1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAX_MATCHING_H |
---|
20 | #define LEMON_MAX_MATCHING_H |
---|
21 | |
---|
22 | #include <vector> |
---|
23 | #include <queue> |
---|
24 | #include <set> |
---|
25 | #include <limits> |
---|
26 | |
---|
27 | #include <lemon/core.h> |
---|
28 | #include <lemon/unionfind.h> |
---|
29 | #include <lemon/bin_heap.h> |
---|
30 | #include <lemon/maps.h> |
---|
31 | |
---|
32 | ///\ingroup matching |
---|
33 | ///\file |
---|
34 | ///\brief Maximum matching algorithms in general graphs. |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | /// \ingroup matching |
---|
39 | /// |
---|
40 | /// \brief Edmonds' alternating forest maximum matching algorithm. |
---|
41 | /// |
---|
42 | /// This class provides Edmonds' alternating forest matching |
---|
43 | /// algorithm. The starting matching (if any) can be passed to the |
---|
44 | /// algorithm using some of init functions. |
---|
45 | /// |
---|
46 | /// The dual side of a matching is a map of the nodes to |
---|
47 | /// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c |
---|
48 | /// MATCHED/C showing the Gallai-Edmonds decomposition of the |
---|
49 | /// graph. The nodes in \c EVEN/D induce a graph with |
---|
50 | /// factor-critical components, the nodes in \c ODD/A form the |
---|
51 | /// barrier, and the nodes in \c MATCHED/C induce a graph having a |
---|
52 | /// perfect matching. The number of the fractor critical components |
---|
53 | /// minus the number of barrier nodes is a lower bound on the |
---|
54 | /// unmatched nodes, and if the matching is optimal this bound is |
---|
55 | /// tight. This decomposition can be attained by calling \c |
---|
56 | /// decomposition() after running the algorithm. |
---|
57 | /// |
---|
58 | /// \param _Graph The graph type the algorithm runs on. |
---|
59 | template <typename _Graph> |
---|
60 | class MaxMatching { |
---|
61 | public: |
---|
62 | |
---|
63 | typedef _Graph Graph; |
---|
64 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
---|
65 | MatchingMap; |
---|
66 | |
---|
67 | ///\brief Indicates the Gallai-Edmonds decomposition of the graph. |
---|
68 | /// |
---|
69 | ///Indicates the Gallai-Edmonds decomposition of the graph, which |
---|
70 | ///shows an upper bound on the size of a maximum matching. The |
---|
71 | ///nodes with Status \c EVEN/D induce a graph with factor-critical |
---|
72 | ///components, the nodes in \c ODD/A form the canonical barrier, |
---|
73 | ///and the nodes in \c MATCHED/C induce a graph having a perfect |
---|
74 | ///matching. |
---|
75 | enum Status { |
---|
76 | EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2 |
---|
77 | }; |
---|
78 | |
---|
79 | typedef typename Graph::template NodeMap<Status> StatusMap; |
---|
80 | |
---|
81 | private: |
---|
82 | |
---|
83 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
---|
84 | |
---|
85 | typedef UnionFindEnum<IntNodeMap> BlossomSet; |
---|
86 | typedef ExtendFindEnum<IntNodeMap> TreeSet; |
---|
87 | typedef RangeMap<Node> NodeIntMap; |
---|
88 | typedef MatchingMap EarMap; |
---|
89 | typedef std::vector<Node> NodeQueue; |
---|
90 | |
---|
91 | const Graph& _graph; |
---|
92 | MatchingMap* _matching; |
---|
93 | StatusMap* _status; |
---|
94 | |
---|
95 | EarMap* _ear; |
---|
96 | |
---|
97 | IntNodeMap* _blossom_set_index; |
---|
98 | BlossomSet* _blossom_set; |
---|
99 | NodeIntMap* _blossom_rep; |
---|
100 | |
---|
101 | IntNodeMap* _tree_set_index; |
---|
102 | TreeSet* _tree_set; |
---|
103 | |
---|
104 | NodeQueue _node_queue; |
---|
105 | int _process, _postpone, _last; |
---|
106 | |
---|
107 | int _node_num; |
---|
108 | |
---|
109 | private: |
---|
110 | |
---|
111 | void createStructures() { |
---|
112 | _node_num = countNodes(_graph); |
---|
113 | if (!_matching) { |
---|
114 | _matching = new MatchingMap(_graph); |
---|
115 | } |
---|
116 | if (!_status) { |
---|
117 | _status = new StatusMap(_graph); |
---|
118 | } |
---|
119 | if (!_ear) { |
---|
120 | _ear = new EarMap(_graph); |
---|
121 | } |
---|
122 | if (!_blossom_set) { |
---|
123 | _blossom_set_index = new IntNodeMap(_graph); |
---|
124 | _blossom_set = new BlossomSet(*_blossom_set_index); |
---|
125 | } |
---|
126 | if (!_blossom_rep) { |
---|
127 | _blossom_rep = new NodeIntMap(_node_num); |
---|
128 | } |
---|
129 | if (!_tree_set) { |
---|
130 | _tree_set_index = new IntNodeMap(_graph); |
---|
131 | _tree_set = new TreeSet(*_tree_set_index); |
---|
132 | } |
---|
133 | _node_queue.resize(_node_num); |
---|
134 | } |
---|
135 | |
---|
136 | void destroyStructures() { |
---|
137 | if (_matching) { |
---|
138 | delete _matching; |
---|
139 | } |
---|
140 | if (_status) { |
---|
141 | delete _status; |
---|
142 | } |
---|
143 | if (_ear) { |
---|
144 | delete _ear; |
---|
145 | } |
---|
146 | if (_blossom_set) { |
---|
147 | delete _blossom_set; |
---|
148 | delete _blossom_set_index; |
---|
149 | } |
---|
150 | if (_blossom_rep) { |
---|
151 | delete _blossom_rep; |
---|
152 | } |
---|
153 | if (_tree_set) { |
---|
154 | delete _tree_set_index; |
---|
155 | delete _tree_set; |
---|
156 | } |
---|
157 | } |
---|
158 | |
---|
159 | void processDense(const Node& n) { |
---|
160 | _process = _postpone = _last = 0; |
---|
161 | _node_queue[_last++] = n; |
---|
162 | |
---|
163 | while (_process != _last) { |
---|
164 | Node u = _node_queue[_process++]; |
---|
165 | for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
---|
166 | Node v = _graph.target(a); |
---|
167 | if ((*_status)[v] == MATCHED) { |
---|
168 | extendOnArc(a); |
---|
169 | } else if ((*_status)[v] == UNMATCHED) { |
---|
170 | augmentOnArc(a); |
---|
171 | return; |
---|
172 | } |
---|
173 | } |
---|
174 | } |
---|
175 | |
---|
176 | while (_postpone != _last) { |
---|
177 | Node u = _node_queue[_postpone++]; |
---|
178 | |
---|
179 | for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
---|
180 | Node v = _graph.target(a); |
---|
181 | |
---|
182 | if ((*_status)[v] == EVEN) { |
---|
183 | if (_blossom_set->find(u) != _blossom_set->find(v)) { |
---|
184 | shrinkOnEdge(a); |
---|
185 | } |
---|
186 | } |
---|
187 | |
---|
188 | while (_process != _last) { |
---|
189 | Node w = _node_queue[_process++]; |
---|
190 | for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
---|
191 | Node x = _graph.target(b); |
---|
192 | if ((*_status)[x] == MATCHED) { |
---|
193 | extendOnArc(b); |
---|
194 | } else if ((*_status)[x] == UNMATCHED) { |
---|
195 | augmentOnArc(b); |
---|
196 | return; |
---|
197 | } |
---|
198 | } |
---|
199 | } |
---|
200 | } |
---|
201 | } |
---|
202 | } |
---|
203 | |
---|
204 | void processSparse(const Node& n) { |
---|
205 | _process = _last = 0; |
---|
206 | _node_queue[_last++] = n; |
---|
207 | while (_process != _last) { |
---|
208 | Node u = _node_queue[_process++]; |
---|
209 | for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
---|
210 | Node v = _graph.target(a); |
---|
211 | |
---|
212 | if ((*_status)[v] == EVEN) { |
---|
213 | if (_blossom_set->find(u) != _blossom_set->find(v)) { |
---|
214 | shrinkOnEdge(a); |
---|
215 | } |
---|
216 | } else if ((*_status)[v] == MATCHED) { |
---|
217 | extendOnArc(a); |
---|
218 | } else if ((*_status)[v] == UNMATCHED) { |
---|
219 | augmentOnArc(a); |
---|
220 | return; |
---|
221 | } |
---|
222 | } |
---|
223 | } |
---|
224 | } |
---|
225 | |
---|
226 | void shrinkOnEdge(const Edge& e) { |
---|
227 | Node nca = INVALID; |
---|
228 | |
---|
229 | { |
---|
230 | std::set<Node> left_set, right_set; |
---|
231 | |
---|
232 | Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
---|
233 | left_set.insert(left); |
---|
234 | |
---|
235 | Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
---|
236 | right_set.insert(right); |
---|
237 | |
---|
238 | while (true) { |
---|
239 | if ((*_matching)[left] == INVALID) break; |
---|
240 | left = _graph.target((*_matching)[left]); |
---|
241 | left = (*_blossom_rep)[_blossom_set-> |
---|
242 | find(_graph.target((*_ear)[left]))]; |
---|
243 | if (right_set.find(left) != right_set.end()) { |
---|
244 | nca = left; |
---|
245 | break; |
---|
246 | } |
---|
247 | left_set.insert(left); |
---|
248 | |
---|
249 | if ((*_matching)[right] == INVALID) break; |
---|
250 | right = _graph.target((*_matching)[right]); |
---|
251 | right = (*_blossom_rep)[_blossom_set-> |
---|
252 | find(_graph.target((*_ear)[right]))]; |
---|
253 | if (left_set.find(right) != left_set.end()) { |
---|
254 | nca = right; |
---|
255 | break; |
---|
256 | } |
---|
257 | right_set.insert(right); |
---|
258 | } |
---|
259 | |
---|
260 | if (nca == INVALID) { |
---|
261 | if ((*_matching)[left] == INVALID) { |
---|
262 | nca = right; |
---|
263 | while (left_set.find(nca) == left_set.end()) { |
---|
264 | nca = _graph.target((*_matching)[nca]); |
---|
265 | nca =(*_blossom_rep)[_blossom_set-> |
---|
266 | find(_graph.target((*_ear)[nca]))]; |
---|
267 | } |
---|
268 | } else { |
---|
269 | nca = left; |
---|
270 | while (right_set.find(nca) == right_set.end()) { |
---|
271 | nca = _graph.target((*_matching)[nca]); |
---|
272 | nca = (*_blossom_rep)[_blossom_set-> |
---|
273 | find(_graph.target((*_ear)[nca]))]; |
---|
274 | } |
---|
275 | } |
---|
276 | } |
---|
277 | } |
---|
278 | |
---|
279 | { |
---|
280 | |
---|
281 | Node node = _graph.u(e); |
---|
282 | Arc arc = _graph.direct(e, true); |
---|
283 | Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
---|
284 | |
---|
285 | while (base != nca) { |
---|
286 | _ear->set(node, arc); |
---|
287 | |
---|
288 | Node n = node; |
---|
289 | while (n != base) { |
---|
290 | n = _graph.target((*_matching)[n]); |
---|
291 | Arc a = (*_ear)[n]; |
---|
292 | n = _graph.target(a); |
---|
293 | _ear->set(n, _graph.oppositeArc(a)); |
---|
294 | } |
---|
295 | node = _graph.target((*_matching)[base]); |
---|
296 | _tree_set->erase(base); |
---|
297 | _tree_set->erase(node); |
---|
298 | _blossom_set->insert(node, _blossom_set->find(base)); |
---|
299 | _status->set(node, EVEN); |
---|
300 | _node_queue[_last++] = node; |
---|
301 | arc = _graph.oppositeArc((*_ear)[node]); |
---|
302 | node = _graph.target((*_ear)[node]); |
---|
303 | base = (*_blossom_rep)[_blossom_set->find(node)]; |
---|
304 | _blossom_set->join(_graph.target(arc), base); |
---|
305 | } |
---|
306 | } |
---|
307 | |
---|
308 | _blossom_rep->set(_blossom_set->find(nca), nca); |
---|
309 | |
---|
310 | { |
---|
311 | |
---|
312 | Node node = _graph.v(e); |
---|
313 | Arc arc = _graph.direct(e, false); |
---|
314 | Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
---|
315 | |
---|
316 | while (base != nca) { |
---|
317 | _ear->set(node, arc); |
---|
318 | |
---|
319 | Node n = node; |
---|
320 | while (n != base) { |
---|
321 | n = _graph.target((*_matching)[n]); |
---|
322 | Arc a = (*_ear)[n]; |
---|
323 | n = _graph.target(a); |
---|
324 | _ear->set(n, _graph.oppositeArc(a)); |
---|
325 | } |
---|
326 | node = _graph.target((*_matching)[base]); |
---|
327 | _tree_set->erase(base); |
---|
328 | _tree_set->erase(node); |
---|
329 | _blossom_set->insert(node, _blossom_set->find(base)); |
---|
330 | _status->set(node, EVEN); |
---|
331 | _node_queue[_last++] = node; |
---|
332 | arc = _graph.oppositeArc((*_ear)[node]); |
---|
333 | node = _graph.target((*_ear)[node]); |
---|
334 | base = (*_blossom_rep)[_blossom_set->find(node)]; |
---|
335 | _blossom_set->join(_graph.target(arc), base); |
---|
336 | } |
---|
337 | } |
---|
338 | |
---|
339 | _blossom_rep->set(_blossom_set->find(nca), nca); |
---|
340 | } |
---|
341 | |
---|
342 | |
---|
343 | |
---|
344 | void extendOnArc(const Arc& a) { |
---|
345 | Node base = _graph.source(a); |
---|
346 | Node odd = _graph.target(a); |
---|
347 | |
---|
348 | _ear->set(odd, _graph.oppositeArc(a)); |
---|
349 | Node even = _graph.target((*_matching)[odd]); |
---|
350 | _blossom_rep->set(_blossom_set->insert(even), even); |
---|
351 | _status->set(odd, ODD); |
---|
352 | _status->set(even, EVEN); |
---|
353 | int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
---|
354 | _tree_set->insert(odd, tree); |
---|
355 | _tree_set->insert(even, tree); |
---|
356 | _node_queue[_last++] = even; |
---|
357 | |
---|
358 | } |
---|
359 | |
---|
360 | void augmentOnArc(const Arc& a) { |
---|
361 | Node even = _graph.source(a); |
---|
362 | Node odd = _graph.target(a); |
---|
363 | |
---|
364 | int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
---|
365 | |
---|
366 | _matching->set(odd, _graph.oppositeArc(a)); |
---|
367 | _status->set(odd, MATCHED); |
---|
368 | |
---|
369 | Arc arc = (*_matching)[even]; |
---|
370 | _matching->set(even, a); |
---|
371 | |
---|
372 | while (arc != INVALID) { |
---|
373 | odd = _graph.target(arc); |
---|
374 | arc = (*_ear)[odd]; |
---|
375 | even = _graph.target(arc); |
---|
376 | _matching->set(odd, arc); |
---|
377 | arc = (*_matching)[even]; |
---|
378 | _matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
---|
379 | } |
---|
380 | |
---|
381 | for (typename TreeSet::ItemIt it(*_tree_set, tree); |
---|
382 | it != INVALID; ++it) { |
---|
383 | if ((*_status)[it] == ODD) { |
---|
384 | _status->set(it, MATCHED); |
---|
385 | } else { |
---|
386 | int blossom = _blossom_set->find(it); |
---|
387 | for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
---|
388 | jt != INVALID; ++jt) { |
---|
389 | _status->set(jt, MATCHED); |
---|
390 | } |
---|
391 | _blossom_set->eraseClass(blossom); |
---|
392 | } |
---|
393 | } |
---|
394 | _tree_set->eraseClass(tree); |
---|
395 | |
---|
396 | } |
---|
397 | |
---|
398 | public: |
---|
399 | |
---|
400 | /// \brief Constructor |
---|
401 | /// |
---|
402 | /// Constructor. |
---|
403 | MaxMatching(const Graph& graph) |
---|
404 | : _graph(graph), _matching(0), _status(0), _ear(0), |
---|
405 | _blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
---|
406 | _tree_set_index(0), _tree_set(0) {} |
---|
407 | |
---|
408 | ~MaxMatching() { |
---|
409 | destroyStructures(); |
---|
410 | } |
---|
411 | |
---|
412 | /// \name Execution control |
---|
413 | /// The simplest way to execute the algorithm is to use the member |
---|
414 | /// \c run() member function. |
---|
415 | /// \n |
---|
416 | |
---|
