node_data)[ni].heap.replace(it->second, r); |
---|
983 | (*_node_data)[ni].heap.decrease(r, rw); |
---|
984 | it->second = r; |
---|
985 | } |
---|
986 | } else { |
---|
987 | (*_node_data)[ni].heap.push(r, rw); |
---|
988 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
---|
989 | } |
---|
990 | |
---|
991 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
---|
992 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
---|
993 | |
---|
994 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
---|
995 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
996 | (*_blossom_data)[blossom].offset); |
---|
997 | } else if ((*_delta2)[blossom] > |
---|
998 | _blossom_set->classPrio(blossom) - |
---|
999 | (*_blossom_data)[blossom].offset){ |
---|
1000 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
---|
1001 | (*_blossom_data)[blossom].offset); |
---|
1002 | } |
---|
1003 | } |
---|
1004 | } |
---|
1005 | |
---|
1006 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
1007 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1008 | _delta3->erase(e); |
---|
1009 | } |
---|
1010 | } else { |
---|
1011 | |
---|
1012 | typename std::map<int, Arc>::iterator it = |
---|
1013 | (*_node_data)[vi].heap_index.find(tree); |
---|
1014 | |
---|
1015 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
1016 | (*_node_data)[vi].heap.erase(it->second); |
---|
1017 | (*_node_data)[vi].heap_index.erase(it); |
---|
1018 | if ((*_node_data)[vi].heap.empty()) { |
---|
1019 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
---|
1020 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
---|
1021 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
---|
1022 | } |
---|
1023 | |
---|
1024 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
1025 | if (_blossom_set->classPrio(vb) == |
---|
1026 | std::numeric_limits<Value>::max()) { |
---|
1027 | _delta2->erase(vb); |
---|
1028 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
---|
1029 | (*_blossom_data)[vb].offset) { |
---|
1030 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
---|
1031 | (*_blossom_data)[vb].offset); |
---|
1032 | } |
---|
1033 | } |
---|
1034 | } |
---|
1035 | } |
---|
1036 | } |
---|
1037 | } |
---|
1038 | } |
---|
1039 | |
---|
1040 | void oddToMatched(int blossom) { |
---|
1041 | (*_blossom_data)[blossom].offset -= _delta_sum; |
---|
1042 | |
---|
1043 | if (_blossom_set->classPrio(blossom) != |
---|
1044 | std::numeric_limits<Value>::max()) { |
---|
1045 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
1046 | (*_blossom_data)[blossom].offset); |
---|
1047 | } |
---|
1048 | |
---|
1049 | if (!_blossom_set->trivial(blossom)) { |
---|
1050 | _delta4->erase(blossom); |
---|
1051 | } |
---|
1052 | } |
---|
1053 | |
---|
1054 | void oddToEven(int blossom, int tree) { |
---|
1055 | if (!_blossom_set->trivial(blossom)) { |
---|
1056 | _delta4->erase(blossom); |
---|
1057 | (*_blossom_data)[blossom].pot -= |
---|
1058 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
---|
1059 | } |
---|
1060 | |
---|
1061 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
1062 | n != INVALID; ++n) { |
---|
1063 | int ni = (*_node_index)[n]; |
---|
1064 | |
---|
1065 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
1066 | |
---|
1067 | (*_node_data)[ni].heap.clear(); |
---|
1068 | (*_node_data)[ni].heap_index.clear(); |
---|
1069 | (*_node_data)[ni].pot += |
---|
1070 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
---|
1071 | |
---|
1072 | _delta1->push(n, (*_node_data)[ni].pot); |
---|
1073 | |
---|
1074 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1075 | Node v = _graph.source(e); |
---|
1076 | int vb = _blossom_set->find(v); |
---|
1077 | int vi = (*_node_index)[v]; |
---|
1078 | |
---|
1079 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
1080 | dualScale * _weight[e]; |
---|
1081 | |
---|
1082 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
1083 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
1084 | _delta3->push(e, rw / 2); |
---|
1085 | } |
---|
1086 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
1087 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
---|
1088 | _delta3->push(e, rw); |
---|
1089 | } |
---|
1090 | } else { |
---|
1091 | |
---|
1092 | typename std::map<int, Arc>::iterator it = |
---|
1093 | (*_node_data)[vi].heap_index.find(tree); |
---|
1094 | |
---|
1095 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
1096 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
1097 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
1098 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
1099 | it->second = e; |
---|
1100 | } |
---|
1101 | } else { |
---|
1102 | (*_node_data)[vi].heap.push(e, rw); |
---|
1103 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
1104 | } |
---|
1105 | |
---|
1106 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
1107 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
1108 | |
---|
1109 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
1110 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
1111 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
1112 | (*_blossom_data)[vb].offset); |
---|
1113 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
1114 | (*_blossom_data)[vb].offset) { |
---|
1115 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
1116 | (*_blossom_data)[vb].offset); |
---|
1117 | } |
---|
1118 | } |
---|
1119 | } |
---|
1120 | } |
---|
1121 | } |
---|
1122 | } |
---|
1123 | (*_blossom_data)[blossom].offset = 0; |
---|
1124 | } |
---|
1125 | |
---|
1126 | |
---|
1127 | void matchedToUnmatched(int blossom) { |
---|
1128 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
1129 | _delta2->erase(blossom); |
---|
1130 | } |
---|
1131 | |
---|
1132 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
1133 | n != INVALID; ++n) { |
---|
1134 | int ni = (*_node_index)[n]; |
---|
1135 | |
---|
1136 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
1137 | |
---|
1138 | (*_node_data)[ni].heap.clear(); |
---|
1139 | (*_node_data)[ni].heap_index.clear(); |
---|
1140 | |
---|
1141 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1142 | Node v = _graph.target(e); |
---|
1143 | int vb = _blossom_set->find(v); |
---|
1144 | int vi = (*_node_index)[v]; |
---|
1145 | |
---|
1146 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
1147 | dualScale * _weight[e]; |
---|
1148 | |
---|
1149 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
1150 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
---|
1151 | _delta3->push(e, rw); |
---|
1152 | } |
---|
1153 | } |
---|
1154 | } |
---|
1155 | } |
---|
1156 | } |
---|
1157 | |
---|
1158 | void unmatchedToMatched(int blossom) { |
---|
1159 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
1160 | n != INVALID; ++n) { |
---|
1161 | int ni = (*_node_index)[n]; |
---|
1162 | |
---|
1163 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1164 | Node v = _graph.source(e); |
---|
1165 | int vb = _blossom_set->find(v); |
---|
1166 | int vi = (*_node_index)[v]; |
---|
1167 | |
---|
1168 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
1169 | dualScale * _weight[e]; |
---|
1170 | |
---|
1171 | if (vb == blossom) { |
---|
1172 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1173 | _delta3->erase(e); |
---|
1174 | } |
---|
1175 | } else if ((*_blossom_data)[vb].status == EVEN) { |
---|
1176 | |
---|
1177 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1178 | _delta3->erase(e); |
---|
1179 | } |
---|
1180 | |
---|
1181 | int vt = _tree_set->find(vb); |
---|
1182 | |
---|
1183 | Arc r = _graph.oppositeArc(e); |
---|
1184 | |
---|
1185 | typename std::map<int, Arc>::iterator it = |
---|
1186 | (*_node_data)[ni].heap_index.find(vt); |
---|
1187 | |
---|
1188 | if (it != (*_node_data)[ni].heap_index.end()) { |
---|
1189 | if ((*_node_data)[ni].heap[it->second] > rw) { |
---|
1190 | (*_node_data)[ni].heap.replace(it->second, r); |
---|
1191 | (*_node_data)[ni].heap.decrease(r, rw); |
---|
1192 | it->second = r; |
---|
1193 | } |
---|
1194 | } else { |
---|
1195 | (*_node_data)[ni].heap.push(r, rw); |
---|
1196 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
---|
1197 | } |
---|
1198 | |
---|
1199 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
---|
1200 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
---|
1201 | |
---|
1202 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
---|
1203 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
1204 | (*_blossom_data)[blossom].offset); |
---|
1205 | } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
---|
1206 | (*_blossom_data)[blossom].offset){ |
---|
1207 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
---|
1208 | (*_blossom_data)[blossom].offset); |
---|
1209 | } |
---|
1210 | } |
---|
1211 | |
---|
1212 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
1213 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1214 | _delta3->erase(e); |
---|
1215 | } |
---|
1216 | } |
---|
1217 | } |
---|
1218 | } |
---|
1219 | } |
---|
1220 | |
---|
1221 | void alternatePath(int even, int tree) { |
---|
1222 | int odd; |
---|
1223 | |
---|
1224 | evenToMatched(even, tree); |
---|
1225 | (*_blossom_data)[even].status = MATCHED; |
---|
1226 | |
---|
1227 | while ((*_blossom_data)[even].pred != INVALID) { |
---|
1228 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
---|
1229 | (*_blossom_data)[odd].status = MATCHED; |
---|
1230 | oddToMatched(odd); |
---|
1231 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
---|
1232 | |
---|
1233 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
---|
1234 | (*_blossom_data)[even].status = MATCHED; |
---|
1235 | evenToMatched(even, tree); |
---|
1236 | (*_blossom_data)[even].next = |
---|
1237 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
---|
1238 | } |
---|
1239 | |
---|
1240 | } |
---|
1241 | |
---|
1242 | void destroyTree(int tree) { |
---|
1243 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
---|
1244 | if ((*_blossom_data)[b].status == EVEN) { |
---|
1245 | (*_blossom_data)[b].status = MATCHED; |
---|
1246 | evenToMatched(b, tree); |