417 | /// If you need more control on the execution, first you must call |
---|
418 | /// \ref init(), \ref greedyInit() or \ref matchingInit() |
---|
419 | /// functions, then you can start the algorithm with the \ref |
---|
420 | /// startParse() or startDense() functions. |
---|
421 | |
---|
422 | ///@{ |
---|
423 | |
---|
424 | /// \brief Sets the actual matching to the empty matching. |
---|
425 | /// |
---|
426 | /// Sets the actual matching to the empty matching. |
---|
427 | /// |
---|
428 | void init() { |
---|
429 | createStructures(); |
---|
430 | for(NodeIt n(_graph); n != INVALID; ++n) { |
---|
431 | _matching->set(n, INVALID); |
---|
432 | _status->set(n, UNMATCHED); |
---|
433 | } |
---|
434 | } |
---|
435 | |
---|
436 | ///\brief Finds a greedy matching for initial matching. |
---|
437 | /// |
---|
438 | ///For initial matchig it finds a maximal greedy matching. |
---|
439 | void greedyInit() { |
---|
440 | createStructures(); |
---|
441 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
442 | _matching->set(n, INVALID); |
---|
443 | _status->set(n, UNMATCHED); |
---|
444 | } |
---|
445 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
446 | if ((*_matching)[n] == INVALID) { |
---|
447 | for (OutArcIt a(_graph, n); a != INVALID ; ++a) { |
---|
448 | Node v = _graph.target(a); |
---|
449 | if ((*_matching)[v] == INVALID && v != n) { |
---|
450 | _matching->set(n, a); |
---|
451 | _status->set(n, MATCHED); |
---|
452 | _matching->set(v, _graph.oppositeArc(a)); |
---|
453 | _status->set(v, MATCHED); |
---|
454 | break; |
---|
455 | } |
---|
456 | } |
---|
457 | } |
---|
458 | } |
---|
459 | } |
---|
460 | |
---|
461 | |
---|
462 | /// \brief Initialize the matching from the map containing a matching. |
---|
463 | /// |
---|
464 | /// Initialize the matching from a \c bool valued \c Edge map. This |
---|
465 | /// map must have the property that there are no two incident edges |
---|
466 | /// with true value, ie. it contains a matching. |
---|
467 | /// \return %True if the map contains a matching. |
---|
468 | template <typename MatchingMap> |
---|
469 | bool matchingInit(const MatchingMap& matching) { |
---|
470 | createStructures(); |
---|
471 | |
---|
472 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
473 | _matching->set(n, INVALID); |
---|
474 | _status->set(n, UNMATCHED); |
---|
475 | } |
---|
476 | for(EdgeIt e(_graph); e!=INVALID; ++e) { |
---|
477 | if (matching[e]) { |
---|
478 | |
---|
479 | Node u = _graph.u(e); |
---|
480 | if ((*_matching)[u] != INVALID) return false; |
---|
481 | _matching->set(u, _graph.direct(e, true)); |
---|
482 | _status->set(u, MATCHED); |
---|
483 | |
---|
484 | Node v = _graph.v(e); |
---|
485 | if ((*_matching)[v] != INVALID) return false; |
---|
486 | _matching->set(v, _graph.direct(e, false)); |
---|
487 | _status->set(v, MATCHED); |
---|
488 | } |
---|
489 | } |
---|
490 | return true; |
---|
491 | } |
---|
492 | |
---|
493 | /// \brief Starts Edmonds' algorithm |
---|
494 | /// |
---|
495 | /// If runs the original Edmonds' algorithm. |
---|
496 | void startSparse() { |
---|
497 | for(NodeIt n(_graph); n != INVALID; ++n) { |
---|
498 | if ((*_status)[n] == UNMATCHED) { |
---|
499 | (*_blossom_rep)[_blossom_set->insert(n)] = n; |
---|
500 | _tree_set->insert(n); |
---|
501 | _status->set(n, EVEN); |
---|
502 | processSparse(n); |
---|
503 | } |
---|
504 | } |
---|
505 | } |
---|
506 | |
---|
507 | /// \brief Starts Edmonds' algorithm. |
---|
508 | /// |
---|
509 | /// It runs Edmonds' algorithm with a heuristic of postponing |
---|
510 | /// shrinks, giving a faster algorithm for dense graphs. |
---|
511 | void startDense() { |
---|
512 | for(NodeIt n(_graph); n != INVALID; ++n) { |
---|
513 | if ((*_status)[n] == UNMATCHED) { |
---|
514 | (*_blossom_rep)[_blossom_set->insert(n)] = n; |
---|
515 | _tree_set->insert(n); |
---|
516 | _status->set(n, EVEN); |
---|
517 | processDense(n); |
---|
518 | } |
---|
519 | } |
---|
520 | } |
---|
521 | |
---|
522 | |
---|
523 | /// \brief Runs Edmonds' algorithm |
---|
524 | /// |
---|
525 | /// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>) |
---|
526 | /// or Edmonds' algorithm with a heuristic of |
---|
527 | /// postponing shrinks for dense graphs. |
---|
528 | void run() { |
---|
529 | if (countEdges(_graph) < 2 * countNodes(_graph)) { |
---|
530 | greedyInit(); |
---|
531 | startSparse(); |
---|
532 | } else { |
---|
533 | init(); |
---|
534 | startDense(); |
---|
535 | } |
---|
536 | } |
---|
537 | |
---|
538 | /// @} |
---|
539 | |
---|
540 | /// \name Primal solution |
---|
541 | /// Functions for get the primal solution, ie. the matching. |
---|
542 | |
---|
543 | /// @{ |
---|
544 | |
---|
545 | ///\brief Returns the size of the actual matching stored. |
---|
546 | /// |
---|
547 | ///Returns the size of the actual matching stored. After \ref |
---|
548 | ///run() it returns the size of the maximum matching in the graph. |
---|
549 | int matchingSize() const { |
---|
550 | int size = 0; |
---|
551 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
552 | if ((*_matching)[n] != INVALID) { |
---|
553 | ++size; |
---|
554 | } |
---|
555 | } |
---|
556 | return size / 2; |
---|
557 | } |
---|
558 | |
---|
559 | /// \brief Returns true when the edge is in the matching. |
---|
560 | /// |
---|
561 | /// Returns true when the edge is in the matching. |
---|
562 | bool matching(const Edge& edge) const { |
---|
563 | return edge == (*_matching)[_graph.u(edge)]; |
---|
564 | } |
---|
565 | |
---|
566 | /// \brief Returns the matching edge incident to the given node. |
---|
567 | /// |
---|
568 | /// Returns the matching edge of a \c node in the actual matching or |
---|
569 | /// INVALID if the \c node is not covered by the actual matching. |
---|
570 | Arc matching(const Node& n) const { |
---|
571 | return (*_matching)[n]; |
---|
572 | } |
---|
573 | |
---|
574 | ///\brief Returns the mate of a node in the actual matching. |
---|
575 | /// |
---|
576 | ///Returns the mate of a \c node in the actual matching or |
---|
577 | ///INVALID if the \c node is not covered by the actual matching. |
---|
578 | Node mate(const Node& n) const { |
---|
579 | return (*_matching)[n] != INVALID ? |
---|
580 | _graph.target((*_matching)[n]) : INVALID; |
---|
581 | } |
---|
582 | |
---|
583 | /// @} |
---|
584 | |
---|
585 | /// \name Dual solution |
---|
586 | /// Functions for get the dual solution, ie. the decomposition. |
---|
587 | |
---|
588 | /// @{ |
---|
589 | |
---|
590 | /// \brief Returns the class of the node in the Edmonds-Gallai |
---|
591 | /// decomposition. |
---|
592 | /// |
---|
593 | /// Returns the class of the node in the Edmonds-Gallai |
---|
594 | /// decomposition. |
---|
595 | Status decomposition(const Node& n) const { |
---|
596 | return (*_status)[n]; |
---|
597 | } |
---|
598 | |
---|
599 | /// \brief Returns true when the node is in the barrier. |
---|
600 | /// |
---|
601 | /// Returns true when the node is in the barrier. |
---|
602 | bool barrier(const Node& n) const { |
---|
603 | return (*_status)[n] == ODD; |
---|
604 | } |
---|
605 | |
---|
606 | /// @} |
---|
607 | |
---|
608 | }; |
---|
609 | |
---|
610 | /// \ingroup matching |
---|
611 | /// |
---|
612 | /// \brief Weighted matching in general graphs |
---|
613 | /// |
---|
614 | /// This class provides an efficient implementation of Edmond's |
---|
615 | /// maximum weighted matching algorithm. The implementation is based |
---|
616 | /// on extensive use of priority queues and provides |
---|
617 | /// \f$O(nm\log(n))\f$ time complexity. |
---|
618 | /// |
---|
619 | /// The maximum weighted matching problem is to find undirected |
---|
620 | /// edges in the graph with maximum overall weight and no two of |
---|
621 | /// them shares their ends. The problem can be formulated with the |
---|
622 | /// following linear program. |
---|
623 | /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
---|
624 | /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
---|
625 | \quad \forall B\in\mathcal{O}\f] */ |
---|
626 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
---|
627 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
---|
628 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
---|
629 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
---|
630 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
---|
631 | /// subsets of the nodes. |
---|
632 | /// |
---|
633 | /// The algorithm calculates an optimal matching and a proof of the |
---|
634 | /// optimality. The solution of the dual problem can be used to check |
---|
635 | /// the result of the algorithm. The dual linear problem is the |
---|
636 | /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
---|
637 | z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
---|
638 | /// \f[y_u \ge 0 \quad \forall u \in V\f] |
---|
639 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
---|
640 | /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
---|
641 | \frac{\vert B \vert - 1}{2}z_B\f] */ |
---|
642 | /// |
---|
643 | /// The algorithm can be executed with \c run() or the \c init() and |
---|
644 | /// then the \c start() member functions. After it the matching can |
---|
645 | /// be asked with \c matching() or mate() functions. The dual |
---|
646 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
---|
647 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
---|
648 | /// "BlossomIt" nested class which is able to iterate on the nodes |
---|
649 | /// of a blossom. If the value type is integral then the dual |
---|
650 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
---|
651 | template <typename _Graph, |
---|
652 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
---|
653 | class MaxWeightedMatching { |
---|
654 | public: |
---|
655 | |
---|
656 | typedef _Graph Graph; |
---|
657 | typedef _WeightMap WeightMap; |
---|
658 | typedef typename WeightMap::Value Value; |
---|
659 | |
---|
660 | /// \brief Scaling factor for dual solution |
---|
661 | /// |
---|
662 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
---|
663 | /// according to the value type. |
---|
664 | static const int dualScale = |
---|
665 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
---|
666 | |
---|
667 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
---|
668 | MatchingMap; |
---|
669 | |
---|
670 | private: |
---|
671 | |
---|
672 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
---|
673 | |
---|
674 | typedef typename Graph::template NodeMap<Value> NodePotential; |
---|
675 | typedef std::vector<Node> BlossomNodeList; |
---|
676 | |
---|
677 | struct BlossomVariable { |
---|
678 | int begin, end; |
---|
679 | Value value; |
---|
680 | |
---|
681 | BlossomVariable(int _begin, int _end, Value _value) |
---|
682 | : begin(_begin), end(_end), value(_value) {} |
---|
683 | |
---|
684 | }; |
---|
685 | |
---|
686 | typedef std::vector<BlossomVariable> BlossomPotential; |
---|
687 | |
---|
688 | const Graph& _graph; |
---|
689 | const WeightMap& _weight; |
---|
690 | |
---|
691 | MatchingMap* _matching; |
---|
692 | |
---|
693 | NodePotential* _node_potential; |
---|
694 | |
---|
695 | BlossomPotential _blossom_potential; |
---|
696 | BlossomNodeList _blossom_node_list; |
---|
697 | |
---|
698 | int _node_num; |
---|
699 | int _blossom_num; |
---|
700 | |
---|
701 | typedef RangeMap<int> IntIntMap; |
---|
702 | |
---|
703 | enum Status { |
---|
704 | EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
---|
705 | }; |
---|
706 | |
---|
707 | typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
---|
708 | struct BlossomData { |
---|
709 | int tree; |
---|
710 | Status status; |
---|
711 | Arc pred, next; |
---|
712 | Value pot, offset; |
---|
713 | Node base; |
---|
714 | }; |
---|
715 | |
---|
716 | IntNodeMap *_blossom_index; |
---|
717 | BlossomSet *_blossom_set; |
---|
718 | RangeMap<BlossomData>* _blossom_data; |
---|
719 | |
---|
720 | IntNodeMap *_node_index; |
---|
721 | IntArcMap *_node_heap_index; |
---|
722 | |
---|
723 | struct NodeData { |
---|
724 | |
---|
725 | NodeData(IntArcMap& node_heap_index) |
---|
726 | : heap(node_heap_index) {} |
---|
727 | |
---|
728 | int blossom; |
---|
729 | Value pot; |
---|
730 | BinHeap<Value, IntArcMap> heap; |
---|
731 | std::map<int, Arc> heap_index; |
---|
732 | |
---|
733 | int tree; |
---|
734 | }; |
---|
735 | |
---|
736 | RangeMap<NodeData>* _node_data; |
---|
737 | |
---|
738 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
---|
739 | |
---|
740 | IntIntMap *_tree_set_index; |
---|
741 | TreeSet *_tree_set; |
---|
742 | |
---|
743 | IntNodeMap *_delta1_index; |
---|
744 | BinHeap<Value, IntNodeMap> *_delta1; |
---|
745 | |
---|
746 | IntIntMap *_delta2_index; |
---|
747 | BinHeap<Value, IntIntMap> *_delta2; |
---|
748 | |
---|
749 | IntEdgeMap *_delta3_index; |
---|
750 | BinHeap<Value, IntEdgeMap> *_delta3; |
---|
751 | |
---|
752 | IntIntMap *_delta4_index; |
---|
753 | BinHeap<Value, IntIntMap> *_delta4; |
---|
754 | |
---|
755 | Value _delta_sum; |
---|
756 | |
---|
757 | void createStructures() { |
---|
758 | _node_num = countNodes(_graph); |
---|
759 | _blossom_num = _node_num * 3 / 2; |
---|
760 | |
---|
761 | if (!_matching) { |
---|
762 | _matching = new MatchingMap(_graph); |
---|
763 | } |
---|
764 | if (!_node_potential) { |
---|
765 | _node_potential = new NodePotential(_graph); |
---|
766 | } |
---|
767 | if (!_blossom_set) { |
---|
768 | _blossom_index = new IntNodeMap(_graph); |
---|
769 | _blossom_set = new BlossomSet(*_blossom_index); |
---|
770 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
---|
771 | } |
---|
772 | |
---|
773 | if (!_node_index) { |
---|
774 | _node_index = new IntNodeMap(_graph); |
---|
775 | _node_heap_index = new IntArcMap(_graph); |
---|
776 | _node_data = new RangeMap<NodeData>(_node_num, |
---|
777 | NodeData(*_node_heap_index)); |
---|
778 | } |
---|
779 | |
---|
780 | if (!_tree_set) { |
---|
781 | _tree_set_index = new IntIntMap(_blossom_num); |
---|
782 | _tree_set = new TreeSet(*_tree_set_index); |
---|
783 | } |
---|
784 | if (!_delta1) { |
---|
785 | _delta1_index = new IntNodeMap(_graph); |
---|
786 | _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
---|
787 | } |
---|
788 | if (!_delta2) { |
---|
789 | _delta2_index = new IntIntMap(_blossom_num); |
---|
790 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
---|
791 | } |
---|
792 | if (!_delta3) { |
---|
793 | _delta3_index = new IntEdgeMap(_graph); |
---|
794 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
---|
795 | } |
---|
796 | if (!_delta4) { |
---|
797 | _delta4_index = new IntIntMap(_blossom_num); |
---|
798 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
---|
799 | } |
---|
800 | } |
---|
801 | |
---|
802 | void destroyStructures() { |
---|
803 | _node_num = countNodes(_graph); |
---|
804 | _blossom_num = _node_num * 3 / 2; |
---|
805 | |
---|
806 | if (_matching) { |
---|
807 | delete _matching; |
---|
808 | } |
---|
809 | if (_node_potential) { |
---|
810 | delete _node_potential; |
---|
811 | } |
---|
812 | if (_blossom_set) { |
---|
813 | delete _blossom_index; |
---|
814 | delete _blossom_set; |
---|
815 | delete _blossom_data; |
---|
816 | } |
---|
817 | |
---|
818 | if (_node_index) { |
---|
819 | delete _node_index; |
---|
820 | delete _node_heap_index; |
---|
821 | delete _node_data; |
---|
822 | } |
---|
823 | |
---|
824 | if (_tree_set) { |
---|
825 | delete _tree_set_index; |
---|
826 | delete _tree_set; |
---|
827 | } |
---|
828 | if (_delta1) { |
---|
829 | delete _delta1_index; |
---|
830 | delete _delta1; |
---|
831 | } |
---|
832 | if (_delta2) { |
---|
833 | delete _delta2_index; |
---|
834 | delete _delta2; |
---|
835 | } |
---|
836 | if (_delta3) { |
---|
837 | delete _delta3_index; |
---|
838 | delete _delta3; |
---|
839 | } |
---|
840 | if (_delta4) { |
---|
841 | delete _delta4_index; |
---|
842 | delete _delta4; |
---|
843 | } |
---|
844 | } |
---|
845 | |
---|
846 | void matchedToEven(int blossom, int tree) { |
---|
847 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
848 | _delta2->erase(blossom); |
---|
849 | } |
---|
850 | |
---|
851 | if (!_blossom_set->trivial(blossom)) { |
---|
852 | (*_blossom_data)[blossom].pot -= |
---|
853 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
---|
854 | } |
---|
855 | |
---|
856 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
857 | n != INVALID; ++n) { |
---|
858 | |
---|
859 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
860 | int ni = (*_node_index)[n]; |
---|
861 | |
---|
862 | (*_node_data)[ni].heap.clear(); |
---|
863 | (*_node_data)[ni].heap_index.clear(); |
---|
864 | |
---|
865 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
---|
866 | |
---|
867 | _delta1->push(n, (*_node_data)[ni].pot); |
---|
868 | |
---|
869 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
870 | Node v = _graph.source(e); |
---|
871 | int vb = _blossom_set->find(v); |
---|
872 | int vi = (*_node_index)[v]; |
---|
873 | |
---|
874 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
875 | dualScale * _weight[e]; |
---|
876 | |
---|
877 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
878 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
879 | _delta3->push(e, rw / 2); |
---|
880 | } |
---|
881 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
882 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
---|
883 | _delta3->push(e, rw); |
---|
884 | } |
---|
885 | } else { |
---|
886 | typename std::map<int, Arc>::iterator it = |
---|
887 | (*_node_data)[vi].heap_index.find(tree); |
---|
888 | |
---|
889 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
890 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
891 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
892 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
893 | it->second = e; |
---|
894 | } |
---|
895 | } else { |
---|
896 | (*_node_data)[vi].heap.push(e, rw); |
---|
897 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
898 | } |
---|
899 | |
---|
900 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
901 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
902 | |
---|
903 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
904 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
905 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
906 | (*_blossom_data)[vb].offset); |
---|
907 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
908 | (*_blossom_data)[vb].offset){ |
---|
909 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
910 | (*_blossom_data)[vb].offset); |
---|
911 | } |
---|
912 | } |
---|
913 | } |
---|
914 | } |
---|
915 | } |
---|
916 | } |
---|
917 | (*_blossom_data)[blossom].offset = 0; |
---|
918 | } |
---|
919 | |
---|
920 | void matchedToOdd(int blossom) { |
---|
921 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
922 | _delta2->erase(blossom); |
---|
923 | } |
---|
924 | (*_blossom_data)[blossom].offset += _delta_sum; |
---|
925 | if (!_blossom_set->trivial(blossom)) { |
---|
926 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
---|
927 | (*_blossom_data)[blossom].offset); |
---|
928 | } |
---|
929 | } |
---|
930 | |
---|
931 | void evenToMatched(int blossom, int tree) { |
---|
932 | if (!_blossom_set->trivial(blossom)) { |
---|
933 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
---|
934 | } |
---|
935 | |
---|
936 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
937 | n != INVALID; ++n) { |
---|
938 | int ni = (*_node_index)[n]; |
---|
939 | (*_node_data)[ni].pot -= _delta_sum; |
---|
940 | |
---|
941 | _delta1->erase(n); |
---|
942 | |
---|
943 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
944 | Node v = _graph.source(e); |
---|
945 | int vb = _blossom_set->find(v); |
---|
946 | int vi = (*_node_index)[v]; |
---|
947 | |
---|
948 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
949 | dualScale * _weight[e]; |
---|
950 | |
---|
951 | if (vb == blossom) { |
---|
952 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
953 | _delta3->erase(e); |
---|
954 | } |
---|
955 | } else if ((*_blossom_data)[vb].status == EVEN) { |
---|
956 | |
---|
957 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
958 | _delta3->erase(e); |
---|
959 | } |
---|
960 | |
---|
961 | int vt = _tree_set->find(vb); |
---|
962 | |
---|
963 | if (vt != tree) { |
---|
964 | |
---|
965 | Arc r = _graph.oppositeArc(e); |
---|
966 | |
---|
967 | typename std::map<int, Arc>::iterator it = |
---|
968 | (*_node_data)[ni].heap_index.find(vt); |
---|
969 | |
---|
970 | if (it != (*_node_data)[ni].heap_index.end()) { |
---|
971 | if ((*_node_data)[ni].heap[it->second] > rw) { |
---|
972 | (*_node_data)[ni].heap.replace(it->second, r); |
---|
973 | (*_node_data)[ni].heap.decrease(r, rw); |
---|
974 | it->second = r; |
---|
975 | } |
---|
976 | } else { |
---|
977 | (*_node_data)[ni].heap.push(r, rw); |
---|
978 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
---|
979 | } |
---|
980 | |
---|
981 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
---|
982 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
---|
983 | |
---|
984 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
---|
985 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
986 | (*_blossom_data)[blossom].offset); |
---|
987 | } else if ((*_delta2)[blossom] > |
---|
988 | _blossom_set->classPrio(blossom) - |
---|
989 | (*_blossom_data)[blossom].offset){ |
---|
990 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
---|
991 | (*_blossom_data)[blossom].offset); |
---|
992 | } |
---|
993 | } |
---|
994 | } |
---|
995 | |
---|
996 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
997 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
998 | _delta3->erase(e); |
---|
999 | } |
---|
1000 | } else { |
---|
1001 | |
---|
1002 | typename std::map<int, Arc>::iterator it = |
---|
1003 | (*_node_data)[vi].heap_index.find(tree); |
---|
1004 | |
---|
1005 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
1006 | (*_node_data)[vi].heap.erase(it->second); |
---|
1007 | (*_node_data)[vi].heap_index.erase(it); |
---|
1008 | if ((*_node_data)[vi].heap.empty()) { |
---|
1009 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
---|
1010 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
---|
1011 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
---|
1012 | } |
---|
1013 | |
---|
1014 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
1015 | if (_blossom_set->classPrio(vb) == |
---|
1016 | std::numeric_limits<Value>::max()) { |
---|
1017 | _delta2->erase(vb); |
---|
1018 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
---|
1019 | (*_blossom_data)[vb].offset) { |
---|
1020 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
---|
1021 | (*_blossom_data)[vb].offset); |
---|
1022 | } |
---|
1023 | } |
---|
1024 | } |
---|
1025 | } |
---|
1026 | } |
---|
1027 | } |
---|
1028 | } |
---|
1029 | |
---|
1030 | void oddToMatched(int blossom) { |
---|
1031 | (*_blossom_data)[blossom].offset -= _delta_sum; |
---|
1032 | |
---|
1033 | if (_blossom_set->classPrio(blossom) != |
---|
1034 | std::numeric_limits<Value>::max()) { |
---|
1035 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
1036 | (*_blossom_data)[blossom].offset); |
---|
1037 | } |
---|
1038 | |
---|
1039 | if (!_blossom_set->trivial(blossom)) { |
---|
1040 | _delta4->erase(blossom); |
---|
1041 | } |
---|
1042 | } |
---|
1043 | |
---|
1044 | void oddToEven(int blossom, int tree) { |
---|
1045 | if (!_blossom_set->trivial(blossom)) { |
---|
1046 | _delta4->erase(blossom); |
---|
1047 | (*_blossom_data)[blossom].pot -= |
---|
1048 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
---|
1049 | } |
---|
1050 | |
---|
1051 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
1052 | n != INVALID; ++n) { |
---|
1053 | int ni = (*_node_index)[n]; |
---|
1054 | |
---|
1055 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
1056 | |
---|
1057 | (*_node_data)[ni].heap.clear(); |
---|
1058 | (*_node_data)[ni].heap_index.clear(); |
---|
1059 | (*_node_data)[ni].pot += |
---|
1060 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
---|
1061 | |
---|
1062 | _delta1->push(n, (*_node_data)[ni].pot); |
---|
1063 | |
---|
1064 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1065 | Node v = _graph.source(e); |
---|
1066 | int vb = _blossom_set->find(v); |
---|
1067 | int vi = (*_node_index)[v]; |
---|
1068 | |
---|
1069 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
1070 | dualScale * _weight[e]; |
---|
1071 | |
---|
1072 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
1073 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
1074 | _delta3->push(e, rw / 2); |
---|
1075 | } |
---|
1076 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
1077 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
---|
1078 | _delta3->push(e, rw); |
---|
1079 | } |
---|
1080 | } else { |
---|
1081 | |
---|
1082 | typename std::map<int, Arc>::iterator it = |
---|
1083 | (*_node_data)[vi].heap_index.find(tree); |
---|
1084 | |
---|
1085 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
1086 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
1087 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
1088 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
1089 | it->second = e; |
---|
1090 | } |
---|
1091 | } else { |
---|
1092 | (*_node_data)[vi].heap.push(e, rw); |
---|
1093 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
1094 | } |
---|
1095 | |
---|
1096 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
1097 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
1098 | |
---|
1099 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
1100 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
1101 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
1102 | (*_blossom_data)[vb].offset); |
---|
1103 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
1104 | (*_blossom_data)[vb].offset) { |
---|
1105 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
1106 | (*_blossom_data)[vb].offset); |
---|
1107 | } |
---|
1108 | } |
---|
1109 | } |
---|
1110 | } |
---|
1111 | } |
---|
1112 | } |
---|
1113 | (*_blossom_data)[blossom].offset = 0; |
---|
1114 | } |
---|
1115 | |
---|
1116 | |
---|
1117 | void matchedToUnmatched(int blossom) { |
---|
1118 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
1119 | _delta2->erase(blossom); |
---|
1120 | } |
---|
1121 | |
---|
1122 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
1123 | n != INVALID; ++n) { |
---|
1124 | int ni = (*_node_index)[n]; |
---|
1125 | |
---|
1126 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
1127 | |
---|
1128 | (*_node_data)[ni].heap.clear(); |
---|
1129 | (*_node_data)[ni].heap_index.clear(); |
---|
1130 | |
---|
1131 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1132 | Node v = _graph.target(e); |
---|
1133 | int vb = _blossom_set->find(v); |
---|
1134 | int vi = (*_node_index)[v]; |
---|
1135 | |
---|
1136 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
1137 | dualScale * _weight[e]; |
---|
1138 | |
---|
1139 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
1140 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
---|
1141 | _delta3->push(e, rw); |
---|
1142 | } |
---|
1143 | } |
---|
1144 | } |
---|
1145 | } |
---|
1146 | } |
---|
1147 | |
---|
1148 | void unmatchedToMatched(int blossom) { |
---|
1149 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
1150 | n != INVALID; ++n) { |
---|
1151 | int ni = (*_node_index)[n]; |
---|
1152 | |
---|
1153 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1154 | Node v = _graph.source(e); |
---|
1155 | int vb = _blossom_set->find(v); |
---|
1156 | int vi = (*_node_index)[v]; |
---|
1157 | |
---|
1158 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
1159 | dualScale * _weight[e]; |
---|
1160 | |
---|
1161 | if (vb == blossom) { |
---|
1162 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1163 | _delta3->erase(e); |
---|
1164 | } |
---|
1165 | } else if ((*_blossom_data)[vb].status == EVEN) { |
---|
1166 | |
---|
1167 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1168 | _delta3->erase(e); |
---|
1169 | } |
---|
1170 | |
---|
1171 | int vt = _tree_set->find(vb); |
---|
1172 | |
---|
1173 | Arc r = _graph.oppositeArc(e); |
---|
1174 | |
---|
1175 | typename std::map<int, Arc>::iterator it = |
---|
1176 | (*_node_data)[ni].heap_index.find(vt); |
---|
1177 | |
---|
1178 | if (it != (*_node_data)[ni].heap_index.end()) { |