---|
1247 | } else if ((*_blossom_data)[b].status == ODD) { |
---|
1248 | (*_blossom_data)[b].status = MATCHED; |
---|
1249 | oddToMatched(b); |
---|
1250 | } |
---|
1251 | } |
---|
1252 | _tree_set->eraseClass(tree); |
---|
1253 | } |
---|
1254 | |
---|
1255 | |
---|
1256 | void unmatchNode(const Node& node) { |
---|
1257 | int blossom = _blossom_set->find(node); |
---|
1258 | int tree = _tree_set->find(blossom); |
---|
1259 | |
---|
1260 | alternatePath(blossom, tree); |
---|
1261 | destroyTree(tree); |
---|
1262 | |
---|
1263 | (*_blossom_data)[blossom].status = UNMATCHED; |
---|
1264 | (*_blossom_data)[blossom].base = node; |
---|
1265 | matchedToUnmatched(blossom); |
---|
1266 | } |
---|
1267 | |
---|
1268 | |
---|
1269 | void augmentOnArc(const Edge& arc) { |
---|
1270 | |
---|
1271 | int left = _blossom_set->find(_graph.u(arc)); |
---|
1272 | int right = _blossom_set->find(_graph.v(arc)); |
---|
1273 | |
---|
1274 | if ((*_blossom_data)[left].status == EVEN) { |
---|
1275 | int left_tree = _tree_set->find(left); |
---|
1276 | alternatePath(left, left_tree); |
---|
1277 | destroyTree(left_tree); |
---|
1278 | } else { |
---|
1279 | (*_blossom_data)[left].status = MATCHED; |
---|
1280 | unmatchedToMatched(left); |
---|
1281 | } |
---|
1282 | |
---|
1283 | if ((*_blossom_data)[right].status == EVEN) { |
---|
1284 | int right_tree = _tree_set->find(right); |
---|
1285 | alternatePath(right, right_tree); |
---|
1286 | destroyTree(right_tree); |
---|
1287 | } else { |
---|
1288 | (*_blossom_data)[right].status = MATCHED; |
---|
1289 | unmatchedToMatched(right); |
---|
1290 | } |
---|
1291 | |
---|
1292 | (*_blossom_data)[left].next = _graph.direct(arc, true); |
---|
1293 | (*_blossom_data)[right].next = _graph.direct(arc, false); |
---|
1294 | } |
---|
1295 | |
---|
1296 | void extendOnArc(const Arc& arc) { |
---|
1297 | int base = _blossom_set->find(_graph.target(arc)); |
---|
1298 | int tree = _tree_set->find(base); |
---|
1299 | |
---|
1300 | int odd = _blossom_set->find(_graph.source(arc)); |
---|
1301 | _tree_set->insert(odd, tree); |
---|
1302 | (*_blossom_data)[odd].status = ODD; |
---|
1303 | matchedToOdd(odd); |
---|
1304 | (*_blossom_data)[odd].pred = arc; |
---|
1305 | |
---|
1306 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
---|
1307 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
---|
1308 | _tree_set->insert(even, tree); |
---|
1309 | (*_blossom_data)[even].status = EVEN; |
---|
1310 | matchedToEven(even, tree); |
---|
1311 | } |
---|
1312 | |
---|
1313 | void shrinkOnArc(const Edge& edge, int tree) { |
---|
1314 | int nca = -1; |
---|
1315 | std::vector<int> left_path, right_path; |
---|
1316 | |
---|
1317 | { |
---|
1318 | std::set<int> left_set, right_set; |
---|
1319 | int left = _blossom_set->find(_graph.u(edge)); |
---|
1320 | left_path.push_back(left); |
---|
1321 | left_set.insert(left); |
---|
1322 | |
---|
1323 | int right = _blossom_set->find(_graph.v(edge)); |
---|
1324 | right_path.push_back(right); |
---|
1325 | right_set.insert(right); |
---|
1326 | |
---|
1327 | while (true) { |
---|
1328 | |
---|
1329 | if ((*_blossom_data)[left].pred == INVALID) break; |
---|
1330 | |
---|
1331 | left = |
---|
1332 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
1333 | left_path.push_back(left); |
---|
1334 | left = |
---|
1335 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
1336 | left_path.push_back(left); |
---|
1337 | |
---|
1338 | left_set.insert(left); |
---|
1339 | |
---|
1340 | if (right_set.find(left) != right_set.end()) { |
---|
1341 | nca = left; |
---|
1342 | break; |
---|
1343 | } |
---|
1344 | |
---|
1345 | if ((*_blossom_data)[right].pred == INVALID) break; |
---|
1346 | |
---|
1347 | right = |
---|
1348 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
1349 | right_path.push_back(right); |
---|
1350 | right = |
---|
1351 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
1352 | right_path.push_back(right); |
---|
1353 | |
---|
1354 | right_set.insert(right); |
---|
1355 | |
---|
1356 | if (left_set.find(right) != left_set.end()) { |
---|
1357 | nca = right; |
---|
1358 | break; |
---|
1359 | } |
---|
1360 | |
---|
1361 | } |
---|
1362 | |
---|
1363 | if (nca == -1) { |
---|
1364 | if ((*_blossom_data)[left].pred == INVALID) { |
---|
1365 | nca = right; |
---|
1366 | while (left_set.find(nca) == left_set.end()) { |
---|
1367 | nca = |
---|
1368 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1369 | right_path.push_back(nca); |
---|
1370 | nca = |
---|
1371 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1372 | right_path.push_back(nca); |
---|
1373 | } |
---|
1374 | } else { |
---|
1375 | nca = left; |
---|
1376 | while (right_set.find(nca) == right_set.end()) { |
---|
1377 | nca = |
---|
1378 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1379 | left_path.push_back(nca); |
---|
1380 | nca = |
---|
1381 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1382 | left_path.push_back(nca); |
---|
1383 | } |
---|
1384 | } |
---|
1385 | } |
---|
1386 | } |
---|
1387 | |
---|
1388 | std::vector<int> subblossoms; |
---|
1389 | Arc prev; |
---|
1390 | |
---|
1391 | prev = _graph.direct(edge, true); |
---|
1392 | for (int i = 0; left_path[i] != nca; i += 2) { |
---|
1393 | subblossoms.push_back(left_path[i]); |
---|
1394 | (*_blossom_data)[left_path[i]].next = prev; |
---|
1395 | _tree_set->erase(left_path[i]); |
---|
1396 | |
---|
1397 | subblossoms.push_back(left_path[i + 1]); |
---|
1398 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
---|
1399 | oddToEven(left_path[i + 1], tree); |
---|
1400 | _tree_set->erase(left_path[i + 1]); |
---|
1401 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
---|
1402 | } |
---|
1403 | |
---|
1404 | int k = 0; |
---|
1405 | while (right_path[k] != nca) ++k; |
---|
1406 | |
---|
1407 | subblossoms.push_back(nca); |
---|
1408 | (*_blossom_data)[nca].next = prev; |
---|
1409 | |
---|
1410 | for (int i = k - 2; i >= 0; i -= 2) { |
---|
1411 | subblossoms.push_back(right_path[i + 1]); |
---|
1412 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
---|
1413 | oddToEven(right_path[i + 1], tree); |
---|
1414 | _tree_set->erase(right_path[i + 1]); |
---|
1415 | |
---|
1416 | (*_blossom_data)[right_path[i + 1]].next = |
---|
1417 | (*_blossom_data)[right_path[i + 1]].pred; |
---|
1418 | |
---|
1419 | subblossoms.push_back(right_path[i]); |
---|
1420 | _tree_set->erase(right_path[i]); |
---|
1421 | } |
---|
1422 | |
---|
1423 | int surface = |
---|
1424 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
---|
1425 | |
---|
1426 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
1427 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
1428 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
---|
1429 | } |
---|
1430 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
---|
1431 | } |
---|
1432 | |
---|
1433 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
---|
1434 | (*_blossom_data)[surface].offset = 0; |
---|
1435 | (*_blossom_data)[surface].status = EVEN; |
---|
1436 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
---|
1437 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
---|
1438 | |
---|
1439 | _tree_set->insert(surface, tree); |
---|
1440 | _tree_set->erase(nca); |
---|
1441 | } |
---|
1442 | |
---|
1443 | void splitBlossom(int blossom) { |
---|
1444 | Arc next = (*_blossom_data)[blossom].next; |
---|
1445 | Arc pred = (*_blossom_data)[blossom].pred; |
---|
1446 | |
---|
1447 | int tree = _tree_set->find(blossom); |
---|
1448 | |
---|
1449 | (*_blossom_data)[blossom].status = MATCHED; |
---|
1450 | oddToMatched(blossom); |
---|
1451 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
1452 | _delta2->erase(blossom); |
---|
1453 | } |
---|
1454 | |
---|
1455 | std::vector<int> subblossoms; |
---|
1456 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
1457 | |
---|
1458 | Value offset = (*_blossom_data)[blossom].offset; |
---|
1459 | int b = _blossom_set->find(_graph.source(pred)); |
---|
1460 | int d = _blossom_set->find(_graph.source(next)); |
---|
1461 | |
---|
1462 | int ib = -1, id = -1; |
---|
1463 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
1464 | if (subblossoms[i] == b) ib = i; |
---|
1465 | if (subblossoms[i] == d) id = i; |
---|
1466 | |
---|
1467 | (*_blossom_data)[subblossoms[i]].offset = offset; |
---|
1468 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
1469 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
---|
1470 | } |
---|
1471 | if (_blossom_set->classPrio(subblossoms[i]) != |
---|
1472 | std::numeric_limits<Value>::max()) { |
---|
1473 | _delta2->push(subblossoms[i], |
---|
1474 | _blossom_set->classPrio(subblossoms[i]) - |
---|
1475 | (*_blossom_data)[subblossoms[i]].offset); |
---|
1476 | } |
---|
1477 | } |
---|
1478 | |
---|
1479 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
---|
1480 | for (int i = (id + 1) % subblossoms.size(); |
---|
1481 | i != ib; i = (i + 2) % subblossoms.size()) { |
---|
1482 | int sb = subblossoms[i]; |
---|
1483 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1484 | (*_blossom_data)[sb].next = |
---|
1485 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1486 | } |
---|
1487 | |
---|
1488 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
---|
1489 | int sb = subblossoms[i]; |
---|
1490 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1491 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
1492 | |
---|
1493 | (*_blossom_data)[sb].status = ODD; |
---|
1494 | matchedToOdd(sb); |
---|
1495 | _tree_set->insert(sb, tree); |
---|
1496 | (*_blossom_data)[sb].pred = pred; |
---|
1497 | (*_blossom_data)[sb].next = |
---|
1498 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1499 | |
---|
1500 | pred = (*_blossom_data)[ub].next; |
---|
1501 | |
---|
1502 | (*_blossom_data)[tb].status = EVEN; |
---|
1503 | matchedToEven(tb, tree); |
---|
1504 | _tree_set->insert(tb, tree); |
---|
1505 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
---|
1506 | } |
---|
1507 | |
---|
1508 | (*_blossom_data)[subblossoms[id]].status = ODD; |
---|
1509 | matchedToOdd(subblossoms[id]); |