---|
1179 | if ((*_node_data)[ni].heap[it->second] > rw) { |
---|
1180 | (*_node_data)[ni].heap.replace(it->second, r); |
---|
1181 | (*_node_data)[ni].heap.decrease(r, rw); |
---|
1182 | it->second = r; |
---|
1183 | } |
---|
1184 | } else { |
---|
1185 | (*_node_data)[ni].heap.push(r, rw); |
---|
1186 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
---|
1187 | } |
---|
1188 | |
---|
1189 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
---|
1190 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
---|
1191 | |
---|
1192 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
---|
1193 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
1194 | (*_blossom_data)[blossom].offset); |
---|
1195 | } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
---|
1196 | (*_blossom_data)[blossom].offset){ |
---|
1197 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
---|
1198 | (*_blossom_data)[blossom].offset); |
---|
1199 | } |
---|
1200 | } |
---|
1201 | |
---|
1202 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
---|
1203 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
1204 | _delta3->erase(e); |
---|
1205 | } |
---|
1206 | } |
---|
1207 | } |
---|
1208 | } |
---|
1209 | } |
---|
1210 | |
---|
1211 | void alternatePath(int even, int tree) { |
---|
1212 | int odd; |
---|
1213 | |
---|
1214 | evenToMatched(even, tree); |
---|
1215 | (*_blossom_data)[even].status = MATCHED; |
---|
1216 | |
---|
1217 | while ((*_blossom_data)[even].pred != INVALID) { |
---|
1218 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
---|
1219 | (*_blossom_data)[odd].status = MATCHED; |
---|
1220 | oddToMatched(odd); |
---|
1221 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
---|
1222 | |
---|
1223 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
---|
1224 | (*_blossom_data)[even].status = MATCHED; |
---|
1225 | evenToMatched(even, tree); |
---|
1226 | (*_blossom_data)[even].next = |
---|
1227 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
---|
1228 | } |
---|
1229 | |
---|
1230 | } |
---|
1231 | |
---|
1232 | void destroyTree(int tree) { |
---|
1233 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
---|
1234 | if ((*_blossom_data)[b].status == EVEN) { |
---|
1235 | (*_blossom_data)[b].status = MATCHED; |
---|
1236 | evenToMatched(b, tree); |
---|
1237 | } else if ((*_blossom_data)[b].status == ODD) { |
---|
1238 | (*_blossom_data)[b].status = MATCHED; |
---|
1239 | oddToMatched(b); |
---|
1240 | } |
---|
1241 | } |
---|
1242 | _tree_set->eraseClass(tree); |
---|
1243 | } |
---|
1244 | |
---|
1245 | |
---|
1246 | void unmatchNode(const Node& node) { |
---|
1247 | int blossom = _blossom_set->find(node); |
---|
1248 | int tree = _tree_set->find(blossom); |
---|
1249 | |
---|
1250 | alternatePath(blossom, tree); |
---|
1251 | destroyTree(tree); |
---|
1252 | |
---|
1253 | (*_blossom_data)[blossom].status = UNMATCHED; |
---|
1254 | (*_blossom_data)[blossom].base = node; |
---|
1255 | matchedToUnmatched(blossom); |
---|
1256 | } |
---|
1257 | |
---|
1258 | |
---|
1259 | void augmentOnEdge(const Edge& edge) { |
---|
1260 | |
---|
1261 | int left = _blossom_set->find(_graph.u(edge)); |
---|
1262 | int right = _blossom_set->find(_graph.v(edge)); |
---|
1263 | |
---|
1264 | if ((*_blossom_data)[left].status == EVEN) { |
---|
1265 | int left_tree = _tree_set->find(left); |
---|
1266 | alternatePath(left, left_tree); |
---|
1267 | destroyTree(left_tree); |
---|
1268 | } else { |
---|
1269 | (*_blossom_data)[left].status = MATCHED; |
---|
1270 | unmatchedToMatched(left); |
---|
1271 | } |
---|
1272 | |
---|
1273 | if ((*_blossom_data)[right].status == EVEN) { |
---|
1274 | int right_tree = _tree_set->find(right); |
---|
1275 | alternatePath(right, right_tree); |
---|
1276 | destroyTree(right_tree); |
---|
1277 | } else { |
---|
1278 | (*_blossom_data)[right].status = MATCHED; |
---|
1279 | unmatchedToMatched(right); |
---|
1280 | } |
---|
1281 | |
---|
1282 | (*_blossom_data)[left].next = _graph.direct(edge, true); |
---|
1283 | (*_blossom_data)[right].next = _graph.direct(edge, false); |
---|
1284 | } |
---|
1285 | |
---|
1286 | void extendOnArc(const Arc& arc) { |
---|
1287 | int base = _blossom_set->find(_graph.target(arc)); |
---|
1288 | int tree = _tree_set->find(base); |
---|
1289 | |
---|
1290 | int odd = _blossom_set->find(_graph.source(arc)); |
---|
1291 | _tree_set->insert(odd, tree); |
---|
1292 | (*_blossom_data)[odd].status = ODD; |
---|
1293 | matchedToOdd(odd); |
---|
1294 | (*_blossom_data)[odd].pred = arc; |
---|
1295 | |
---|
1296 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
---|
1297 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
---|
1298 | _tree_set->insert(even, tree); |
---|
1299 | (*_blossom_data)[even].status = EVEN; |
---|
1300 | matchedToEven(even, tree); |
---|
1301 | } |
---|
1302 | |
---|
1303 | void shrinkOnEdge(const Edge& edge, int tree) { |
---|
1304 | int nca = -1; |
---|
1305 | std::vector<int> left_path, right_path; |
---|
1306 | |
---|
1307 | { |
---|
1308 | std::set<int> left_set, right_set; |
---|
1309 | int left = _blossom_set->find(_graph.u(edge)); |
---|
1310 | left_path.push_back(left); |
---|
1311 | left_set.insert(left); |
---|
1312 | |
---|
1313 | int right = _blossom_set->find(_graph.v(edge)); |
---|
1314 | right_path.push_back(right); |
---|
1315 | right_set.insert(right); |
---|
1316 | |
---|
1317 | while (true) { |
---|
1318 | |
---|
1319 | if ((*_blossom_data)[left].pred == INVALID) break; |
---|
1320 | |
---|
1321 | left = |
---|
1322 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
1323 | left_path.push_back(left); |
---|
1324 | left = |
---|
1325 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
1326 | left_path.push_back(left); |
---|
1327 | |
---|
1328 | left_set.insert(left); |
---|
1329 | |
---|
1330 | if (right_set.find(left) != right_set.end()) { |
---|
1331 | nca = left; |
---|
1332 | break; |
---|
1333 | } |
---|
1334 | |
---|
1335 | if ((*_blossom_data)[right].pred == INVALID) break; |
---|
1336 | |
---|
1337 | right = |
---|
1338 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
1339 | right_path.push_back(right); |
---|
1340 | right = |
---|
1341 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
1342 | right_path.push_back(right); |
---|
1343 | |
---|
1344 | right_set.insert(right); |
---|
1345 | |
---|
1346 | if (left_set.find(right) != left_set.end()) { |
---|
1347 | nca = right; |
---|
1348 | break; |
---|
1349 | } |
---|
1350 | |
---|
1351 | } |
---|
1352 | |
---|
1353 | if (nca == -1) { |
---|
1354 | if ((*_blossom_data)[left].pred == INVALID) { |
---|
1355 | nca = right; |
---|
1356 | while (left_set.find(nca) == left_set.end()) { |
---|
1357 | nca = |
---|
1358 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1359 | right_path.push_back(nca); |
---|
1360 | nca = |
---|
1361 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1362 | right_path.push_back(nca); |
---|
1363 | } |
---|
1364 | } else { |
---|
1365 | nca = left; |
---|
1366 | while (right_set.find(nca) == right_set.end()) { |
---|
1367 | nca = |
---|
1368 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1369 | left_path.push_back(nca); |
---|
1370 | nca = |
---|
1371 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
1372 | left_path.push_back(nca); |
---|
1373 | } |
---|
1374 | } |
---|
1375 | } |
---|
1376 | } |
---|
1377 | |
---|
1378 | std::vector<int> subblossoms; |
---|
1379 | Arc prev; |
---|
1380 | |
---|
1381 | prev = _graph.direct(edge, true); |
---|
1382 | for (int i = 0; left_path[i] != nca; i += 2) { |
---|
1383 | subblossoms.push_back(left_path[i]); |
---|
1384 | (*_blossom_data)[left_path[i]].next = prev; |
---|
1385 | _tree_set->erase(left_path[i]); |
---|
1386 | |
---|
1387 | subblossoms.push_back(left_path[i + 1]); |
---|
1388 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
---|
1389 | oddToEven(left_path[i + 1], tree); |
---|
1390 | _tree_set->erase(left_path[i + 1]); |
---|
1391 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
---|
1392 | } |
---|
1393 | |
---|
1394 | int k = 0; |
---|
1395 | while (right_path[k] != nca) ++k; |
---|
1396 | |
---|
1397 | subblossoms.push_back(nca); |
---|
1398 | (*_blossom_data)[nca].next = prev; |
---|
1399 | |
---|
1400 | for (int i = k - 2; i >= 0; i -= 2) { |
---|
1401 | subblossoms.push_back(right_path[i + 1]); |
---|
1402 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
---|
1403 | oddToEven(right_path[i + 1], tree); |
---|
1404 | _tree_set->erase(right_path[i + 1]); |
---|
1405 | |
---|
1406 | (*_blossom_data)[right_path[i + 1]].next = |
---|
1407 | (*_blossom_data)[right_path[i + 1]].pred; |
---|
1408 | |
---|
1409 | subblossoms.push_back(right_path[i]); |
---|
1410 | _tree_set->erase(right_path[i]); |
---|
1411 | } |
---|
1412 | |
---|
1413 | int surface = |
---|
1414 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
---|
1415 | |
---|
1416 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
1417 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
1418 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
---|
1419 | } |
---|
1420 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
---|
1421 | } |
---|
1422 | |
---|
1423 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
---|
1424 | (*_blossom_data)[surface].offset = 0; |
---|
1425 | (*_blossom_data)[surface].status = EVEN; |
---|
1426 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
---|
1427 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
---|
1428 | |
---|
1429 | _tree_set->insert(surface, tree); |
---|
1430 | _tree_set->erase(nca); |
---|
1431 | } |
---|
1432 | |
---|
1433 | void splitBlossom(int blossom) { |
---|
1434 | Arc next = (*_blossom_data)[blossom].next; |
---|
1435 | Arc pred = (*_blossom_data)[blossom].pred; |
---|
1436 | |
---|
1437 | int tree = _tree_set->find(blossom); |
---|
1438 | |
---|
1439 | (*_blossom_data)[blossom].status = MATCHED; |
---|
1440 | oddToMatched(blossom); |
---|
1441 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
1442 | _delta2->erase(blossom); |
---|
1443 | } |
---|
1444 | |
---|
1445 | std::vector<int> subblossoms; |
---|
1446 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
1447 | |
---|
1448 | Value offset = (*_blossom_data)[blossom].offset; |
---|
1449 | int b = _blossom_set->find(_graph.source(pred)); |
---|
1450 | int d = _blossom_set->find(_graph.source(next)); |
---|
1451 | |
---|
1452 | int ib = -1, id = -1; |
---|
1453 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
1454 | if (subblossoms[i] == b) ib = i; |
---|
1455 | if (subblossoms[i] == d) id = i; |
---|
1456 | |
---|
1457 | (*_blossom_data)[subblossoms[i]].offset = offset; |
---|
1458 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
1459 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
---|
1460 | } |
---|
1461 | if (_blossom_set->classPrio(subblossoms[i]) != |
---|
1462 | std::numeric_limits<Value>::max()) { |
---|
1463 | _delta2->push(subblossoms[i], |
---|
1464 | _blossom_set->classPrio(subblossoms[i]) - |
---|
1465 | (*_blossom_data)[subblossoms[i]].offset); |
---|
1466 | } |
---|
1467 | } |
---|
1468 | |
---|
1469 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
---|
1470 | for (int i = (id + 1) % subblossoms.size(); |
---|
1471 | i != ib; i = (i + 2) % subblossoms.size()) { |
---|
1472 | int sb = subblossoms[i]; |
---|
1473 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1474 | (*_blossom_data)[sb].next = |
---|
1475 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1476 | } |
---|
1477 | |
---|
1478 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
---|
1479 | int sb = subblossoms[i]; |
---|
1480 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1481 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
1482 | |
---|
1483 | (*_blossom_data)[sb].status = ODD; |
---|
1484 | matchedToOdd(sb); |
---|
1485 | _tree_set->insert(sb, tree); |
---|
1486 | (*_blossom_data)[sb].pred = pred; |
---|
1487 | (*_blossom_data)[sb].next = |
---|
1488 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1489 | |
---|
1490 | pred = (*_blossom_data)[ub].next; |
---|
1491 | |
---|
1492 | (*_blossom_data)[tb].status = EVEN; |
---|
1493 | matchedToEven(tb, tree); |
---|
1494 | _tree_set->insert(tb, tree); |
---|
1495 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
---|
1496 | } |
---|
1497 | |
---|
1498 | (*_blossom_data)[subblossoms[id]].status = ODD; |
---|
1499 | matchedToOdd(subblossoms[id]); |
---|
1500 | _tree_set->insert(subblossoms[id], tree); |
---|
1501 | (*_blossom_data)[subblossoms[id]].next = next; |
---|
1502 | (*_blossom_data)[subblossoms[id]].pred = pred; |
---|
1503 | |
---|
1504 | } else { |
---|
1505 | |
---|
1506 | for (int i = (ib + 1) % subblossoms.size(); |
---|
1507 | i != id; i = (i + 2) % subblossoms.size()) { |
---|
1508 | int sb = subblossoms[i]; |
---|
1509 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1510 | (*_blossom_data)[sb].next = |
---|
1511 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1512 | } |
---|
1513 | |
---|
1514 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
---|
1515 | int sb = subblossoms[i]; |
---|
1516 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
1517 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
1518 | |
---|
1519 | (*_blossom_data)[sb].status = ODD; |
---|
1520 | matchedToOdd(sb); |
---|
1521 | _tree_set->insert(sb, tree); |
---|
1522 | (*_blossom_data)[sb].next = next; |
---|
1523 | (*_blossom_data)[sb].pred = |
---|
1524 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
1525 | |
---|
1526 | (*_blossom_data)[tb].status = EVEN; |
---|
1527 | matchedToEven(tb, tree); |
---|
1528 | _tree_set->insert(tb, tree); |
---|
1529 | (*_blossom_data)[tb].pred = |
---|
1530 | (*_blossom_data)[tb].next = |
---|
1531 | _graph.oppositeArc((*_blossom_data)[ub].next); |
---|
1532 | next = (*_blossom_data)[ub].next; |
---|
1533 | } |
---|
1534 | |
---|
1535 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
---|
1536 | matchedToOdd(subblossoms[ib]); |
---|
1537 | _tree_set->insert(subblossoms[ib], tree); |
---|
1538 | (*_blossom_data)[subblossoms[ib]].next = next; |
---|
1539 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
---|
1540 | } |
---|
1541 | _tree_set->erase(blossom); |