---|
1510 | _tree_set->insert(subblossoms[id], tree); |
---|
1511 | (*_blossom_data)[subblossoms[id]].next = next; |
---|
1512 | (*_blossom_data)[subblossoms[id]].pred = pred; |
---|
1513 | |
---|
1514 | } else { |
---|
1515 | |
---|
1516 | for (int i = (ib + 1) % subblossoms.size(); |
---|
1517 | i != id; i = (i + 2) % subblossoms.size()) { |
---|
1518 | int sb = subblossoms[i]; |
---|
1519 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1520 | (*_blossom_data)[sb].next = |
---|
1521 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1522 | } |
---|
1523 | |
---|
1524 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
---|
1525 | int sb = subblossoms[i]; |
---|
1526 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1527 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
1528 | |
---|
1529 | (*_blossom_data)[sb].status = ODD; |
---|
1530 | matchedToOdd(sb); |
---|
1531 | _tree_set->insert(sb, tree); |
---|
1532 | (*_blossom_data)[sb].next = next; |
---|
1533 | (*_blossom_data)[sb].pred = |
---|
1534 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1535 | |
---|
1536 | (*_blossom_data)[tb].status = EVEN; |
---|
1537 | matchedToEven(tb, tree); |
---|
1538 | _tree_set->insert(tb, tree); |
---|
1539 | (*_blossom_data)[tb].pred = |
---|
1540 | (*_blossom_data)[tb].next = |
---|
1541 | _graph.oppositeArc((*_blossom_data)[ub].next); |
---|
1542 | next = (*_blossom_data)[ub].next; |
---|
1543 | } |
---|
1544 | |
---|
1545 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
---|
1546 | matchedToOdd(subblossoms[ib]); |
---|
1547 | _tree_set->insert(subblossoms[ib], tree); |
---|
1548 | (*_blossom_data)[subblossoms[ib]].next = next; |
---|
1549 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
---|
1550 | } |
---|
1551 | _tree_set->erase(blossom); |
---|
1552 | } |
---|
1553 | |
---|
1554 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
---|
1555 | if (_blossom_set->trivial(blossom)) { |
---|
1556 | int bi = (*_node_index)[base]; |
---|
1557 | Value pot = (*_node_data)[bi].pot; |
---|
1558 | |
---|
1559 | _matching->set(base, matching); |
---|
1560 | _blossom_node_list.push_back(base); |
---|
1561 | _node_potential->set(base, pot); |
---|
1562 | } else { |
---|
1563 | |
---|
1564 | Value pot = (*_blossom_data)[blossom].pot; |
---|
1565 | int bn = _blossom_node_list.size(); |
---|
1566 | |
---|
1567 | std::vector<int> subblossoms; |
---|
1568 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
1569 | int b = _blossom_set->find(base); |
---|
1570 | int ib = -1; |
---|
1571 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
1572 | if (subblossoms[i] == b) { ib = i; break; } |
---|
1573 | } |
---|
1574 | |
---|
1575 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
---|
1576 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
---|
1577 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
---|
1578 | |
---|
1579 | Arc m = (*_blossom_data)[tb].next; |
---|
1580 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
---|
1581 | extractBlossom(tb, _graph.source(m), m); |
---|
1582 | } |
---|
1583 | extractBlossom(subblossoms[ib], base, matching); |
---|
1584 | |
---|
1585 | int en = _blossom_node_list.size(); |
---|
1586 | |
---|
1587 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
---|
1588 | } |
---|
1589 | } |
---|
1590 | |
---|
1591 | void extractMatching() { |
---|
1592 | std::vector<int> blossoms; |
---|
1593 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
---|
1594 | blossoms.push_back(c); |
---|
1595 | } |
---|
1596 | |
---|
1597 | for (int i = 0; i < int(blossoms.size()); ++i) { |
---|
1598 | if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
---|
1599 | |
---|
1600 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
---|
1601 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
---|
1602 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
---|
1603 | n != INVALID; ++n) { |
---|
1604 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
---|
1605 | } |
---|
1606 | |
---|
1607 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
---|
1608 | Node base = _graph.source(matching); |
---|
1609 | extractBlossom(blossoms[i], base, matching); |
---|
1610 | } else { |
---|
1611 | Node base = (*_blossom_data)[blossoms[i]].base; |
---|
1612 | extractBlossom(blossoms[i], base, INVALID); |
---|
1613 | } |
---|
1614 | } |
---|
1615 | } |
---|
1616 | |
---|
1617 | public: |
---|
1618 | |
---|
1619 | /// \brief Constructor |
---|
1620 | /// |
---|
1621 | /// Constructor. |
---|
1622 | MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
---|
1623 | : _graph(graph), _weight(weight), _matching(0), |
---|
1624 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
---|
1625 | _node_num(0), _blossom_num(0), |
---|
1626 | |
---|
1627 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
---|
1628 | _node_index(0), _node_heap_index(0), _node_data(0), |
---|
1629 | _tree_set_index(0), _tree_set(0), |
---|
1630 | |
---|
1631 | _delta1_index(0), _delta1(0), |
---|
1632 | _delta2_index(0), _delta2(0), |
---|
1633 | _delta3_index(0), _delta3(0), |
---|
1634 | _delta4_index(0), _delta4(0), |
---|
1635 | |
---|
1636 | _delta_sum() {} |
---|
1637 | |
---|
1638 | ~MaxWeightedMatching() { |
---|
1639 | destroyStructures(); |
---|
1640 | } |
---|
1641 | |
---|
1642 | /// \name Execution control |
---|
1643 | /// The simplest way to execute the algorithm is to use the member |
---|
1644 | /// \c run() member function. |
---|
1645 | |
---|
1646 | ///@{ |
---|
1647 | |
---|
1648 | /// \brief Initialize the algorithm |
---|
1649 | /// |
---|
1650 | /// Initialize the algorithm |
---|
1651 | void init() { |
---|
1652 | createStructures(); |
---|
1653 | |
---|
1654 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
1655 | _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP); |
---|
1656 | } |
---|
1657 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1658 | _delta1_index->set(n, _delta1->PRE_HEAP); |
---|
1659 | } |
---|
1660 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
1661 | _delta3_index->set(e, _delta3->PRE_HEAP); |
---|
1662 | } |
---|
1663 | for (int i = 0; i < _blossom_num; ++i) { |
---|
1664 | _delta2_index->set(i, _delta2->PRE_HEAP); |
---|
1665 | _delta4_index->set(i, _delta4->PRE_HEAP); |
---|
1666 | } |
---|
1667 | |
---|
1668 | int index = 0; |
---|
1669 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1670 | Value max = 0; |
---|
1671 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1672 | if (_graph.target(e) == n) continue; |
---|
1673 | if ((dualScale * _weight[e]) / 2 > max) { |
---|
1674 | max = (dualScale * _weight[e]) / 2; |
---|
1675 | } |
---|
1676 | } |
---|
1677 | _node_index->set(n, index); |
---|
1678 | (*_node_data)[index].pot = max; |
---|
1679 | _delta1->push(n, max); |
---|
1680 | int blossom = |
---|
1681 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
---|
1682 | |
---|
1683 | _tree_set->insert(blossom); |
---|
1684 | |
---|
1685 | (*_blossom_data)[blossom].status = EVEN; |
---|
1686 | (*_blossom_data)[blossom].pred = INVALID; |
---|
1687 | (*_blossom_data)[blossom].next = INVALID; |
---|
1688 | (*_blossom_data)[blossom].pot = 0; |
---|
1689 | (*_blossom_data)[blossom].offset = 0; |
---|
1690 | ++index; |
---|
1691 | } |
---|
1692 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
1693 | int si = (*_node_index)[_graph.u(e)]; |
---|
1694 | int ti = (*_node_index)[_graph.v(e)]; |
---|
1695 | if (_graph.u(e) != _graph.v(e)) { |
---|
1696 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
---|
1697 | dualScale * _weight[e]) / 2); |
---|
1698 | } |
---|
1699 | } |
---|
1700 | } |
---|
1701 | |
---|
1702 | /// \brief Starts the algorithm |
---|
1703 | /// |
---|
1704 | /// Starts the algorithm |
---|
1705 | void start() { |
---|
1706 | enum OpType { |
---|
1707 | D1, D2, D3, D4 |
---|
1708 | }; |
---|
1709 | |
---|
1710 | int unmatched = _node_num; |
---|
1711 | while (unmatched > 0) { |
---|
1712 | Value d1 = !_delta1->empty() ? |
---|
1713 | _delta1->prio() : std::numeric_limits<Value>::max(); |
---|
1714 | |
---|
1715 | Value d2 = !_delta2->empty() ? |
---|
1716 | _delta2->prio() : std::numeric_limits<Value>::max(); |
---|
1717 | |
---|
1718 | Value d3 = !_delta3->empty() ? |
---|
1719 | _delta3->prio() : std::numeric_limits<Value>::max(); |
---|
1720 | |
---|
1721 | Value d4 = !_delta4->empty() ? |
---|
1722 | _delta4->prio() : std::numeric_limits<Value>::max(); |
---|
1723 | |
---|
1724 | _delta_sum = d1; OpType ot = D1; |
---|
1725 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
---|
1726 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
---|
1727 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
---|
1728 | |
---|
1729 | |
---|
1730 | switch (ot) { |
---|
1731 | case D1: |
---|
1732 | { |
---|
1733 | Node n = _delta1->top(); |
---|
1734 | unmatchNode(n); |
---|
1735 | --unmatched; |
---|
1736 | } |
---|
1737 | break; |
---|
1738 | case D2: |
---|
1739 | { |
---|
1740 | int blossom = _delta2->top(); |
---|
1741 | Node n = _blossom_set->classTop(blossom); |
---|
1742 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
---|
1743 | extendOnArc(e); |
---|
1744 | } |
---|
1745 | break; |
---|
1746 | case D3: |
---|
1747 | { |
---|
1748 | Edge e = _delta3->top(); |
---|
1749 | |
---|
1750 | int left_blossom = _blossom_set->find(_graph.u(e)); |
---|
1751 | int right_blossom = _blossom_set->find(_graph.v(e)); |
---|
1752 | |
---|
1753 | if (left_blossom == right_blossom) { |
---|
1754 | _delta3->pop(); |
---|
1755 | } else { |
---|
1756 | int left_tree; |
---|
1757 | if ((*_blossom_data)[left_blossom].status == EVEN) { |
---|
1758 | left_tree = _tree_set->find(left_blossom); |
---|
1759 | } else { |
---|
1760 | left_tree = -1; |
---|
1761 | ++unmatched; |
---|
1762 | } |
---|
1763 | int right_tree; |
---|
1764 | if ((*_blossom_data)[right_blossom].status == EVEN) { |
---|
1765 | right_tree = _tree_set->find(right_blossom); |
---|
1766 | } else { |
---|
1767 | right_tree = -1; |
---|
1768 | ++unmatched; |
---|
1769 | } |
---|
1770 | |
---|
1771 | if (left_tree == right_tree) { |
---|
1772 | shrinkOnArc(e, left_tree); |
---|
1773 | } else { |
---|
1774 | augmentOnArc(e); |
---|
1775 | unmatched -= 2; |
---|
1776 | } |
---|
1777 | } |
---|
1778 | } break; |
---|
1779 | case D4: |
---|
1780 | splitBlossom(_delta4->top()); |
---|
1781 | break; |
---|
1782 | } |
---|
1783 | } |
---|
1784 | extractMatching(); |
---|
1785 | } |
---|
1786 | |
---|
1787 | /// \brief Runs %MaxWeightedMatching algorithm. |
---|
1788 | /// |
---|
1789 | /// This method runs the %MaxWeightedMatching algorithm. |
---|
1790 | /// |
---|
1791 | /// \note mwm.run() is just a shortcut of the following code. |
---|
1792 | /// \code |
---|
1793 | /// mwm.init(); |
---|
1794 | /// mwm.start(); |
---|
1795 | /// \endcode |
---|
1796 | void run() { |
---|
1797 | init(); |
---|
1798 | start(); |
---|
1799 | } |
---|
1800 | |
---|
1801 | /// @} |
---|
1802 | |
---|
1803 | /// \name Primal solution |
---|
1804 | /// Functions for get the primal solution, ie. the matching. |
---|
1805 | |
---|
1806 | /// @{ |
---|
1807 | |
---|
1808 | /// \brief Returns the matching value. |
---|
1809 | /// |
---|
1810 | /// Returns the matching value. |
---|
1811 | Value matchingValue() const { |
---|
1812 | Value sum = 0; |
---|
1813 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1814 | if ((*_matching)[n] != INVALID) { |
---|
1815 | sum += _weight[(*_matching)[n]]; |
---|
1816 | } |
---|
1817 | } |
---|
1818 | return sum /= 2; |
---|
1819 | } |
---|
1820 | |
---|
1821 | /// \brief Returns true when the arc is in the matching. |
---|
1822 | /// |
---|
1823 | /// Returns true when the arc is in the matching. |
---|
1824 | bool matching(const Edge& arc) const { |
---|
1825 | return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true); |
---|
1826 | } |
---|
1827 | |
---|
1828 | /// \brief Returns the incident matching arc. |
---|
1829 | /// |
---|
1830 | /// Returns the incident matching arc from given node. If the |
---|
1831 | /// node is not matched then it gives back \c INVALID. |
---|
1832 | Arc matching(const Node& node) const { |
---|
1833 | return (*_matching)[node]; |
---|
1834 | } |
---|
1835 | |
---|
1836 | /// \brief Returns the mate of the node. |
---|
1837 | /// |
---|
1838 | /// Returns the adjancent node in a mathcing arc. If the node is |
---|
1839 | /// not matched then it gives back \c INVALID. |
---|
1840 | Node mate(const Node& node) const { |
---|
1841 | return (*_matching)[node] != INVALID ? |
---|
1842 | _graph.target((*_matching)[node]) : INVALID; |
---|
1843 | } |
---|
1844 | |
---|
1845 | /// @} |
---|
1846 | |
---|
1847 | /// \name Dual solution |
---|
1848 | /// Functions for get the dual solution. |
---|
1849 | |
---|
1850 | /// @{ |
---|
1851 | |
---|
1852 | /// \brief Returns the value of the dual solution. |
---|
1853 | /// |
---|
1854 | /// Returns the value of the dual solution. It should be equal to |
---|
1855 | /// the primal value scaled by \ref dualScale "dual scale". |
---|
1856 | Value dualValue() const { |
---|
1857 | Value sum = 0; |
---|
1858 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1859 | sum += nodeValue(n); |
---|
1860 | } |
---|
1861 | for (int i = 0; i < blossomNum(); ++i) { |
---|
1862 | sum += blossomValue(i) * (blossomSize(i) / 2); |
---|
1863 | } |
---|
1864 | return sum; |
---|
1865 | } |
---|
1866 | |
---|
1867 | /// \brief Returns the value of the node. |
---|
1868 | /// |
---|
1869 | /// Returns the the value of the node. |
---|
1870 | Value nodeValue(const Node& n) const { |
---|
1871 | return (*_node_potential)[n]; |
---|
1872 | } |
---|
1873 | |
---|
1874 | /// \brief Returns the number of the blossoms in the basis. |
---|
1875 | /// |
---|
1876 | /// Returns the number of the blossoms in the basis. |
---|
1877 | /// \see BlossomIt |
---|
1878 | int blossomNum() const { |
---|
1879 | return _blossom_potential.size(); |
---|
1880 | } |
---|
1881 | |
---|
1882 | |
---|
1883 | /// \brief Returns the number of the nodes in the blossom. |
---|
1884 | /// |
---|
1885 | /// Returns the number of the nodes in the blossom. |
---|
1886 | int blossomSize(int k) const { |
---|
1887 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
---|
1888 | } |
---|
1889 | |
---|
1890 | /// \brief Returns the value of the blossom. |
---|
1891 | /// |
---|
1892 | /// Returns the the value of the blossom. |
---|
1893 | /// \see BlossomIt |
---|
1894 | Value blossomValue(int k) const { |
---|
1895 | return _blossom_potential[k].value; |
---|
1896 | } |
---|
1897 | |
---|
1898 | /// \brief Lemon iterator for get the items of the blossom. |
---|
1899 | /// |
---|
1900 | /// Lemon iterator for get the nodes of the blossom. This class |
---|
1901 | /// provides a common style lemon iterator which gives back a |
---|
1902 | /// subset of the nodes. |
---|
1903 | class BlossomIt { |
---|
1904 | public: |
---|
1905 | |
---|
1906 | /// \brief Constructor. |
---|
1907 | /// |
---|
1908 | /// Constructor for get the nodes of the variable. |
---|
1909 | BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
---|
1910 | : _algorithm(&algorithm) |
---|
1911 | { |
---|
1912 | _index = _algorithm->_blossom_potential[variable].begin; |
---|
1913 | _last = _algorithm->_blossom_potential[variable].end; |
---|
1914 | } |
---|
1915 | |
---|
1916 | /// \brief Invalid constructor. |
---|
1917 | /// |
---|
1918 | /// Invalid constructor. |
---|
1919 | BlossomIt(Invalid) : _index(-1) {} |
---|
1920 | |
---|
1921 | /// \brief Conversion to node. |
---|
1922 | /// |
---|
1923 | /// Conversion to node. |
---|
1924 | operator Node() const { |
---|
1925 | return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID; |
---|
1926 | } |
---|
1927 | |
---|
1928 | /// \brief Increment operator. |
---|
1929 | /// |
---|
1930 | /// Increment operator. |
---|
1931 | BlossomIt& operator++() { |
---|
1932 | ++_index; |
---|
1933 | if (_index == _last) { |
---|
1934 | _index = -1; |
---|
1935 | } |
---|
1936 | return *this; |
---|
1937 | } |
---|
1938 | |
---|
1939 | bool operator==(const BlossomIt& it) const { |
---|
1940 | return _index == it._index; |
---|
1941 | } |
---|
1942 | bool operator!=(const BlossomIt& it) const { |
---|
1943 | return _index != it._index; |
---|
1944 | } |
---|
1945 | |
---|
1946 | private: |
---|
1947 | const MaxWeightedMatching* _algorithm; |
---|
1948 | int _last; |
---|
1949 | int _index; |
---|
1950 | }; |
---|
1951 | |
---|
1952 | /// @} |
---|
1953 | |
---|
1954 | }; |
---|
1955 | |
---|
1956 | /// \ingroup matching |
---|
1957 | /// |
---|
1958 | /// \brief Weighted perfect matching in general graphs |
---|
1959 | /// |
---|
1960 | /// This class provides an efficient implementation of Edmond's |
---|
1961 | /// maximum weighted perfecr matching algorithm. The implementation |
---|
1962 | /// is based on extensive use of priority queues and provides |
---|
1963 | /// \f$O(nm\log(n))\f$ time complexity. |
---|
1964 | /// |
---|
1965 | /// The maximum weighted matching problem is to find undirected |
---|
1966 | /// arcs in the digraph with maximum overall weight and no two of |
---|
1967 | /// them shares their endpoints and covers all nodes. The problem |
---|
1968 | /// can be formulated with the next linear program: |
---|
1969 | /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
---|
1970 | ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] |
---|
1971 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
---|
1972 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
---|
1973 | /// where \f$\delta(X)\f$ is the set of arcs incident to a node in |
---|
1974 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in |
---|
1975 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of |
---|
1976 | /// the nodes. |
---|
1977 | /// |
---|
1978 | /// The algorithm calculates an optimal matching and a proof of the |
---|
1979 | /// optimality. The solution of the dual problem can be used to check |
---|
1980 | /// the result of the algorithm. The dual linear problem is the next: |
---|
1981 | /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f] |
---|
1982 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
---|
1983 | /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f] |
---|
1984 | /// |
---|
1985 | /// The algorithm can be executed with \c run() or the \c init() and |
---|
1986 | /// then the \c start() member functions. After it the matching can |
---|
1987 | /// be asked with \c matching() or mate() functions. The dual |
---|
1988 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
---|
1989 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
---|
1990 | /// "BlossomIt" nested class which is able to iterate on the nodes |
---|
1991 | /// of a blossom. If the value type is integral then the dual |
---|
1992 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
---|
1993 | template <typename _Graph, |
---|
1994 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
---|
1995 | class MaxWeightedPerfectMatching { |
---|
1996 | public: |
---|
1997 | |
---|
1998 | typedef _Graph Graph; |
---|
1999 | typedef _WeightMap WeightMap; |
---|
2000 | typedef typename WeightMap::Value Value; |
---|
2001 | |
---|
2002 | /// \brief Scaling factor for dual solution |
---|
2003 | /// |
---|
2004 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
---|
2005 | /// according to the value type. |
---|
2006 | static const int dualScale = |
---|
2007 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
---|
2008 | |
---|
2009 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
---|
2010 | MatchingMap; |
---|
2011 | |
---|
2012 | private: |
---|
2013 | |
---|
2014 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
---|
2015 | |
---|
2016 | typedef typename Graph::template NodeMap<Value> NodePotential; |
---|
2017 | typedef std::vector<Node> BlossomNodeList; |
---|
2018 | |
---|
2019 | struct BlossomVariable { |
---|
2020 | int begin, end; |
---|
2021 | Value value; |
---|
2022 | |
---|
2023 | BlossomVariable(int _begin, int _end, Value _value) |
---|
2024 | : begin(_begin), end(_end), value(_value) {} |
---|
2025 | |
---|
2026 | }; |
---|
2027 | |
---|
2028 | typedef std::vector<BlossomVariable> BlossomPotential; |