---|
1542 | } |
---|
1543 | |
---|
1544 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
---|
1545 | if (_blossom_set->trivial(blossom)) { |
---|
1546 | int bi = (*_node_index)[base]; |
---|
1547 | Value pot = (*_node_data)[bi].pot; |
---|
1548 | |
---|
1549 | _matching->set(base, matching); |
---|
1550 | _blossom_node_list.push_back(base); |
---|
1551 | _node_potential->set(base, pot); |
---|
1552 | } else { |
---|
1553 | |
---|
1554 | Value pot = (*_blossom_data)[blossom].pot; |
---|
1555 | int bn = _blossom_node_list.size(); |
---|
1556 | |
---|
1557 | std::vector<int> subblossoms; |
---|
1558 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
1559 | int b = _blossom_set->find(base); |
---|
1560 | int ib = -1; |
---|
1561 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
1562 | if (subblossoms[i] == b) { ib = i; break; } |
---|
1563 | } |
---|
1564 | |
---|
1565 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
---|
1566 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
---|
1567 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
---|
1568 | |
---|
1569 | Arc m = (*_blossom_data)[tb].next; |
---|
1570 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
---|
1571 | extractBlossom(tb, _graph.source(m), m); |
---|
1572 | } |
---|
1573 | extractBlossom(subblossoms[ib], base, matching); |
---|
1574 | |
---|
1575 | int en = _blossom_node_list.size(); |
---|
1576 | |
---|
1577 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
---|
1578 | } |
---|
1579 | } |
---|
1580 | |
---|
1581 | void extractMatching() { |
---|
1582 | std::vector<int> blossoms; |
---|
1583 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
---|
1584 | blossoms.push_back(c); |
---|
1585 | } |
---|
1586 | |
---|
1587 | for (int i = 0; i < int(blossoms.size()); ++i) { |
---|
1588 | if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
---|
1589 | |
---|
1590 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
---|
1591 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
---|
1592 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
---|
1593 | n != INVALID; ++n) { |
---|
1594 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
---|
1595 | } |
---|
1596 | |
---|
1597 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
---|
1598 | Node base = _graph.source(matching); |
---|
1599 | extractBlossom(blossoms[i], base, matching); |
---|
1600 | } else { |
---|
1601 | Node base = (*_blossom_data)[blossoms[i]].base; |
---|
1602 | extractBlossom(blossoms[i], base, INVALID); |
---|
1603 | } |
---|
1604 | } |
---|
1605 | } |
---|
1606 | |
---|
1607 | public: |
---|
1608 | |
---|
1609 | /// \brief Constructor |
---|
1610 | /// |
---|
1611 | /// Constructor. |
---|
1612 | MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
---|
1613 | : _graph(graph), _weight(weight), _matching(0), |
---|
1614 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
---|
1615 | _node_num(0), _blossom_num(0), |
---|
1616 | |
---|
1617 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
---|
1618 | _node_index(0), _node_heap_index(0), _node_data(0), |
---|
1619 | _tree_set_index(0), _tree_set(0), |
---|
1620 | |
---|
1621 | _delta1_index(0), _delta1(0), |
---|
1622 | _delta2_index(0), _delta2(0), |
---|
1623 | _delta3_index(0), _delta3(0), |
---|
1624 | _delta4_index(0), _delta4(0), |
---|
1625 | |
---|
1626 | _delta_sum() {} |
---|
1627 | |
---|
1628 | ~MaxWeightedMatching() { |
---|
1629 | destroyStructures(); |
---|
1630 | } |
---|
1631 | |
---|
1632 | /// \name Execution control |
---|
1633 | /// The simplest way to execute the algorithm is to use the member |
---|
1634 | /// \c run() member function. |
---|
1635 | |
---|
1636 | ///@{ |
---|
1637 | |
---|
1638 | /// \brief Initialize the algorithm |
---|
1639 | /// |
---|
1640 | /// Initialize the algorithm |
---|
1641 | void init() { |
---|
1642 | createStructures(); |
---|
1643 | |
---|
1644 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
1645 | _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP); |
---|
1646 | } |
---|
1647 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1648 | _delta1_index->set(n, _delta1->PRE_HEAP); |
---|
1649 | } |
---|
1650 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
1651 | _delta3_index->set(e, _delta3->PRE_HEAP); |
---|
1652 | } |
---|
1653 | for (int i = 0; i < _blossom_num; ++i) { |
---|
1654 | _delta2_index->set(i, _delta2->PRE_HEAP); |
---|
1655 | _delta4_index->set(i, _delta4->PRE_HEAP); |
---|
1656 | } |
---|
1657 | |
---|
1658 | int index = 0; |
---|
1659 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1660 | Value max = 0; |
---|
1661 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
1662 | if (_graph.target(e) == n) continue; |
---|
1663 | if ((dualScale * _weight[e]) / 2 > max) { |
---|
1664 | max = (dualScale * _weight[e]) / 2; |
---|
1665 | } |
---|
1666 | } |
---|
1667 | _node_index->set(n, index); |
---|
1668 | (*_node_data)[index].pot = max; |
---|
1669 | _delta1->push(n, max); |
---|
1670 | int blossom = |
---|
1671 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
---|
1672 | |
---|
1673 | _tree_set->insert(blossom); |
---|
1674 | |
---|
1675 | (*_blossom_data)[blossom].status = EVEN; |
---|
1676 | (*_blossom_data)[blossom].pred = INVALID; |
---|
1677 | (*_blossom_data)[blossom].next = INVALID; |
---|
1678 | (*_blossom_data)[blossom].pot = 0; |
---|
1679 | (*_blossom_data)[blossom].offset = 0; |
---|
1680 | ++index; |
---|
1681 | } |
---|
1682 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
1683 | int si = (*_node_index)[_graph.u(e)]; |
---|
1684 | int ti = (*_node_index)[_graph.v(e)]; |
---|
1685 | if (_graph.u(e) != _graph.v(e)) { |
---|
1686 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
---|
1687 | dualScale * _weight[e]) / 2); |
---|
1688 | } |
---|
1689 | } |
---|
1690 | } |
---|
1691 | |
---|
1692 | /// \brief Starts the algorithm |
---|
1693 | /// |
---|
1694 | /// Starts the algorithm |
---|
1695 | void start() { |
---|
1696 | enum OpType { |
---|
1697 | D1, D2, D3, D4 |
---|
1698 | }; |
---|
1699 | |
---|
1700 | int unmatched = _node_num; |
---|
1701 | while (unmatched > 0) { |
---|
1702 | Value d1 = !_delta1->empty() ? |
---|
1703 | _delta1->prio() : std::numeric_limits<Value>::max(); |
---|
1704 | |
---|
1705 | Value d2 = !_delta2->empty() ? |
---|
1706 | _delta2->prio() : std::numeric_limits<Value>::max(); |
---|
1707 | |
---|
1708 | Value d3 = !_delta3->empty() ? |
---|
1709 | _delta3->prio() : std::numeric_limits<Value>::max(); |
---|
1710 | |
---|
1711 | Value d4 = !_delta4->empty() ? |
---|
1712 | _delta4->prio() : std::numeric_limits<Value>::max(); |
---|
1713 | |
---|
1714 | _delta_sum = d1; OpType ot = D1; |
---|
1715 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
---|
1716 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
---|
1717 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
---|
1718 | |
---|
1719 | |
---|
1720 | switch (ot) { |
---|
1721 | case D1: |
---|
1722 | { |
---|
1723 | Node n = _delta1->top(); |
---|
1724 | unmatchNode(n); |
---|
1725 | --unmatched; |
---|
1726 | } |
---|
1727 | break; |
---|
1728 | case D2: |
---|
1729 | { |
---|
1730 | int blossom = _delta2->top(); |
---|
1731 | Node n = _blossom_set->classTop(blossom); |
---|
1732 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
---|
1733 | extendOnArc(e); |
---|
1734 | } |
---|
1735 | break; |
---|
1736 | case D3: |
---|
1737 | { |
---|
1738 | Edge e = _delta3->top(); |
---|
1739 | |
---|
1740 | int left_blossom = _blossom_set->find(_graph.u(e)); |
---|
1741 | int right_blossom = _blossom_set->find(_graph.v(e)); |
---|
1742 | |
---|
1743 | if (left_blossom == right_blossom) { |
---|
1744 | _delta3->pop(); |
---|
1745 | } else { |
---|
1746 | int left_tree; |
---|
1747 | if ((*_blossom_data)[left_blossom].status == EVEN) { |
---|
1748 | left_tree = _tree_set->find(left_blossom); |
---|
1749 | } else { |
---|
1750 | left_tree = -1; |
---|
1751 | ++unmatched; |
---|
1752 | } |
---|
1753 | int right_tree; |
---|
1754 | if ((*_blossom_data)[right_blossom].status == EVEN) { |
---|
1755 | right_tree = _tree_set->find(right_blossom); |
---|
1756 | } else { |
---|
1757 | right_tree = -1; |
---|
1758 | ++unmatched; |
---|
1759 | } |
---|
1760 | |
---|
1761 | if (left_tree == right_tree) { |
---|
1762 | shrinkOnEdge(e, left_tree); |
---|
1763 | } else { |
---|
1764 | augmentOnEdge(e); |
---|
1765 | unmatched -= 2; |
---|
1766 | } |
---|
1767 | } |
---|
1768 | } break; |
---|
1769 | case D4: |
---|
1770 | splitBlossom(_delta4->top()); |
---|
1771 | break; |
---|
1772 | } |
---|
1773 | } |
---|
1774 | extractMatching(); |
---|
1775 | } |
---|
1776 | |
---|
1777 | /// \brief Runs %MaxWeightedMatching algorithm. |
---|
1778 | /// |
---|
1779 | /// This method runs the %MaxWeightedMatching algorithm. |
---|
1780 | /// |
---|
1781 | /// \note mwm.run() is just a shortcut of the following code. |
---|
1782 | /// \code |
---|
1783 | /// mwm.init(); |
---|
1784 | /// mwm.start(); |
---|
1785 | /// \endcode |
---|
1786 | void run() { |
---|
1787 | init(); |
---|
1788 | start(); |
---|
1789 | } |
---|
1790 | |
---|
1791 | /// @} |
---|
1792 | |
---|
1793 | /// \name Primal solution |
---|
1794 | /// Functions for get the primal solution, ie. the matching. |
---|
1795 | |
---|
1796 | /// @{ |
---|
1797 | |
---|
1798 | /// \brief Returns the matching value. |
---|
1799 | /// |
---|
1800 | /// Returns the matching value. |
---|
1801 | Value matchingValue() const { |
---|
1802 | Value sum = 0; |
---|
1803 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1804 | if ((*_matching)[n] != INVALID) { |
---|
1805 | sum += _weight[(*_matching)[n]]; |
---|
1806 | } |
---|
1807 | } |
---|
1808 | return sum /= 2; |
---|
1809 | } |
---|
1810 | |
---|
1811 | /// \brief Returns the cardinality of the matching. |
---|
1812 | /// |
---|
1813 | /// Returns the cardinality of the matching. |
---|
1814 | int matchingSize() const { |
---|
1815 | int num = 0; |
---|
1816 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1817 | if ((*_matching)[n] != INVALID) { |
---|
1818 | ++num; |
---|
1819 | } |
---|
1820 | } |
---|
1821 | return num /= 2; |
---|
1822 | } |
---|
1823 | |
---|
1824 | /// \brief Returns true when the edge is in the matching. |
---|
1825 | /// |
---|
1826 | /// Returns true when the edge is in the matching. |
---|
1827 | bool matching(const Edge& edge) const { |
---|
1828 | return edge == (*_matching)[_graph.u(edge)]; |
---|
1829 | } |
---|
1830 | |
---|
1831 | /// \brief Returns the incident matching arc. |
---|
1832 | /// |
---|
1833 | /// Returns the incident matching arc from given node. If the |
---|
1834 | /// node is not matched then it gives back \c INVALID. |
---|
1835 | Arc matching(const Node& node) const { |
---|
1836 | return (*_matching)[node]; |
---|
1837 | } |
---|
1838 | |
---|
1839 | /// \brief Returns the mate of the node. |
---|
1840 | /// |
---|
1841 | /// Returns the adjancent node in a mathcing arc. If the node is |
---|
1842 | /// not matched then it gives back \c INVALID. |
---|
1843 | Node mate(const Node& node) const { |
---|
1844 | return (*_matching)[node] != INVALID ? |
---|
1845 | _graph.target((*_matching)[node]) : INVALID; |
---|
1846 | } |
---|
1847 | |
---|
1848 | /// @} |
---|
1849 | |
---|
1850 | /// \name Dual solution |
---|
1851 | /// Functions for get the dual solution. |
---|
1852 | |
---|
1853 | /// @{ |
---|
1854 | |
---|
1855 | /// \brief Returns the value of the dual solution. |
---|
1856 | /// |
---|
1857 | /// Returns the value of the dual solution. It should be equal to |
---|
1858 | /// the primal value scaled by \ref dualScale "dual scale". |
---|
1859 | Value dualValue() const { |
---|
1860 | Value sum = 0; |
---|
1861 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
1862 | sum += nodeValue(n); |
---|
1863 | } |
---|
1864 | for (int i = 0; i < blossomNum(); ++i) { |
---|
1865 | sum += blossomValue(i) * (blossomSize(i) / 2); |
---|
1866 | } |
---|
1867 | return sum; |
---|
1868 | } |
---|
1869 | |
---|
1870 | /// \brief Returns the value of the node. |
---|
1871 | /// |
---|
1872 | /// Returns the the value of the node. |
---|
1873 | Value nodeValue(const Node& n) const { |
---|
1874 | return (*_node_potential)[n]; |
---|
1875 | } |
---|
1876 | |
---|
1877 | /// \brief Returns the number of the blossoms in the basis. |
---|
1878 | /// |
---|
1879 | /// Returns the number of the blossoms in the basis. |
---|
1880 | /// \see BlossomIt |
---|
1881 | int blossomNum() const { |
---|
1882 | return _blossom_potential.size(); |
---|
1883 | } |
---|
1884 | |
---|
1885 | |
---|
1886 | /// \brief Returns the number of the nodes in the blossom. |
---|
1887 | /// |
---|
1888 | /// Returns the number of the nodes in the blossom. |
---|
1889 | int blossomSize(int k) const { |
---|
1890 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
---|
1891 | } |
---|
1892 | |
---|
1893 | /// \brief Returns the value of the blossom. |
---|
1894 | /// |
---|
1895 | /// Returns the the value of the blossom. |
---|
1896 | /// \see BlossomIt |
---|
1897 | Value blossomValue(int k) const { |
---|
1898 | return _blossom_potential[k].value; |
---|
1899 | } |
---|
1900 | |
---|
1901 | /// \brief Lemon iterator for get the items of the blossom. |
---|
1902 | /// |
---|
1903 | /// Lemon iterator for get the nodes of the blossom. This class |
---|
1904 | /// provides a common style lemon iterator which gives back a |
---|
1905 | /// subset of the nodes. |
---|
1906 | class BlossomIt { |
---|
1907 | public: |
---|
1908 | |
---|
1909 | /// \brief Constructor. |
---|
1910 | /// |
---|
1911 | /// Constructor for get the nodes of the variable. |
---|
1912 | BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
---|
1913 | : _algorithm(&algorithm) |
---|
1914 | { |
---|
1915 | _index = _algorithm->_blossom_potential[variable].begin; |
---|
1916 | _last = _algorithm->_blossom_potential[variable].end; |
---|
1917 | } |
---|
1918 | |
---|
1919 | /// \brief Conversion to node. |
---|
1920 | /// |
---|
1921 | /// Conversion to node. |
---|
1922 | operator Node() const { |
---|
1923 | return _algorithm->_blossom_node_list[_index]; |
---|
1924 | } |
---|
1925 | |
---|
1926 | /// \brief Increment operator. |
---|
1927 | /// |
---|
1928 | /// Increment operator. |
---|
1929 | BlossomIt& operator++() { |
---|
1930 | ++_index; |
---|
1931 | return *this; |
---|
1932 | } |
---|
1933 | |
---|
1934 | /// \brief Validity checking |
---|
1935 | /// |
---|
1936 | /// Checks whether the iterator is invalid. |
---|
1937 | bool operator==(Invalid) const { return _index == _last; } |
---|
1938 | |
---|
1939 | /// \brief Validity checking |
---|
1940 | /// |
---|
1941 | /// Checks whether the iterator is valid. |
---|
1942 | bool operator!=(Invalid) const { return _index != _last; } |
---|
1943 | |
---|
1944 | private: |
---|
1945 | const MaxWeightedMatching* _algorithm; |
---|
1946 | int _last; |
---|
1947 | int _index; |
---|
1948 | }; |
---|
1949 | |
---|
1950 | /// @} |
---|
1951 | |
---|
1952 | }; |
---|
1953 | |
---|
1954 | /// \ingroup matching |
---|
1955 | /// |
---|
1956 | /// \brief Weighted perfect matching in general graphs |
---|
1957 | /// |
---|
1958 | /// This class provides an efficient implementation of Edmond's |
---|
1959 | /// maximum weighted perfect matching algorithm. The implementation |
---|
1960 | /// is based on extensive use of priority queues and provides |
---|
1961 | /// \f$O(nm\log(n))\f$ time complexity. |
---|
1962 | /// |
---|
1963 | /// The maximum weighted matching problem is to find undirected |
---|
1964 | /// edges in the graph with maximum overall weight and no two of |
---|
1965 | /// them shares their ends and covers all nodes. The problem can be |
---|
1966 | /// formulated with the following linear program. |
---|
1967 | /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
---|
1968 | /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
---|
1969 | \quad \forall B\in\mathcal{O}\f] */ |
---|
1970 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
---|
1971 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
---|
1972 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
---|
1973 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
---|
1974 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
---|
1975 | /// subsets of the nodes. |
---|
1976 | /// |
---|
1977 | /// The algorithm calculates an optimal matching and a proof of the |
---|
1978 | /// optimality. The solution of the dual problem can be used to check |
---|
1979 | /// the result of the algorithm. The dual linear problem is the |
---|
1980 | /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
---|
1981 | w_{uv} \quad \forall uv\in E\f] */ |
---|
1982 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
---|
1983 | /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
---|
1984 | \frac{\vert B \vert - 1}{2}z_B\f] */ |
---|
1985 | /// |
---|
1986 | /// The algorithm can be executed with \c run() or the \c init() and |
---|
1987 | /// then the \c start() member functions. After it the matching can |
---|
1988 | /// be asked with \c matching() or mate() functions. The dual |
---|
1989 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
---|
1990 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
---|
1991 | /// "BlossomIt" nested class which is able to iterate on the nodes |
---|
1992 | /// of a blossom. If the value type is integral then the dual |
---|
1993 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
---|
1994 | template <typename _Graph, |
---|
1995 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
---|
1996 | class MaxWeightedPerfectMatching { |
---|
1997 | public: |
---|
1998 | |
---|
1999 | typedef _Graph Graph; |
---|
2000 | typedef _WeightMap WeightMap; |
---|
2001 | typedef typename WeightMap::Value Value; |
---|
2002 | |
---|
2003 | /// \brief Scaling factor for dual solution |
---|
2004 | /// |
---|
2005 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
---|
2006 | /// according to the value type. |
---|
2007 | static const int dualScale = |
---|
2008 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
---|
2009 | |
---|
2010 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
---|
2011 | MatchingMap; |
---|
2012 | |
---|
2013 | private: |
---|
2014 | |
---|
2015 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
---|
2016 | |
---|
2017 | typedef typename Graph::template NodeMap<Value> NodePotential; |
---|
2018 | typedef std::vector<Node> BlossomNodeList; |
---|
2019 | |
---|
2020 | struct BlossomVariable { |
---|
2021 | int begin, end; |
---|
2022 | Value value; |
---|
2023 | |
---|
2024 | BlossomVariable(int _begin, int _end, Value _value) |
---|
2025 | : begin(_begin), end(_end), value(_value) {} |
---|
2026 | |
---|
2027 | }; |
---|
2028 | |
---|
2029 | typedef std::vector<BlossomVariable> BlossomPotential; |
---|
2030 | |
---|
2031 | const Graph& _graph; |
---|
2032 | const WeightMap& _weight; |
---|
2033 | |
---|
2034 | MatchingMap* _matching; |
---|
2035 | |
---|
2036 | NodePotential* _node_potential; |
---|
2037 | |
---|
2038 | BlossomPotential _blossom_potential; |
---|
2039 | BlossomNodeList _blossom_node_list; |
---|
2040 | |
---|
2041 | int _node_num; |
---|
2042 | int _blossom_num; |
---|
2043 | |
---|
2044 | typedef RangeMap<int> IntIntMap; |
---|
2045 | |
---|
2046 | enum Status { |
---|
2047 | EVEN = -1, MATCHED = 0, ODD = 1 |
---|
2048 | }; |
---|
2049 | |
---|
2050 | typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
---|
2051 | struct BlossomData { |
---|
2052 | int tree; |
---|
2053 | Status status; |
---|
2054 | Arc pred, next; |
---|
2055 | Value pot, offset; |
---|
2056 | }; |
---|
2057 | |
---|
2058 | IntNodeMap *_blossom_index; |
---|
2059 | BlossomSet *_blossom_set; |
---|
2060 | RangeMap<BlossomData>* _blossom_data; |
---|
2061 | |
---|
2062 | IntNodeMap *_node_index; |
---|
2063 | IntArcMap *_node_heap_index; |
---|
2064 | |
---|
2065 | struct NodeData { |
---|
2066 | |
---|
2067 | NodeData(IntArcMap& node_heap_index) |
---|
2068 | : heap(node_heap_index) {} |
---|
2069 | |
---|
2070 | int blossom; |
---|
2071 | Value pot; |
---|
2072 | BinHeap<Value, IntArcMap> heap; |
---|
2073 | std::map<int, Arc> heap_index; |
---|
2074 | |
---|
2075 | int tree; |
---|
2076 | }; |
---|
2077 | |
---|
2078 | RangeMap<NodeData>* _node_data; |
---|
2079 | |
---|
2080 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
---|
2081 | |
---|
2082 | IntIntMap *_tree_set_index; |
---|
2083 | TreeSet *_tree_set; |
---|
2084 | |
---|
2085 | IntIntMap *_delta2_index; |
---|
2086 | BinHeap<Value, IntIntMap> *_delta2; |
---|
2087 | |
---|
2088 | IntEdgeMap *_delta3_index; |
---|
2089 | BinHeap<Value, IntEdgeMap> *_delta3; |
---|
2090 | |
---|
2091 | IntIntMap *_delta4_index; |
---|
2092 | BinHeap<Value, IntIntMap> *_delta4; |
---|
2093 | |
---|
2094 | Value _delta_sum; |
---|
2095 | |
---|
2096 | void createStructures() { |
---|
2097 | _node_num = countNodes(_graph); |
---|
2098 | _blossom_num = _node_num * 3 / 2; |
---|
2099 | |
---|
2100 | if (!_matching) { |
---|
2101 | _matching = new MatchingMap(_graph); |
---|
2102 | } |
---|
2103 | if (!_node_potential) { |
---|
2104 | _node_potential = new NodePotential(_graph); |
---|
2105 | } |
---|
2106 | if (!_blossom_set) { |
---|
2107 | _blossom_index = new IntNodeMap(_graph); |
---|
2108 | _blossom_set = new BlossomSet(*_blossom_index); |
---|
2109 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
---|
2110 | } |
---|
2111 | |
---|
2112 | if (!_node_index) { |
---|
2113 | _node_index = new IntNodeMap(_graph); |
---|
2114 | _node_heap_index = new IntArcMap(_graph); |
---|
2115 | _node_data = new RangeMap<NodeData>(_node_num, |
---|
2116 | NodeData(*_node_heap_index)); |
---|
2117 | } |
---|
2118 | |
---|
2119 | if (!_tree_set) { |
---|
2120 | _tree_set_index = new IntIntMap(_blossom_num); |
---|
2121 | _tree_set = new TreeSet(*_tree_set_index); |
---|
2122 | } |
---|
2123 | if (!_delta2) { |
---|
2124 | _delta2_index = new IntIntMap(_blossom_num); |
---|
2125 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
---|
2126 | } |
---|
2127 | if (!_delta3) { |
---|
2128 | _delta3_index = new IntEdgeMap(_graph); |
---|
2129 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
---|
2130 | } |
---|
2131 | if (!_delta4) { |
---|
2132 | _delta4_index = new IntIntMap(_blossom_num); |
---|
2133 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
---|
2134 | } |
---|
2135 | } |
---|
2136 | |
---|
2137 | void destroyStructures() { |
---|
2138 | _node_num = countNodes(_graph); |
---|
2139 | _blossom_num = _node_num * 3 / 2; |
---|
2140 | |
---|
2141 | if (_matching) { |
---|
2142 | delete _matching; |
---|
2143 | } |
---|
2144 | if (_node_potential) { |
---|
2145 | delete _node_potential; |
---|
2146 | } |
---|
2147 | if (_blossom_set) { |
---|
2148 | delete _blossom_index; |
---|
2149 | delete _blossom_set; |
---|
2150 | delete _blossom_data; |
---|
2151 | } |
---|
2152 | |
---|
2153 | if (_node_index) { |
---|
2154 | delete _node_index; |
---|
2155 | delete _node_heap_index; |
---|
2156 | delete _node_data; |
---|
2157 | } |
---|
2158 | |
---|
2159 | if (_tree_set) { |
---|
2160 | delete _tree_set_index; |
---|
2161 | delete _tree_set; |
---|
2162 | } |
---|
2163 | if (_delta2) { |
---|
2164 | delete _delta2_index; |
---|
2165 | delete _delta2; |
---|
2166 | } |
---|
2167 | if (_delta3) { |
---|
2168 | delete _delta3_index; |
---|
2169 | delete _delta3; |
---|
2170 | } |
---|
2171 | if (_delta4) { |
---|
2172 | delete _delta4_index; |
---|
2173 | delete _delta4; |
---|
2174 | } |
---|
2175 | } |
---|
2176 | |
---|
2177 | void matchedToEven(int blossom, int tree) { |
---|
2178 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
2179 | _delta2->erase(blossom); |
---|
2180 | } |
---|
2181 | |
---|
2182 | if (!_blossom_set->trivial(blossom)) { |
---|
2183 | (*_blossom_data)[blossom].pot -= |
---|
2184 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
---|
2185 | } |
---|
2186 | |
---|
2187 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
2188 | n != INVALID; ++n) { |
---|
2189 | |
---|
2190 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
2191 | int ni = (*_node_index)[n]; |
---|
2192 | |
---|
2193 | (*_node_data)[ni].heap.clear(); |
---|
2194 | (*_node_data)[ni].heap_index.clear(); |
---|
2195 | |
---|
2196 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
---|
2197 | |
---|
2198 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2199 | Node v = _graph.source(e); |
---|
2200 | int vb = _blossom_set->find(v); |
---|
2201 | int vi = (*_node_index)[v]; |
---|
2202 | |
---|
2203 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
2204 | dualScale * _weight[e]; |
---|
2205 | |
---|
2206 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
2207 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
2208 | _delta3->push(e, rw / 2); |
---|
2209 | } |
---|
2210 | } else { |
---|
2211 | typename std::map<int, Arc>::iterator it = |
---|
2212 | (*_node_data)[vi].heap_index.find(tree); |
---|
2213 | |
---|
2214 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
2215 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
2216 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
2217 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
2218 | it->second = e; |
---|
2219 | } |
---|
2220 | } else { |
---|
2221 | (*_node_data)[vi].heap.push(e, rw); |
---|
2222 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
2223 | } |
---|
2224 | |
---|
2225 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
2226 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
2227 | |
---|
2228 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
2229 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
2230 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
2231 | (*_blossom_data)[vb].offset); |
---|
2232 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
2233 | (*_blossom_data)[vb].offset){ |
---|
2234 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
2235 | (*_blossom_data)[vb].offset); |
---|
2236 | } |
---|
2237 | } |
---|
2238 | } |
---|
2239 | } |
---|
2240 | } |
---|
2241 | } |
---|
2242 | (*_blossom_data)[blossom].offset = 0; |
---|
2243 | } |
---|
2244 | |
---|
2245 | void matchedToOdd(int blossom) { |
---|
2246 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
2247 | _delta2->erase(blossom); |
---|
2248 | } |
---|
2249 | (*_blossom_data)[blossom].offset += _delta_sum; |
---|
2250 | if (!_blossom_set->trivial(blossom)) { |
---|
2251 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
---|
2252 | (*_blossom_data)[blossom].offset); |
---|
2253 | } |
---|
2254 | } |
---|
2255 | |
---|
2256 | void evenToMatched(int blossom, int tree) { |
---|
2257 | if (!_blossom_set->trivial(blossom)) { |
---|
2258 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
---|
2259 | } |
---|
2260 | |
---|
2261 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
2262 | n != INVALID; ++n) { |
---|
2263 | int ni = (*_node_index)[n]; |
---|
2264 | (*_node_data)[ni].pot -= _delta_sum; |
---|
2265 | |
---|
2266 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2267 | Node v = _graph.source(e); |
---|
2268 | int vb = _blossom_set->find(v); |
---|
2269 | int vi = (*_node_index)[v]; |
---|
2270 | |
---|
2271 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
2272 | dualScale * _weight[e]; |
---|
2273 | |
---|
2274 | if (vb == blossom) { |
---|
2275 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
2276 | _delta3->erase(e); |
---|
2277 | } |
---|
2278 | } else if ((*_blossom_data)[vb].status == EVEN) { |
---|
2279 | |
---|
2280 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
---|
2281 | _delta3->erase(e); |
---|
2282 | } |
---|
2283 | |
---|
2284 | int vt = _tree_set->find(vb); |
---|
2285 | |
---|
2286 | if (vt != tree) { |
---|
2287 | |
---|
2288 | Arc r = _graph.oppositeArc(e); |
---|
2289 | |
---|
2290 | typename std::map<int, Arc>::iterator it = |
---|
2291 | (*_node_data)[ni].heap_index.find(vt); |
---|
2292 | |
---|
2293 | if (it != (*_node_data)[ni].heap_index.end()) { |
---|
2294 | if ((*_node_data)[ni].heap[it->second] > rw) { |
---|
2295 | (*_node_data)[ni].heap.replace(it->second, r); |
---|
2296 | (*_node_data)[ni].heap.decrease(r, rw); |
---|
2297 | it->second = r; |
---|
2298 | } |
---|
2299 | } else { |
---|
2300 | (*_node_data)[ni].heap.push(r, rw); |
---|
2301 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
---|