---|
2029 | |
---|
2030 | const Graph& _graph; |
---|
2031 | const WeightMap& _weight; |
---|
2032 | |
---|
2033 | MatchingMap* _matching; |
---|
2034 | |
---|
2035 | NodePotential* _node_potential; |
---|
2036 | |
---|
2037 | BlossomPotential _blossom_potential; |
---|
2038 | BlossomNodeList _blossom_node_list; |
---|
2039 | |
---|
2040 | int _node_num; |
---|
2041 | int _blossom_num; |
---|
2042 | |
---|
2043 | typedef typename Graph::template NodeMap<int> NodeIntMap; |
---|
2044 | typedef typename Graph::template ArcMap<int> ArcIntMap; |
---|
2045 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
2046 | typedef RangeMap<int> IntIntMap; |
---|
2047 | |
---|
2048 | enum Status { |
---|
2049 | EVEN = -1, MATCHED = 0, ODD = 1 |
---|
2050 | }; |
---|
2051 | |
---|
2052 | typedef HeapUnionFind<Value, NodeIntMap> BlossomSet; |
---|
2053 | struct BlossomData { |
---|
2054 | int tree; |
---|
2055 | Status status; |
---|
2056 | Arc pred, next; |
---|
2057 | Value pot, offset; |
---|
2058 | }; |
---|
2059 | |
---|
2060 | NodeIntMap *_blossom_index; |
---|
2061 | BlossomSet *_blossom_set; |
---|
2062 | RangeMap<BlossomData>* _blossom_data; |
---|
2063 | |
---|
2064 | NodeIntMap *_node_index; |
---|
2065 | ArcIntMap *_node_heap_index; |
---|
2066 | |
---|
2067 | struct NodeData { |
---|
2068 | |
---|
2069 | NodeData(ArcIntMap& node_heap_index) |
---|
2070 | : heap(node_heap_index) {} |
---|
2071 | |
---|
2072 | int blossom; |
---|
2073 | Value pot; |
---|
2074 | BinHeap<Value, ArcIntMap> heap; |
---|
2075 | std::map<int, Arc> heap_index; |
---|
2076 | |
---|
2077 | int tree; |
---|
2078 | }; |
---|
2079 | |
---|
2080 | RangeMap<NodeData>* _node_data; |
---|
2081 | |
---|
2082 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
---|
2083 | |
---|
2084 | IntIntMap *_tree_set_index; |
---|
2085 | TreeSet *_tree_set; |
---|
2086 | |
---|
2087 | IntIntMap *_delta2_index; |
---|
2088 | BinHeap<Value, IntIntMap> *_delta2; |
---|
2089 | |
---|
2090 | EdgeIntMap *_delta3_index; |
---|
2091 | BinHeap<Value, EdgeIntMap> *_delta3; |
---|
2092 | |
---|
2093 | IntIntMap *_delta4_index; |
---|
2094 | BinHeap<Value, IntIntMap> *_delta4; |
---|
2095 | |
---|
2096 | Value _delta_sum; |
---|
2097 | |
---|
2098 | void createStructures() { |
---|
2099 | _node_num = countNodes(_graph); |
---|
2100 | _blossom_num = _node_num * 3 / 2; |
---|
2101 | |
---|
2102 | if (!_matching) { |
---|
2103 | _matching = new MatchingMap(_graph); |
---|
2104 | } |
---|
2105 | if (!_node_potential) { |
---|
2106 | _node_potential = new NodePotential(_graph); |
---|
2107 | } |
---|
2108 | if (!_blossom_set) { |
---|
2109 | _blossom_index = new NodeIntMap(_graph); |
---|
2110 | _blossom_set = new BlossomSet(*_blossom_index); |
---|
2111 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
---|
2112 | } |
---|
2113 | |
---|
2114 | if (!_node_index) { |
---|
2115 | _node_index = new NodeIntMap(_graph); |
---|
2116 | _node_heap_index = new ArcIntMap(_graph); |
---|
2117 | _node_data = new RangeMap<NodeData>(_node_num, |
---|
2118 | NodeData(*_node_heap_index)); |
---|
2119 | } |
---|
2120 | |
---|
2121 | if (!_tree_set) { |
---|
2122 | _tree_set_index = new IntIntMap(_blossom_num); |
---|
2123 | _tree_set = new TreeSet(*_tree_set_index); |
---|
2124 | } |
---|
2125 | if (!_delta2) { |
---|
2126 | _delta2_index = new IntIntMap(_blossom_num); |
---|
2127 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
---|
2128 | } |
---|
2129 | if (!_delta3) { |
---|
2130 | _delta3_index = new EdgeIntMap(_graph); |
---|
2131 | _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index); |
---|
2132 | } |
---|
2133 | if (!_delta4) { |
---|
2134 | _delta4_index = new IntIntMap(_blossom_num); |
---|
2135 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
---|
2136 | } |
---|
2137 | } |
---|
2138 | |
---|
2139 | void destroyStructures() { |
---|
2140 | _node_num = countNodes(_graph); |
---|
2141 | _blossom_num = _node_num * 3 / 2; |
---|
2142 | |
---|
2143 | if (_matching) { |
---|
2144 | delete _matching; |
---|
2145 | } |
---|
2146 | if (_node_potential) { |
---|
2147 | delete _node_potential; |
---|
2148 | } |
---|
2149 | if (_blossom_set) { |
---|
2150 | delete _blossom_index; |
---|
2151 | delete _blossom_set; |
---|
2152 | delete _blossom_data; |
---|
2153 | } |
---|
2154 | |
---|
2155 | if (_node_index) { |
---|
2156 | delete _node_index; |
---|
2157 | delete _node_heap_index; |
---|
2158 | delete _node_data; |
---|
2159 | } |
---|
2160 | |
---|
2161 | if (_tree_set) { |
---|
2162 | delete _tree_set_index; |
---|
2163 | delete _tree_set; |
---|
2164 | } |
---|
2165 | if (_delta2) { |
---|
2166 | delete _delta2_index; |
---|
2167 | delete _delta2; |
---|
2168 | } |
---|
2169 | if (_delta3) { |
---|
2170 | delete _delta3_index; |
---|
2171 | delete _delta3; |
---|
2172 | } |
---|
2173 | if (_delta4) { |
---|
2174 | delete _delta4_index; |
---|
2175 | delete _delta4; |
---|
2176 | } |
---|
2177 | } |
---|
2178 | |
---|
2179 | void matchedToEven(int blossom, int tree) { |
---|
2180 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
2181 | _delta2->erase(blossom); |
---|
2182 | } |
---|
2183 | |
---|
2184 | if (!_blossom_set->trivial(blossom)) { |
---|
2185 | (*_blossom_data)[blossom].pot -= |
---|
2186 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
---|
2187 | } |
---|
2188 | |
---|
2189 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
2190 | n != INVALID; ++n) { |
---|
2191 | |
---|
2192 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
2193 | int ni = (*_node_index)[n]; |
---|
2194 | |
---|
2195 | (*_node_data)[ni].heap.clear(); |
---|
2196 | (*_node_data)[ni].heap_index.clear(); |
---|
2197 | |
---|
2198 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
---|
2199 | |
---|
2200 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2201 | Node v = _graph.source(e); |
---|
2202 | int vb = _blossom_set->find(v); |
---|
2203 | int vi = (*_node_index)[v]; |
---|
2204 | |
---|
2205 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
2206 | dualScale * _weight[e]; |
---|
2207 | |
---|
2208 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
2209 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
2210 | _delta3->push(e, rw / 2); |
---|
2211 | } |
---|
2212 | } else { |
---|
2213 | typename std::map<int, Arc>::iterator it = |
---|
2214 | (*_node_data)[vi].heap_index.find(tree); |
---|
2215 | |
---|
2216 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
2217 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
2218 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
2219 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
2220 | it->second = e; |
---|
2221 | } |
---|
2222 | } else { |
---|
2223 | (*_node_data)[vi].heap.push(e, rw); |
---|
2224 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
2225 | } |
---|
2226 | |
---|
2227 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
2228 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
2229 | |
---|
2230 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
2231 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
2232 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
2233 | (*_blossom_data)[vb].offset); |
---|
2234 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
2235 | (*_blossom_data)[vb].offset){ |
---|
2236 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
2237 | (*_blossom_data)[vb].offset); |
---|
2238 | } |
---|
2239 | } |
---|
2240 | } |
---|
2241 | } |
---|
2242 | } |
---|
2243 | } |
---|
2244 | (*_blossom_data)[blossom].offset = 0; |
---|
2245 | } |
---|
2246 | |
---|
2247 | void matchedToOdd(int blossom) { |
---|
2248 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
2249 | _delta2->erase(blossom); |
---|
2250 | } |
---|
2251 | (*_blossom_data)[blossom].offset += _delta_sum; |
---|
2252 | if (!_blossom_set->trivial(blossom)) { |
---|
2253 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
---|
2254 | (*_blossom_data)[blossom].offset); |
---|
2255 | } |
---|
2256 | } |
---|
2257 | |
---|
2258 | void evenToMatched(int blossom, int tree) { |
---|
2259 | if (!_blossom_set->trivial(blossom)) { |
---|
2260 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
---|
2261 | } |
---|
2262 | |
---|
2263 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
2264 | n != INVALID; ++n) { |
---|
2265 | int ni = (*_node_index)[n]; |
---|
2266 | (*_node_data)[ni].pot -= _delta_sum; |
---|
2267 | |
---|
2268 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2269 | Node v = _graph.source(e); |
---|
2270 | int vb = _blossom_set->find(v); |
---|
2271 | int vi = (*_node_index)[v]; |
---|
2272 | |
---|
2273 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
2274 | dualScale * _weight[e]; |
---|
2275 | |
---|
2276 | if (vb == blossom) { |
---|
2277 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
2278 | _delta3->erase(e); |
---|
2279 | } |
---|
2280 | } else if ((*_blossom_data)[vb].status == EVEN) { |
---|
2281 | |
---|
2282 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
2283 | _delta3->erase(e); |
---|
2284 | } |
---|
2285 | |
---|
2286 | int vt = _tree_set->find(vb); |
---|
2287 | |
---|
2288 | if (vt != tree) { |
---|
2289 | |
---|
2290 | Arc r = _graph.oppositeArc(e); |
---|
2291 | |
---|
2292 | typename std::map<int, Arc>::iterator it = |
---|
2293 | (*_node_data)[ni].heap_index.find(vt); |
---|
2294 | |
---|
2295 | if (it != (*_node_data)[ni].heap_index.end()) { |
---|
2296 | if ((*_node_data)[ni].heap[it->second] > rw) { |
---|
2297 | (*_node_data)[ni].heap.replace(it->second, r); |
---|
2298 | (*_node_data)[ni].heap.decrease(r, rw); |
---|
2299 | it->second = r; |
---|
2300 | } |
---|
2301 | } else { |
---|
2302 | (*_node_data)[ni].heap.push(r, rw); |
---|
2303 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
---|
2304 | } |
---|
2305 | |
---|
2306 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
---|
2307 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
---|
2308 | |
---|
2309 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
---|
2310 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
2311 | (*_blossom_data)[blossom].offset); |
---|
2312 | } else if ((*_delta2)[blossom] > |
---|
2313 | _blossom_set->classPrio(blossom) - |
---|
2314 | (*_blossom_data)[blossom].offset){ |
---|
2315 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
---|
2316 | (*_blossom_data)[blossom].offset); |
---|
2317 | } |
---|
2318 | } |
---|
2319 | } |
---|
2320 | } else { |
---|
2321 | |
---|
2322 | typename std::map<int, Arc>::iterator it = |
---|
2323 | (*_node_data)[vi].heap_index.find(tree); |
---|
2324 | |
---|
2325 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
2326 | (*_node_data)[vi].heap.erase(it->second); |
---|
2327 | (*_node_data)[vi].heap_index.erase(it); |
---|
2328 | if ((*_node_data)[vi].heap.empty()) { |
---|
2329 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
---|
2330 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
---|
2331 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
---|
2332 | } |
---|
2333 | |
---|
2334 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
2335 | if (_blossom_set->classPrio(vb) == |
---|
2336 | std::numeric_limits<Value>::max()) { |
---|
2337 | _delta2->erase(vb); |
---|
2338 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
---|
2339 | (*_blossom_data)[vb].offset) { |
---|
2340 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
---|
2341 | (*_blossom_data)[vb].offset); |
---|
2342 | } |
---|
2343 | } |
---|
2344 | } |
---|
2345 | } |
---|
2346 | } |
---|
2347 | } |
---|
2348 | } |
---|
2349 | |
---|
2350 | void oddToMatched(int blossom) { |
---|
2351 | (*_blossom_data)[blossom].offset -= _delta_sum; |
---|
2352 | |
---|
2353 | if (_blossom_set->classPrio(blossom) != |
---|
2354 | std::numeric_limits<Value>::max()) { |
---|
2355 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
2356 | (*_blossom_data)[blossom].offset); |
---|
2357 | } |
---|
2358 | |
---|
2359 | if (!_blossom_set->trivial(blossom)) { |
---|
2360 | _delta4->erase(blossom); |
---|
2361 | } |
---|
2362 | } |
---|
2363 | |
---|
2364 | void oddToEven(int blossom, int tree) { |
---|
2365 | if (!_blossom_set->trivial(blossom)) { |
---|
2366 | _delta4->erase(blossom); |
---|
2367 | (*_blossom_data)[blossom].pot -= |
---|
2368 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
---|
2369 | } |
---|
2370 | |
---|
2371 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
2372 | n != INVALID; ++n) { |
---|
2373 | int ni = (*_node_index)[n]; |
---|
2374 | |
---|
2375 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
2376 | |
---|
2377 | (*_node_data)[ni].heap.clear(); |
---|
2378 | (*_node_data)[ni].heap_index.clear(); |
---|
2379 | (*_node_data)[ni].pot += |
---|
2380 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
---|
2381 | |
---|
2382 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2383 | Node v = _graph.source(e); |
---|
2384 | int vb = _blossom_set->find(v); |
---|
2385 | int vi = (*_node_index)[v]; |
---|
2386 | |
---|
2387 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
2388 | dualScale * _weight[e]; |
---|
2389 | |
---|
2390 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
2391 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
2392 | _delta3->push(e, rw / 2); |
---|
2393 | } |
---|
2394 | } else { |
---|
2395 | |
---|
2396 | typename std::map<int, Arc>::iterator it = |
---|
2397 | (*_node_data)[vi].heap_index.find(tree); |
---|
2398 | |
---|
2399 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
2400 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
2401 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
2402 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
2403 | it->second = e; |
---|
2404 | } |
---|
2405 | } else { |
---|
2406 | (*_node_data)[vi].heap.push(e, rw); |
---|
2407 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
2408 | } |
---|
2409 | |
---|
2410 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
2411 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
2412 | |
---|
2413 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
2414 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
2415 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
2416 | (*_blossom_data)[vb].offset); |
---|
2417 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
2418 | (*_blossom_data)[vb].offset) { |
---|
2419 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
2420 | (*_blossom_data)[vb].offset); |
---|
2421 | } |
---|
2422 | } |
---|
2423 | } |
---|
2424 | } |
---|
2425 | } |
---|
2426 | } |
---|
2427 | (*_blossom_data)[blossom].offset = 0; |
---|
2428 | } |
---|
2429 | |
---|
2430 | void alternatePath(int even, int tree) { |
---|
2431 | int odd; |
---|
2432 | |
---|
2433 | evenToMatched(even, tree); |
---|
2434 | (*_blossom_data)[even].status = MATCHED; |
---|
2435 | |
---|
2436 | while ((*_blossom_data)[even].pred != INVALID) { |
---|
2437 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
---|
2438 | (*_blossom_data)[odd].status = MATCHED; |
---|
2439 | oddToMatched(odd); |
---|
2440 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
---|
2441 | |
---|
2442 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
---|
2443 | (*_blossom_data)[even].status = MATCHED; |
---|
2444 | evenToMatched(even, tree); |
---|
2445 | (*_blossom_data)[even].next = |
---|
2446 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
---|
2447 | } |
---|
2448 | |
---|
2449 | } |
---|
2450 | |
---|
2451 | void destroyTree(int tree) { |
---|
2452 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
---|
2453 | if ((*_blossom_data)[b].status == EVEN) { |
---|
2454 | (*_blossom_data)[b].status = MATCHED; |
---|
2455 | evenToMatched(b, tree); |
---|
2456 | } else if ((*_blossom_data)[b].status == ODD) { |
---|
2457 | (*_blossom_data)[b].status = MATCHED; |
---|
2458 | oddToMatched(b); |
---|
2459 | } |
---|
2460 | } |
---|
2461 | _tree_set->eraseClass(tree); |
---|
2462 | } |
---|
2463 | |
---|
2464 | void augmentOnArc(const Edge& arc) { |
---|
2465 | |
---|
2466 | int left = _blossom_set->find(_graph.u(arc)); |
---|
2467 | int right = _blossom_set->find(_graph.v(arc)); |
---|
2468 | |
---|
2469 | int left_tree = _tree_set->find(left); |
---|
2470 | alternatePath(left, left_tree); |
---|
2471 | destroyTree(left_tree); |
---|
2472 | |
---|
2473 | int right_tree = _tree_set->find(right); |
---|
2474 | alternatePath(right, right_tree); |
---|
2475 | destroyTree(right_tree); |
---|
2476 | |
---|
2477 | (*_blossom_data)[left].next = _graph.direct(arc, true); |
---|
2478 | (*_blossom_data)[right].next = _graph.direct(arc, false); |
---|
2479 | } |
---|
2480 | |
---|
2481 | void extendOnArc(const Arc& arc) { |
---|
2482 | int base = _blossom_set->find(_graph.target(arc)); |
---|
2483 | int tree = _tree_set->find(base); |
---|
2484 | |
---|
2485 | int odd = _blossom_set->find(_graph.source(arc)); |
---|
2486 | _tree_set->insert(odd, tree); |
---|
2487 | (*_blossom_data)[odd].status = ODD; |
---|
2488 | matchedToOdd(odd); |
---|
2489 | (*_blossom_data)[odd].pred = arc; |
---|
2490 | |
---|
2491 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
---|
2492 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
---|
2493 | _tree_set->insert(even, tree); |
---|
2494 | (*_blossom_data)[even].status = EVEN; |
---|
2495 | matchedToEven(even, tree); |
---|
2496 | } |
---|
2497 | |
---|
2498 | void shrinkOnArc(const Edge& edge, int tree) { |
---|
2499 | int nca = -1; |
---|
2500 | std::vector<int> left_path, right_path; |
---|
2501 | |
---|
2502 | { |
---|
2503 | std::set<int> left_set, right_set; |
---|
2504 | int left = _blossom_set->find(_graph.u(edge)); |
---|
2505 | left_path.push_back(left); |
---|
2506 | left_set.insert(left); |
---|
2507 | |
---|
2508 | int right = _blossom_set->find(_graph.v(edge)); |
---|
2509 | right_path.push_back(right); |
---|
2510 | right_set.insert(right); |
---|
2511 | |
---|
2512 | while (true) { |
---|
2513 | |
---|
2514 | if ((*_blossom_data)[left].pred == INVALID) break; |
---|
2515 | |
---|
2516 | left = |
---|
2517 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
2518 | left_path.push_back(left); |
---|
2519 | left = |
---|
2520 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
2521 | left_path.push_back(left); |
---|
2522 | |
---|
2523 | left_set.insert(left); |
---|
2524 | |
---|
2525 | if (right_set.find(left) != right_set.end()) { |
---|
2526 | nca = left; |
---|
2527 | break; |
---|
2528 | } |
---|
2529 | |
---|
2530 | if ((*_blossom_data)[right].pred == INVALID) break; |
---|
2531 | |
---|
2532 | right = |
---|
2533 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
2534 | right_path.push_back(right); |
---|
2535 | right = |
---|
2536 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
2537 | right_path.push_back(right); |
---|
2538 | |
---|
2539 | right_set.insert(right); |
---|
2540 | |
---|
2541 | if (left_set.find(right) != left_set.end()) { |
---|
2542 | nca = right; |
---|
2543 | break; |
---|
2544 | } |
---|
2545 | |
---|
2546 | } |
---|
2547 | |
---|
2548 | if (nca == -1) { |
---|
2549 | if ((*_blossom_data)[left].pred == INVALID) { |
---|
2550 | nca = right; |
---|
2551 | while (left_set.find(nca) == left_set.end()) { |
---|
2552 | nca = |
---|
2553 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2554 | right_path.push_back(nca); |
---|
2555 | nca = |
---|
2556 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2557 | right_path.push_back(nca); |
---|
2558 | } |
---|
2559 | } else { |
---|
2560 | nca = left; |
---|
2561 | while (right_set.find(nca) == right_set.end()) { |
---|
2562 | nca = |
---|
2563 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2564 | left_path.push_back(nca); |
---|
2565 | nca = |
---|
2566 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2567 | left_path.push_back(nca); |
---|
2568 | } |
---|
2569 | } |
---|
2570 | } |
---|
2571 | } |
---|
2572 | |
---|
2573 | std::vector<int> subblossoms; |
---|
2574 | Arc prev; |
---|
2575 | |
---|
2576 | prev = _graph.direct(edge, true); |
---|
2577 | for (int i = 0; left_path[i] != nca; i += 2) { |
---|
2578 | subblossoms.push_back(left_path[i]); |
---|
2579 | (*_blossom_data)[left_path[i]].next = prev; |