2302 | } |
---|
2303 | |
---|
2304 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
---|
2305 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
---|
2306 | |
---|
2307 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
---|
2308 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
2309 | (*_blossom_data)[blossom].offset); |
---|
2310 | } else if ((*_delta2)[blossom] > |
---|
2311 | _blossom_set->classPrio(blossom) - |
---|
2312 | (*_blossom_data)[blossom].offset){ |
---|
2313 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
---|
2314 | (*_blossom_data)[blossom].offset); |
---|
2315 | } |
---|
2316 | } |
---|
2317 | } |
---|
2318 | } else { |
---|
2319 | |
---|
2320 | typename std::map<int, Arc>::iterator it = |
---|
2321 | (*_node_data)[vi].heap_index.find(tree); |
---|
2322 | |
---|
2323 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
2324 | (*_node_data)[vi].heap.erase(it->second); |
---|
2325 | (*_node_data)[vi].heap_index.erase(it); |
---|
2326 | if ((*_node_data)[vi].heap.empty()) { |
---|
2327 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
---|
2328 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
---|
2329 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
---|
2330 | } |
---|
2331 | |
---|
2332 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
2333 | if (_blossom_set->classPrio(vb) == |
---|
2334 | std::numeric_limits<Value>::max()) { |
---|
2335 | _delta2->erase(vb); |
---|
2336 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
---|
2337 | (*_blossom_data)[vb].offset) { |
---|
2338 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
---|
2339 | (*_blossom_data)[vb].offset); |
---|
2340 | } |
---|
2341 | } |
---|
2342 | } |
---|
2343 | } |
---|
2344 | } |
---|
2345 | } |
---|
2346 | } |
---|
2347 | |
---|
2348 | void oddToMatched(int blossom) { |
---|
2349 | (*_blossom_data)[blossom].offset -= _delta_sum; |
---|
2350 | |
---|
2351 | if (_blossom_set->classPrio(blossom) != |
---|
2352 | std::numeric_limits<Value>::max()) { |
---|
2353 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
---|
2354 | (*_blossom_data)[blossom].offset); |
---|
2355 | } |
---|
2356 | |
---|
2357 | if (!_blossom_set->trivial(blossom)) { |
---|
2358 | _delta4->erase(blossom); |
---|
2359 | } |
---|
2360 | } |
---|
2361 | |
---|
2362 | void oddToEven(int blossom, int tree) { |
---|
2363 | if (!_blossom_set->trivial(blossom)) { |
---|
2364 | _delta4->erase(blossom); |
---|
2365 | (*_blossom_data)[blossom].pot -= |
---|
2366 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
---|
2367 | } |
---|
2368 | |
---|
2369 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
---|
2370 | n != INVALID; ++n) { |
---|
2371 | int ni = (*_node_index)[n]; |
---|
2372 | |
---|
2373 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
---|
2374 | |
---|
2375 | (*_node_data)[ni].heap.clear(); |
---|
2376 | (*_node_data)[ni].heap_index.clear(); |
---|
2377 | (*_node_data)[ni].pot += |
---|
2378 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
---|
2379 | |
---|
2380 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2381 | Node v = _graph.source(e); |
---|
2382 | int vb = _blossom_set->find(v); |
---|
2383 | int vi = (*_node_index)[v]; |
---|
2384 | |
---|
2385 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
---|
2386 | dualScale * _weight[e]; |
---|
2387 | |
---|
2388 | if ((*_blossom_data)[vb].status == EVEN) { |
---|
2389 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
---|
2390 | _delta3->push(e, rw / 2); |
---|
2391 | } |
---|
2392 | } else { |
---|
2393 | |
---|
2394 | typename std::map<int, Arc>::iterator it = |
---|
2395 | (*_node_data)[vi].heap_index.find(tree); |
---|
2396 | |
---|
2397 | if (it != (*_node_data)[vi].heap_index.end()) { |
---|
2398 | if ((*_node_data)[vi].heap[it->second] > rw) { |
---|
2399 | (*_node_data)[vi].heap.replace(it->second, e); |
---|
2400 | (*_node_data)[vi].heap.decrease(e, rw); |
---|
2401 | it->second = e; |
---|
2402 | } |
---|
2403 | } else { |
---|
2404 | (*_node_data)[vi].heap.push(e, rw); |
---|
2405 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
---|
2406 | } |
---|
2407 | |
---|
2408 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
---|
2409 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
---|
2410 | |
---|
2411 | if ((*_blossom_data)[vb].status == MATCHED) { |
---|
2412 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
---|
2413 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
---|
2414 | (*_blossom_data)[vb].offset); |
---|
2415 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
---|
2416 | (*_blossom_data)[vb].offset) { |
---|
2417 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
---|
2418 | (*_blossom_data)[vb].offset); |
---|
2419 | } |
---|
2420 | } |
---|
2421 | } |
---|
2422 | } |
---|
2423 | } |
---|
2424 | } |
---|
2425 | (*_blossom_data)[blossom].offset = 0; |
---|
2426 | } |
---|
2427 | |
---|
2428 | void alternatePath(int even, int tree) { |
---|
2429 | int odd; |
---|
2430 | |
---|
2431 | evenToMatched(even, tree); |
---|
2432 | (*_blossom_data)[even].status = MATCHED; |
---|
2433 | |
---|
2434 | while ((*_blossom_data)[even].pred != INVALID) { |
---|
2435 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
---|
2436 | (*_blossom_data)[odd].status = MATCHED; |
---|
2437 | oddToMatched(odd); |
---|
2438 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
---|
2439 | |
---|
2440 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
---|
2441 | (*_blossom_data)[even].status = MATCHED; |
---|
2442 | evenToMatched(even, tree); |
---|
2443 | (*_blossom_data)[even].next = |
---|
2444 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
---|
2445 | } |
---|
2446 | |
---|
2447 | } |
---|
2448 | |
---|
2449 | void destroyTree(int tree) { |
---|
2450 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
---|
2451 | if ((*_blossom_data)[b].status == EVEN) { |
---|
2452 | (*_blossom_data)[b].status = MATCHED; |
---|
2453 | evenToMatched(b, tree); |
---|
2454 | } else if ((*_blossom_data)[b].status == ODD) { |
---|
2455 | (*_blossom_data)[b].status = MATCHED; |
---|
2456 | oddToMatched(b); |
---|
2457 | } |
---|
2458 | } |
---|
2459 | _tree_set->eraseClass(tree); |
---|
2460 | } |
---|
2461 | |
---|
2462 | void augmentOnEdge(const Edge& edge) { |
---|
2463 | |
---|
2464 | int left = _blossom_set->find(_graph.u(edge)); |
---|
2465 | int right = _blossom_set->find(_graph.v(edge)); |
---|
2466 | |
---|
2467 | int left_tree = _tree_set->find(left); |
---|
2468 | alternatePath(left, left_tree); |
---|
2469 | destroyTree(left_tree); |
---|
2470 | |
---|
2471 | int right_tree = _tree_set->find(right); |
---|
2472 | alternatePath(right, right_tree); |
---|
2473 | destroyTree(right_tree); |
---|
2474 | |
---|
2475 | (*_blossom_data)[left].next = _graph.direct(edge, true); |
---|
2476 | (*_blossom_data)[right].next = _graph.direct(edge, false); |
---|
2477 | } |
---|
2478 | |
---|
2479 | void extendOnArc(const Arc& arc) { |
---|
2480 | int base = _blossom_set->find(_graph.target(arc)); |
---|
2481 | int tree = _tree_set->find(base); |
---|
2482 | |
---|
2483 | int odd = _blossom_set->find(_graph.source(arc)); |
---|
2484 | _tree_set->insert(odd, tree); |
---|
2485 | (*_blossom_data)[odd].status = ODD; |
---|
2486 | matchedToOdd(odd); |
---|
2487 | (*_blossom_data)[odd].pred = arc; |
---|
2488 | |
---|
2489 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
---|
2490 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
---|
2491 | _tree_set->insert(even, tree); |
---|
2492 | (*_blossom_data)[even].status = EVEN; |
---|
2493 | matchedToEven(even, tree); |
---|
2494 | } |
---|
2495 | |
---|
2496 | void shrinkOnEdge(const Edge& edge, int tree) { |
---|
2497 | int nca = -1; |
---|
2498 | std::vector<int> left_path, right_path; |
---|
2499 | |
---|
2500 | { |
---|
2501 | std::set<int> left_set, right_set; |
---|
2502 | int left = _blossom_set->find(_graph.u(edge)); |
---|
2503 | left_path.push_back(left); |
---|
2504 | left_set.insert(left); |
---|
2505 | |
---|
2506 | int right = _blossom_set->find(_graph.v(edge)); |
---|
2507 | right_path.push_back(right); |
---|
2508 | right_set.insert(right); |
---|
2509 | |
---|
2510 | while (true) { |
---|
2511 | |
---|
2512 | if ((*_blossom_data)[left].pred == INVALID) break; |
---|
2513 | |
---|
2514 | left = |
---|
2515 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
2516 | left_path.push_back(left); |
---|
2517 | left = |
---|
2518 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
---|
2519 | left_path.push_back(left); |
---|
2520 | |
---|
2521 | left_set.insert(left); |
---|
2522 | |
---|
2523 | if (right_set.find(left) != right_set.end()) { |
---|
2524 | nca = left; |
---|
2525 | break; |
---|
2526 | } |
---|
2527 | |
---|
2528 | if ((*_blossom_data)[right].pred == INVALID) break; |
---|
2529 | |
---|
2530 | right = |
---|
2531 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
2532 | right_path.push_back(right); |
---|
2533 | right = |
---|
2534 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
---|
2535 | right_path.push_back(right); |
---|
2536 | |
---|
2537 | right_set.insert(right); |
---|
2538 | |
---|
2539 | if (left_set.find(right) != left_set.end()) { |
---|
2540 | nca = right; |
---|
2541 | break; |
---|
2542 | } |
---|
2543 | |
---|
2544 | } |
---|
2545 | |
---|
2546 | if (nca == -1) { |
---|
2547 | if ((*_blossom_data)[left].pred == INVALID) { |
---|
2548 | nca = right; |
---|
2549 | while (left_set.find(nca) == left_set.end()) { |
---|
2550 | nca = |
---|
2551 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2552 | right_path.push_back(nca); |
---|
2553 | nca = |
---|
2554 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2555 | right_path.push_back(nca); |
---|
2556 | } |
---|
2557 | } else { |
---|
2558 | nca = left; |
---|
2559 | while (right_set.find(nca) == right_set.end()) { |
---|
2560 | nca = |
---|
2561 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2562 | left_path.push_back(nca); |
---|
2563 | nca = |
---|
2564 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
---|
2565 | left_path.push_back(nca); |
---|
2566 | } |
---|
2567 | } |
---|
2568 | } |
---|
2569 | } |
---|
2570 | |
---|
2571 | std::vector<int> subblossoms; |
---|
2572 | Arc prev; |
---|
2573 | |
---|
2574 | prev = _graph.direct(edge, true); |
---|
2575 | for (int i = 0; left_path[i] != nca; i += 2) { |
---|
2576 | subblossoms.push_back(left_path[i]); |
---|
2577 | (*_blossom_data)[left_path[i]].next = prev; |
---|
2578 | _tree_set->erase(left_path[i]); |
---|
2579 | |
---|
2580 | subblossoms.push_back(left_path[i + 1]); |
---|
2581 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
---|
2582 | oddToEven(left_path[i + 1], tree); |
---|
2583 | _tree_set->erase(left_path[i + 1]); |
---|
2584 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
---|
2585 | } |
---|
2586 | |
---|
2587 | int k = 0; |
---|
2588 | while (right_path[k] != nca) ++k; |
---|
2589 | |
---|
2590 | subblossoms.push_back(nca); |
---|
2591 | (*_blossom_data)[nca].next = prev; |
---|
2592 | |
---|
2593 | for (int i = k - 2; i >= 0; i -= 2) { |
---|
2594 | subblossoms.push_back(right_path[i + 1]); |
---|
2595 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
---|
2596 | oddToEven(right_path[i + 1], tree); |
---|
2597 | _tree_set->erase(right_path[i + 1]); |
---|
2598 | |
---|
2599 | (*_blossom_data)[right_path[i + 1]].next = |
---|
2600 | (*_blossom_data)[right_path[i + 1]].pred; |
---|
2601 | |
---|
2602 | subblossoms.push_back(right_path[i]); |
---|
2603 | _tree_set->erase(right_path[i]); |
---|
2604 | } |
---|
2605 | |
---|
2606 | int surface = |
---|
2607 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
---|
2608 | |
---|
2609 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
2610 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
2611 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
---|
2612 | } |
---|
2613 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
---|
2614 | } |
---|
2615 | |
---|
2616 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
---|
2617 | (*_blossom_data)[surface].offset = 0; |
---|
2618 | (*_blossom_data)[surface].status = EVEN; |
---|
2619 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
---|
2620 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
---|
2621 | |
---|
2622 | _tree_set->insert(surface, tree); |
---|
2623 | _tree_set->erase(nca); |
---|
2624 | } |
---|
2625 | |
---|
2626 | void splitBlossom(int blossom) { |
---|
2627 | Arc next = (*_blossom_data)[blossom].next; |
---|
2628 | Arc pred = (*_blossom_data)[blossom].pred; |
---|
2629 | |
---|
2630 | int tree = _tree_set->find(blossom); |
---|
2631 | |
---|
2632 | (*_blossom_data)[blossom].status = MATCHED; |
---|
2633 | oddToMatched(blossom); |
---|
2634 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
---|
2635 | _delta2->erase(blossom); |
---|
2636 | } |
---|
2637 | |
---|
2638 | std::vector<int> subblossoms; |
---|
2639 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
2640 | |
---|
2641 | Value offset = (*_blossom_data)[blossom].offset; |
---|
2642 | int b = _blossom_set->find(_graph.source(pred)); |
---|
2643 | int d = _blossom_set->find(_graph.source(next)); |
---|
2644 | |
---|
2645 | int ib = -1, id = -1; |
---|
2646 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
2647 | if (subblossoms[i] == b) ib = i; |
---|
2648 | if (subblossoms[i] == d) id = i; |
---|
2649 | |
---|
2650 | (*_blossom_data)[subblossoms[i]].offset = offset; |
---|
2651 | if (!_blossom_set->trivial(subblossoms[i])) { |
---|
2652 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
---|
2653 | } |
---|
2654 | if (_blossom_set->classPrio(subblossoms[i]) != |
---|
2655 | std::numeric_limits<Value>::max()) { |
---|
2656 | _delta2->push(subblossoms[i], |
---|
2657 | _blossom_set->classPrio(subblossoms[i]) - |
---|
2658 | (*_blossom_data)[subblossoms[i]].offset); |
---|
2659 | } |
---|
2660 | } |
---|
2661 | |
---|
2662 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
---|
2663 | for (int i = (id + 1) % subblossoms.size(); |
---|
2664 | i != ib; i = (i + 2) % subblossoms.size()) { |
---|
2665 | int sb = subblossoms[i]; |
---|
2666 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2667 | (*_blossom_data)[sb].next = |