---|
2580 | _tree_set->erase(left_path[i]); |
---|
2581 | |
---|
2582 | subblossoms.push_back(left_path[i + 1]); |
---|
2583 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
---|
2584 | oddToEven(left_path[i + 1], tree); |
---|
2585 | _tree_set->erase(left_path[i + 1]); |
---|
2586 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
---|
2587 | } |
---|
2588 | |
---|
2589 | int k = 0; |
---|
2590 | while (right_path[k] != nca) ++k; |
---|
2591 | |
---|
2592 | subblossoms.push_back(nca); |
---|
2593 | (*_blossom_data)[nca].next = prev; |
---|
2594 | |
---|
2595 | for (int i = k - 2; i >= 0; i -= 2) { |
---|
2596 | subblossoms.push_back(right_path[i + 1]); |
---|
2597 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
---|
2598 | oddToEven(right_path[i + 1], tree); |
---|
2599 | _tree_set->erase(right_path[i + 1]); |
---|
2600 | |
---|
2601 | (*_blossom_data)[right_path[i + 1]].next = |
---|
2602 | (*_blossom_data)[right_path[i + 1]].pred; |
---|
2603 | |
---|
2604 | subblossoms.push_back(right_path[i]); |
---|
2605 | _tree_set->erase(right_path[i]); |
---|
2606 | } |
---|
2607 | |
---|
2608 | int surface = |
---|
2609 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
---|
2610 | |
---|
2611 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
2612 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
2613 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
---|
2614 | } |
---|
2615 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
---|
2616 | } |
---|
2617 | |
---|
2618 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
---|
2619 | (*_blossom_data)[surface].offset = 0; |
---|
2620 | (*_blossom_data)[surface].status = EVEN; |
---|
2621 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
---|
2622 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
---|
2623 | |
---|
2624 | _tree_set->insert(surface, tree); |
---|
2625 | _tree_set->erase(nca); |
---|
2626 | } |
---|
2627 | |
---|
2628 | void splitBlossom(int blossom) { |
---|
2629 | Arc next = (*_blossom_data)[blossom].next; |
---|
2630 | Arc pred = (*_blossom_data)[blossom].pred; |
---|
2631 | |
---|
2632 | int tree = _tree_set->find(blossom); |
---|
2633 | |
---|
2634 | (*_blossom_data)[blossom].status = MATCHED; |
---|
2635 | oddToMatched(blossom); |
---|
2636 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
2637 | _delta2->erase(blossom); |
---|
2638 | } |
---|
2639 | |
---|
2640 | std::vector<int> subblossoms; |
---|
2641 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
2642 | |
---|
2643 | Value offset = (*_blossom_data)[blossom].offset; |
---|
2644 | int b = _blossom_set->find(_graph.source(pred)); |
---|
2645 | int d = _blossom_set->find(_graph.source(next)); |
---|
2646 | |
---|
2647 | int ib = -1, id = -1; |
---|
2648 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
2649 | if (subblossoms[i] == b) ib = i; |
---|
2650 | if (subblossoms[i] == d) id = i; |
---|
2651 | |
---|
2652 | (*_blossom_data)[subblossoms[i]].offset = offset; |
---|
2653 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
2654 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
---|
2655 | } |
---|
2656 | if (_blossom_set->classPrio(subblossoms[i]) != |
---|
2657 | std::numeric_limits<Value>::max()) { |
---|
2658 | _delta2->push(subblossoms[i], |
---|
2659 | _blossom_set->classPrio(subblossoms[i]) - |
---|
2660 | (*_blossom_data)[subblossoms[i]].offset); |
---|
2661 | } |
---|
2662 | } |
---|
2663 | |
---|
2664 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
---|
2665 | for (int i = (id + 1) % subblossoms.size(); |
---|
2666 | i != ib; i = (i + 2) % subblossoms.size()) { |
---|
2667 | int sb = subblossoms[i]; |
---|
2668 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2669 | (*_blossom_data)[sb].next = |
---|
2670 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2671 | } |
---|
2672 | |
---|
2673 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
---|
2674 | int sb = subblossoms[i]; |
---|
2675 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2676 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
2677 | |
---|
2678 | (*_blossom_data)[sb].status = ODD; |
---|
2679 | matchedToOdd(sb); |
---|
2680 | _tree_set->insert(sb, tree); |
---|
2681 | (*_blossom_data)[sb].pred = pred; |
---|
2682 | (*_blossom_data)[sb].next = |
---|
2683 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2684 | |
---|
2685 | pred = (*_blossom_data)[ub].next; |
---|
2686 | |
---|
2687 | (*_blossom_data)[tb].status = EVEN; |
---|
2688 | matchedToEven(tb, tree); |
---|
2689 | _tree_set->insert(tb, tree); |
---|
2690 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
---|
2691 | } |
---|
2692 | |
---|
2693 | (*_blossom_data)[subblossoms[id]].status = ODD; |
---|
2694 | matchedToOdd(subblossoms[id]); |
---|
2695 | _tree_set->insert(subblossoms[id], tree); |
---|
2696 | (*_blossom_data)[subblossoms[id]].next = next; |
---|
2697 | (*_blossom_data)[subblossoms[id]].pred = pred; |
---|
2698 | |
---|
2699 | } else { |
---|
2700 | |
---|
2701 | for (int i = (ib + 1) % subblossoms.size(); |
---|
2702 | i != id; i = (i + 2) % subblossoms.size()) { |
---|
2703 | int sb = subblossoms[i]; |
---|
2704 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2705 | (*_blossom_data)[sb].next = |
---|
2706 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2707 | } |
---|
2708 | |
---|
2709 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
---|
2710 | int sb = subblossoms[i]; |
---|
2711 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2712 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
2713 | |
---|
2714 | (*_blossom_data)[sb].status = ODD; |
---|
2715 | matchedToOdd(sb); |
---|
2716 | _tree_set->insert(sb, tree); |
---|
2717 | (*_blossom_data)[sb].next = next; |
---|
2718 | (*_blossom_data)[sb].pred = |
---|
2719 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2720 | |
---|
2721 | (*_blossom_data)[tb].status = EVEN; |
---|
2722 | matchedToEven(tb, tree); |
---|
2723 | _tree_set->insert(tb, tree); |
---|
2724 | (*_blossom_data)[tb].pred = |
---|
2725 | (*_blossom_data)[tb].next = |
---|
2726 | _graph.oppositeArc((*_blossom_data)[ub].next); |
---|
2727 | next = (*_blossom_data)[ub].next; |
---|
2728 | } |
---|
2729 | |
---|
2730 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
---|
2731 | matchedToOdd(subblossoms[ib]); |
---|
2732 | _tree_set->insert(subblossoms[ib], tree); |
---|
2733 | (*_blossom_data)[subblossoms[ib]].next = next; |
---|
2734 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
---|
2735 | } |
---|
2736 | _tree_set->erase(blossom); |
---|
2737 | } |
---|
2738 | |
---|
2739 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
---|
2740 | if (_blossom_set->trivial(blossom)) { |
---|
2741 | int bi = (*_node_index)[base]; |
---|
2742 | Value pot = (*_node_data)[bi].pot; |
---|
2743 | |
---|
2744 | _matching->set(base, matching); |
---|
2745 | _blossom_node_list.push_back(base); |
---|
2746 | _node_potential->set(base, pot); |
---|
2747 | } else { |
---|
2748 | |
---|
2749 | Value pot = (*_blossom_data)[blossom].pot; |
---|
2750 | int bn = _blossom_node_list.size(); |
---|
2751 | |
---|
2752 | std::vector<int> subblossoms; |
---|
2753 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
2754 | int b = _blossom_set->find(base); |
---|
2755 | int ib = -1; |
---|
2756 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
2757 | if (subblossoms[i] == b) { ib = i; break; } |
---|
2758 | } |
---|
2759 | |
---|
2760 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
---|
2761 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
---|
2762 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
---|
2763 | |
---|
2764 | Arc m = (*_blossom_data)[tb].next; |
---|
2765 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
---|
2766 | extractBlossom(tb, _graph.source(m), m); |
---|
2767 | } |
---|
2768 | extractBlossom(subblossoms[ib], base, matching); |
---|
2769 | |
---|
2770 | int en = _blossom_node_list.size(); |
---|
2771 | |
---|
2772 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
---|
2773 | } |
---|
2774 | } |
---|
2775 | |
---|
2776 | void extractMatching() { |
---|
2777 | std::vector<int> blossoms; |
---|
2778 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
---|
2779 | blossoms.push_back(c); |
---|
2780 | } |
---|
2781 | |
---|
2782 | for (int i = 0; i < int(blossoms.size()); ++i) { |
---|
2783 | |
---|
2784 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
---|
2785 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
---|
2786 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
---|
2787 | n != INVALID; ++n) { |
---|
2788 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
---|
2789 | } |
---|
2790 | |
---|
2791 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
---|
2792 | Node base = _graph.source(matching); |
---|
2793 | extractBlossom(blossoms[i], base, matching); |
---|
2794 | } |
---|
2795 | } |
---|
2796 | |
---|
2797 | public: |
---|
2798 | |
---|
2799 | /// \brief Constructor |
---|
2800 | /// |
---|
2801 | /// Constructor. |
---|
2802 | MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
---|
2803 | : _graph(graph), _weight(weight), _matching(0), |
---|
2804 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
---|
2805 | _node_num(0), _blossom_num(0), |
---|
2806 | |
---|
2807 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
---|
2808 | _node_index(0), _node_heap_index(0), _node_data(0), |
---|
2809 | _tree_set_index(0), _tree_set(0), |
---|
2810 | |
---|
2811 | _delta2_index(0), _delta2(0), |
---|
2812 | _delta3_index(0), _delta3(0), |
---|
2813 | _delta4_index(0), _delta4(0), |
---|
2814 | |
---|
2815 | _delta_sum() {} |
---|
2816 | |
---|
2817 | ~MaxWeightedPerfectMatching() { |
---|
2818 | destroyStructures(); |
---|
2819 | } |
---|
2820 | |
---|
2821 | /// \name Execution control |
---|
2822 | /// The simplest way to execute the algorithm is to use the member |
---|
2823 | /// \c run() member function. |
---|
2824 | |
---|
2825 | ///@{ |
---|
2826 | |
---|
2827 | /// \brief Initialize the algorithm |
---|
2828 | /// |
---|
2829 | /// Initialize the algorithm |
---|
2830 | void init() { |
---|
2831 | createStructures(); |
---|
2832 | |
---|
2833 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
2834 | _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP); |
---|
2835 | } |
---|
2836 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
2837 | _delta3_index->set(e, _delta3->PRE_HEAP); |
---|
2838 | } |
---|
2839 | for (int i = 0; i < _blossom_num; ++i) { |
---|
2840 | _delta2_index->set(i, _delta2->PRE_HEAP); |
---|
2841 | _delta4_index->set(i, _delta4->PRE_HEAP); |
---|
2842 | } |
---|
2843 | |
---|
2844 | int index = 0; |
---|
2845 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
2846 | Value max = - std::numeric_limits<Value>::max(); |
---|
2847 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2848 | if (_graph.target(e) == n) continue; |
---|
2849 | if ((dualScale * _weight[e]) / 2 > max) { |
---|
2850 | max = (dualScale * _weight[e]) / 2; |
---|
2851 | } |
---|
2852 | } |
---|
2853 | _node_index->set(n, index); |
---|
2854 | (*_node_data)[index].pot = max; |
---|
2855 | int blossom = |
---|
2856 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
---|
2857 | |
---|
2858 | _tree_set->insert(blossom); |
---|
2859 | |
---|
2860 | (*_blossom_data)[blossom].status = EVEN; |
---|
2861 | (*_blossom_data)[blossom].pred = INVALID; |
---|
2862 | (*_blossom_data)[blossom].next = INVALID; |
---|
2863 | (*_blossom_data)[blossom].pot = 0; |
---|
2864 | (*_blossom_data)[blossom].offset = 0; |
---|
2865 | ++index; |
---|
2866 | } |
---|
2867 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
2868 | int si = (*_node_index)[_graph.u(e)]; |
---|
2869 | int ti = (*_node_index)[_graph.v(e)]; |
---|
2870 | if (_graph.u(e) != _graph.v(e)) { |
---|
2871 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
---|
2872 | dualScale * _weight[e]) / 2); |
---|
2873 | } |
---|
2874 | } |
---|
2875 | } |
---|
2876 | |
---|
2877 | /// \brief Starts the algorithm |
---|
2878 | /// |
---|
2879 | /// Starts the algorithm |
---|
2880 | bool start() { |
---|
2881 | enum OpType { |
---|
2882 | D2, D3, D4 |
---|
2883 | }; |
---|
2884 | |
---|
2885 | int unmatched = _node_num; |
---|
2886 | while (unmatched > 0) { |
---|
2887 | Value d2 = !_delta2->empty() ? |
---|
2888 | _delta2->prio() : std::numeric_limits<Value>::max(); |
---|
2889 | |
---|
2890 | Value d3 = !_delta3->empty() ? |
---|
2891 | _delta3->prio() : std::numeric_limits<Value>::max(); |
---|
2892 | |
---|
2893 | Value d4 = !_delta4->empty() ? |
---|
2894 | _delta4->prio() : std::numeric_limits<Value>::max(); |
---|
2895 | |
---|
2896 | _delta_sum = d2; OpType ot = D2; |
---|
2897 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
---|
2898 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
---|
2899 | |
---|
2900 | if (_delta_sum == std::numeric_limits<Value>::max()) { |
---|
2901 | return false; |
---|
2902 | } |
---|
2903 | |
---|
2904 | switch (ot) { |
---|
2905 | case D2: |
---|
2906 | { |
---|
2907 | int blossom = _delta2->top(); |
---|
2908 | Node n = _blossom_set->classTop(blossom); |
---|
2909 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
---|
2910 | extendOnArc(e); |
---|
2911 | } |
---|
2912 | break; |
---|
2913 | case D3: |
---|
2914 | { |
---|
2915 | Edge e = _delta3->top(); |
---|
2916 | |
---|
2917 | int left_blossom = _blossom_set->find(_graph.u(e)); |
---|
2918 | int right_blossom = _blossom_set->find(_graph.v(e)); |
---|
2919 | |
---|
2920 | if (left_blossom == right_blossom) { |
---|
2921 | _delta3->pop(); |
---|
2922 | } else { |
---|
2923 | int left_tree = _tree_set->find(left_blossom); |
---|
2924 | int right_tree = _tree_set->find(right_blossom); |
---|
2925 | |
---|
2926 | if (left_tree == right_tree) { |
---|
2927 | shrinkOnArc(e, left_tree); |
---|
2928 | } else { |
---|
2929 | augmentOnArc(e); |
---|
2930 | unmatched -= 2; |
---|
2931 | } |
---|
2932 | } |
---|
2933 | } break; |
---|
2934 | case D4: |
---|
2935 | splitBlossom(_delta4->top()); |
---|
2936 | break; |
---|
2937 | } |
---|
2938 | } |
---|
2939 | extractMatching(); |
---|
2940 | return true; |
---|
2941 | } |
---|
2942 | |
---|
2943 | /// \brief Runs %MaxWeightedPerfectMatching algorithm. |
---|
2944 | /// |
---|
2945 | /// This method runs the %MaxWeightedPerfectMatching algorithm. |
---|
2946 | /// |
---|
2947 | /// \note mwm.run() is just a shortcut of the following code. |
---|
2948 | /// \code |
---|
2949 | /// mwm.init(); |
---|
2950 | /// mwm.start(); |
---|
2951 | /// \endcode |
---|
2952 | bool run() { |
---|
2953 | init(); |
---|
2954 | return start(); |
---|
2955 | } |
---|
2956 | |
---|
2957 | /// @} |
---|
2958 | |
---|
2959 | /// \name Primal solution |
---|
2960 | /// Functions for get the primal solution, ie. the matching. |
---|
2961 | |
---|
2962 | /// @{ |
---|
2963 | |
---|
2964 | /// \brief Returns the matching value. |
---|
2965 | /// |
---|
2966 | /// Returns the matching value. |
---|
2967 | Value matchingValue() const { |
---|
2968 | Value sum = 0; |
---|
2969 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
2970 | if ((*_matching)[n] != INVALID) { |
---|
2971 | sum += _weight[(*_matching)[n]]; |
---|
2972 | } |
---|
2973 | } |
---|
2974 | return sum /= 2; |
---|
2975 | } |
---|
2976 | |
---|
2977 | /// \brief Returns true when the arc is in the matching. |
---|
2978 | /// |
---|
2979 | /// Returns true when the arc is in the matching. |
---|
2980 | bool matching(const Edge& arc) const { |
---|
2981 | return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true); |
---|
2982 | } |
---|
2983 | |
---|
2984 | /// \brief Returns the incident matching arc. |
---|
2985 | /// |
---|
2986 | /// Returns the incident matching arc from given node. |
---|
2987 | Arc matching(const Node& node) const { |
---|
2988 | return (*_matching)[node]; |
---|
2989 | } |
---|
2990 | |
---|
2991 | /// \brief Returns the mate of the node. |
---|
2992 | /// |
---|
2993 | /// Returns the adjancent node in a mathcing arc. |
---|
2994 | Node mate(const Node& node) const { |
---|
2995 | return _graph.target((*_matching)[node]); |
---|
2996 | } |
---|
2997 | |
---|
2998 | /// @} |
---|
2999 | |
---|
3000 | /// \name Dual solution |
---|
3001 | /// Functions for get the dual solution. |
---|
3002 | |
---|
3003 | /// @{ |
---|
3004 | |
---|
3005 | /// \brief Returns the value of the dual solution. |
---|
3006 | /// |
---|
3007 | /// Returns the value of the dual solution. It should be equal to |
---|
3008 | /// the primal value scaled by \ref dualScale "dual scale". |
---|
3009 | Value dualValue() const { |
---|
3010 | Value sum = 0; |
---|
3011 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
3012 | sum += nodeValue(n); |
---|
3013 | } |
---|
3014 | for (int i = 0; i < blossomNum(); ++i) { |
---|
3015 | sum += blossomValue(i) * (blossomSize(i) / 2); |
---|
3016 | } |
---|
3017 | return sum; |
---|
3018 | } |
---|
3019 | |
---|
3020 | /// \brief Returns the value of the node. |
---|
3021 | /// |
---|
3022 | /// Returns the the value of the node. |
---|
3023 | Value nodeValue(const Node& n) const { |
---|
3024 | return (*_node_potential)[n]; |
---|
3025 | } |
---|
3026 | |
---|
3027 | /// \brief Returns the number of the blossoms in the basis. |
---|
3028 | /// |
---|
3029 | /// Returns the number of the blossoms in the basis. |
---|
3030 | /// \see BlossomIt |
---|
3031 | int blossomNum() const { |
---|
3032 | return _blossom_potential.size(); |
---|
3033 | } |
---|
3034 | |
---|
3035 | |
---|
3036 | /// \brief Returns the number of the nodes in the blossom. |
---|
3037 | /// |
---|
3038 | /// Returns the number of the nodes in the blossom. |
---|
3039 | int blossomSize(int k) const { |
---|
3040 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
---|
3041 | } |
---|
3042 | |
---|
3043 | /// \brief Returns the value of the blossom. |
---|
3044 | /// |
---|
3045 | /// Returns the the value of the blossom. |
---|
3046 | /// \see BlossomIt |
---|
3047 | Value blossomValue(int k) const { |
---|
3048 | return _blossom_potential[k].value; |
---|
3049 | } |
---|
3050 | |
---|
3051 | /// \brief Lemon iterator for get the items of the blossom. |
---|
3052 | /// |
---|
3053 | /// Lemon iterator for get the nodes of the blossom. This class |
---|
3054 | /// provides a common style lemon iterator which gives back a |
---|
3055 | /// subset of the nodes. |
---|
3056 | class BlossomIt { |
---|
3057 | public: |
---|
3058 | |
---|
3059 | /// \brief Constructor. |
---|
3060 | /// |
---|
3061 | /// Constructor for get the nodes of the variable. |
---|
3062 | BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
---|
3063 | : _algorithm(&algorithm) |
---|
3064 | { |
---|
3065 | _index = _algorithm->_blossom_potential[variable].begin; |
---|
3066 | _last = _algorithm->_blossom_potential[variable].end; |
---|
3067 | } |
---|
3068 | |
---|
3069 | /// \brief Invalid constructor. |
---|
3070 | /// |
---|
3071 | /// Invalid constructor. |
---|
3072 | BlossomIt(Invalid) : _index(-1) {} |
---|
3073 | |
---|
3074 | /// \brief Conversion to node. |
---|
3075 | /// |
---|
3076 | /// Conversion to node. |
---|
3077 | operator Node() const { |
---|
3078 | return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID; |
---|
3079 | } |
---|
3080 | |
---|
3081 | /// \brief Increment operator. |
---|
3082 | /// |
---|
3083 | /// Increment operator. |
---|
3084 | BlossomIt& operator++() { |
---|
3085 | ++_index; |
---|
3086 | if (_index == _last) { |
---|
3087 | _index = -1; |
---|
3088 | } |
---|
3089 | return *this; |
---|
3090 | } |
---|
3091 | |
---|
3092 | bool operator==(const BlossomIt& it) const { |
---|
3093 | return _index == it._index; |
---|
3094 | } |
---|
3095 | bool operator!=(const BlossomIt& it) const { |
---|
3096 | return _index != it._index; |
---|
3097 | } |
---|
3098 | |
---|
3099 | private: |
---|
3100 | const MaxWeightedPerfectMatching* _algorithm; |
---|
3101 | int _last; |
---|
3102 | int _index; |
---|
3103 | }; |
---|
3104 | |
---|
3105 | /// @} |
---|
3106 | |
---|
3107 | }; |
---|
3108 | |
---|
3109 | |
---|
3110 | } //END OF NAMESPACE LEMON |
---|
3111 | |
---|
3112 | #endif //LEMON_MAX_MATCHING_H |
---|