---|
2668 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2669 | } |
---|
2670 | |
---|
2671 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
---|
2672 | int sb = subblossoms[i]; |
---|
2673 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2674 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
2675 | |
---|
2676 | (*_blossom_data)[sb].status = ODD; |
---|
2677 | matchedToOdd(sb); |
---|
2678 | _tree_set->insert(sb, tree); |
---|
2679 | (*_blossom_data)[sb].pred = pred; |
---|
2680 | (*_blossom_data)[sb].next = |
---|
2681 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2682 | |
---|
2683 | pred = (*_blossom_data)[ub].next; |
---|
2684 | |
---|
2685 | (*_blossom_data)[tb].status = EVEN; |
---|
2686 | matchedToEven(tb, tree); |
---|
2687 | _tree_set->insert(tb, tree); |
---|
2688 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
---|
2689 | } |
---|
2690 | |
---|
2691 | (*_blossom_data)[subblossoms[id]].status = ODD; |
---|
2692 | matchedToOdd(subblossoms[id]); |
---|
2693 | _tree_set->insert(subblossoms[id], tree); |
---|
2694 | (*_blossom_data)[subblossoms[id]].next = next; |
---|
2695 | (*_blossom_data)[subblossoms[id]].pred = pred; |
---|
2696 | |
---|
2697 | } else { |
---|
2698 | |
---|
2699 | for (int i = (ib + 1) % subblossoms.size(); |
---|
2700 | i != id; i = (i + 2) % subblossoms.size()) { |
---|
2701 | int sb = subblossoms[i]; |
---|
2702 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2703 | (*_blossom_data)[sb].next = |
---|
2704 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2705 | } |
---|
2706 | |
---|
2707 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
---|
2708 | int sb = subblossoms[i]; |
---|
2709 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
---|
2710 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
---|
2711 | |
---|
2712 | (*_blossom_data)[sb].status = ODD; |
---|
2713 | matchedToOdd(sb); |
---|
2714 | _tree_set->insert(sb, tree); |
---|
2715 | (*_blossom_data)[sb].next = next; |
---|
2716 | (*_blossom_data)[sb].pred = |
---|
2717 | _graph.oppositeArc((*_blossom_data)[tb].next); |
---|
2718 | |
---|
2719 | (*_blossom_data)[tb].status = EVEN; |
---|
2720 | matchedToEven(tb, tree); |
---|
2721 | _tree_set->insert(tb, tree); |
---|
2722 | (*_blossom_data)[tb].pred = |
---|
2723 | (*_blossom_data)[tb].next = |
---|
2724 | _graph.oppositeArc((*_blossom_data)[ub].next); |
---|
2725 | next = (*_blossom_data)[ub].next; |
---|
2726 | } |
---|
2727 | |
---|
2728 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
---|
2729 | matchedToOdd(subblossoms[ib]); |
---|
2730 | _tree_set->insert(subblossoms[ib], tree); |
---|
2731 | (*_blossom_data)[subblossoms[ib]].next = next; |
---|
2732 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
---|
2733 | } |
---|
2734 | _tree_set->erase(blossom); |
---|
2735 | } |
---|
2736 | |
---|
2737 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
---|
2738 | if (_blossom_set->trivial(blossom)) { |
---|
2739 | int bi = (*_node_index)[base]; |
---|
2740 | Value pot = (*_node_data)[bi].pot; |
---|
2741 | |
---|
2742 | _matching->set(base, matching); |
---|
2743 | _blossom_node_list.push_back(base); |
---|
2744 | _node_potential->set(base, pot); |
---|
2745 | } else { |
---|
2746 | |
---|
2747 | Value pot = (*_blossom_data)[blossom].pot; |
---|
2748 | int bn = _blossom_node_list.size(); |
---|
2749 | |
---|
2750 | std::vector<int> subblossoms; |
---|
2751 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
---|
2752 | int b = _blossom_set->find(base); |
---|
2753 | int ib = -1; |
---|
2754 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
---|
2755 | if (subblossoms[i] == b) { ib = i; break; } |
---|
2756 | } |
---|
2757 | |
---|
2758 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
---|
2759 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
---|
2760 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
---|
2761 | |
---|
2762 | Arc m = (*_blossom_data)[tb].next; |
---|
2763 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
---|
2764 | extractBlossom(tb, _graph.source(m), m); |
---|
2765 | } |
---|
2766 | extractBlossom(subblossoms[ib], base, matching); |
---|
2767 | |
---|
2768 | int en = _blossom_node_list.size(); |
---|
2769 | |
---|
2770 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
---|
2771 | } |
---|
2772 | } |
---|
2773 | |
---|
2774 | void extractMatching() { |
---|
2775 | std::vector<int> blossoms; |
---|
2776 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
---|
2777 | blossoms.push_back(c); |
---|
2778 | } |
---|
2779 | |
---|
2780 | for (int i = 0; i < int(blossoms.size()); ++i) { |
---|
2781 | |
---|
2782 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
---|
2783 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
---|
2784 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
---|
2785 | n != INVALID; ++n) { |
---|
2786 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
---|
2787 | } |
---|
2788 | |
---|
2789 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
---|
2790 | Node base = _graph.source(matching); |
---|
2791 | extractBlossom(blossoms[i], base, matching); |
---|
2792 | } |
---|
2793 | } |
---|
2794 | |
---|
2795 | public: |
---|
2796 | |
---|
2797 | /// \brief Constructor |
---|
2798 | /// |
---|
2799 | /// Constructor. |
---|
2800 | MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
---|
2801 | : _graph(graph), _weight(weight), _matching(0), |
---|
2802 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
---|
2803 | _node_num(0), _blossom_num(0), |
---|
2804 | |
---|
2805 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
---|
2806 | _node_index(0), _node_heap_index(0), _node_data(0), |
---|
2807 | _tree_set_index(0), _tree_set(0), |
---|
2808 | |
---|
2809 | _delta2_index(0), _delta2(0), |
---|
2810 | _delta3_index(0), _delta3(0), |
---|
2811 | _delta4_index(0), _delta4(0), |
---|
2812 | |
---|
2813 | _delta_sum() {} |
---|
2814 | |
---|
2815 | ~MaxWeightedPerfectMatching() { |
---|
2816 | destroyStructures(); |
---|
2817 | } |
---|
2818 | |
---|
2819 | /// \name Execution control |
---|
2820 | /// The simplest way to execute the algorithm is to use the member |
---|
2821 | /// \c run() member function. |
---|
2822 | |
---|
2823 | ///@{ |
---|
2824 | |
---|
2825 | /// \brief Initialize the algorithm |
---|
2826 | /// |
---|
2827 | /// Initialize the algorithm |
---|
2828 | void init() { |
---|
2829 | createStructures(); |
---|
2830 | |
---|
2831 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
2832 | _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP); |
---|
2833 | } |
---|
2834 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
2835 | _delta3_index->set(e, _delta3->PRE_HEAP); |
---|
2836 | } |
---|
2837 | for (int i = 0; i < _blossom_num; ++i) { |
---|
2838 | _delta2_index->set(i, _delta2->PRE_HEAP); |
---|
2839 | _delta4_index->set(i, _delta4->PRE_HEAP); |
---|
2840 | } |
---|
2841 | |
---|
2842 | int index = 0; |
---|
2843 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
2844 | Value max = - std::numeric_limits<Value>::max(); |
---|
2845 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
2846 | if (_graph.target(e) == n) continue; |
---|
2847 | if ((dualScale * _weight[e]) / 2 > max) { |
---|
2848 | max = (dualScale * _weight[e]) / 2; |
---|
2849 | } |
---|
2850 | } |
---|
2851 | _node_index->set(n, index); |
---|
2852 | (*_node_data)[index].pot = max; |
---|
2853 | int blossom = |
---|
2854 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
---|
2855 | |
---|
2856 | _tree_set->insert(blossom); |
---|
2857 | |
---|
2858 | (*_blossom_data)[blossom].status = EVEN; |
---|
2859 | (*_blossom_data)[blossom].pred = INVALID; |
---|
2860 | (*_blossom_data)[blossom].next = INVALID; |
---|
2861 | (*_blossom_data)[blossom].pot = 0; |
---|
2862 | (*_blossom_data)[blossom].offset = 0; |
---|
2863 | ++index; |
---|
2864 | } |
---|
2865 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
2866 | int si = (*_node_index)[_graph.u(e)]; |
---|
2867 | int ti = (*_node_index)[_graph.v(e)]; |
---|
2868 | if (_graph.u(e) != _graph.v(e)) { |
---|
2869 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
---|
2870 | dualScale * _weight[e]) / 2); |
---|
2871 | } |
---|
2872 | } |
---|
2873 | } |
---|
2874 | |
---|
2875 | /// \brief Starts the algorithm |
---|
2876 | /// |
---|
2877 | /// Starts the algorithm |
---|
2878 | bool start() { |
---|
2879 | enum OpType { |
---|
2880 | D2, D3, D4 |
---|
2881 | }; |
---|
2882 | |
---|
2883 | int unmatched = _node_num; |
---|
2884 | while (unmatched > 0) { |
---|
2885 | Value d2 = !_delta2->empty() ? |
---|
2886 | _delta2->prio() : std::numeric_limits<Value>::max(); |
---|
2887 | |
---|
2888 | Value d3 = !_delta3->empty() ? |
---|
2889 | _delta3->prio() : std::numeric_limits<Value>::max(); |
---|
2890 | |
---|
2891 | Value d4 = !_delta4->empty() ? |
---|
2892 | _delta4->prio() : std::numeric_limits<Value>::max(); |
---|
2893 | |
---|
2894 | _delta_sum = d2; OpType ot = D2; |
---|
2895 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
---|
2896 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
---|
2897 | |
---|
2898 | if (_delta_sum == std::numeric_limits<Value>::max()) { |
---|
2899 | return false; |
---|
2900 | } |
---|
2901 | |
---|
2902 | switch (ot) { |
---|
2903 | case D2: |
---|
2904 | { |
---|
2905 | int blossom = _delta2->top(); |
---|
2906 | Node n = _blossom_set->classTop(blossom); |
---|
2907 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
---|
2908 | extendOnArc(e); |
---|
2909 | } |
---|
2910 | break; |
---|
2911 | case D3: |
---|
2912 | { |
---|
2913 | Edge e = _delta3->top(); |
---|
2914 | |
---|
2915 | int left_blossom = _blossom_set->find(_graph.u(e)); |
---|
2916 | int right_blossom = _blossom_set->find(_graph.v(e)); |
---|
2917 | |
---|
2918 | if (left_blossom == right_blossom) { |
---|
2919 | _delta3->pop(); |
---|
2920 | } else { |
---|
2921 | int left_tree = _tree_set->find(left_blossom); |
---|
2922 | int right_tree = _tree_set->find(right_blossom); |
---|
2923 | |
---|
2924 | if (left_tree == right_tree) { |
---|
2925 | shrinkOnEdge(e, left_tree); |
---|
2926 | } else { |
---|
2927 | augmentOnEdge(e); |
---|
2928 | unmatched -= 2; |
---|
2929 | } |
---|
2930 | } |
---|
2931 | } break; |
---|
2932 | case D4: |
---|
2933 | splitBlossom(_delta4->top()); |
---|
2934 | break; |
---|
2935 | } |
---|
2936 | } |
---|
2937 | extractMatching(); |
---|
2938 | return true; |
---|
2939 | } |
---|
2940 | |
---|
2941 | /// \brief Runs %MaxWeightedPerfectMatching algorithm. |
---|
2942 | /// |
---|
2943 | /// This method runs the %MaxWeightedPerfectMatching algorithm. |
---|
2944 | /// |
---|
2945 | /// \note mwm.run() is just a shortcut of the following code. |
---|
2946 | /// \code |
---|
2947 | /// mwm.init(); |
---|
2948 | /// mwm.start(); |
---|
2949 | /// \endcode |
---|
2950 | bool run() { |
---|
2951 | init(); |
---|
2952 | return start(); |
---|
2953 | } |
---|
2954 | |
---|
2955 | /// @} |
---|
2956 | |
---|
2957 | /// \name Primal solution |
---|
2958 | /// Functions for get the primal solution, ie. the matching. |
---|
2959 | |
---|
2960 | /// @{ |
---|
2961 | |
---|
2962 | /// \brief Returns the matching value. |
---|
2963 | /// |
---|
2964 | /// Returns the matching value. |
---|
2965 | Value matchingValue() const { |
---|
2966 | Value sum = 0; |
---|
2967 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
2968 | if ((*_matching)[n] != INVALID) { |
---|
2969 | sum += _weight[(*_matching)[n]]; |
---|
2970 | } |
---|
2971 | } |
---|
2972 | return sum /= 2; |
---|
2973 | } |
---|
2974 | |
---|
2975 | /// \brief Returns true when the edge is in the matching. |
---|
2976 | /// |
---|
2977 | /// Returns true when the edge is in the matching. |
---|
2978 | bool matching(const Edge& edge) const { |
---|
2979 | return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
---|
2980 | } |
---|
2981 | |
---|
2982 | /// \brief Returns the incident matching edge. |
---|
2983 | /// |
---|
2984 | /// Returns the incident matching arc from given edge. |
---|
2985 | Arc matching(const Node& node) const { |
---|
2986 | return (*_matching)[node]; |
---|
2987 | } |
---|
2988 | |
---|
2989 | /// \brief Returns the mate of the node. |
---|
2990 | /// |
---|
2991 | /// Returns the adjancent node in a mathcing arc. |
---|
2992 | Node mate(const Node& node) const { |
---|
2993 | return _graph.target((*_matching)[node]); |
---|
2994 | } |
---|
2995 | |
---|
2996 | /// @} |
---|
2997 | |
---|
2998 | /// \name Dual solution |
---|
2999 | /// Functions for get the dual solution. |
---|
3000 | |
---|
3001 | /// @{ |
---|
3002 | |
---|
3003 | /// \brief Returns the value of the dual solution. |
---|
3004 | /// |
---|
3005 | /// Returns the value of the dual solution. It should be equal to |
---|
3006 | /// the primal value scaled by \ref dualScale "dual scale". |
---|
3007 | Value dualValue() const { |
---|
3008 | Value sum = 0; |
---|
3009 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
3010 | sum += nodeValue(n); |
---|
3011 | } |
---|
3012 | for (int i = 0; i < blossomNum(); ++i) { |
---|
3013 | sum += blossomValue(i) * (blossomSize(i) / 2); |
---|
3014 | } |
---|
3015 | return sum; |
---|
3016 | } |
---|
3017 | |
---|
3018 | /// \brief Returns the value of the node. |
---|
3019 | /// |
---|
3020 | /// Returns the the value of the node. |
---|
3021 | Value nodeValue(const Node& n) const { |
---|
3022 | return (*_node_potential)[n]; |
---|
3023 | } |
---|
3024 | |
---|
3025 | /// \brief Returns the number of the blossoms in the basis. |
---|
3026 | /// |
---|
3027 | /// Returns the number of the blossoms in the basis. |
---|
3028 | /// \see BlossomIt |
---|
3029 | int blossomNum() const { |
---|
3030 | return _blossom_potential.size(); |
---|
3031 | } |
---|
3032 | |
---|
3033 | |
---|
3034 | /// \brief Returns the number of the nodes in the blossom. |
---|
3035 | /// |
---|
3036 | /// Returns the number of the nodes in the blossom. |
---|
3037 | int blossomSize(int k) const { |
---|
3038 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
---|
3039 | } |
---|
3040 | |
---|
3041 | /// \brief Returns the value of the blossom. |
---|
3042 | /// |
---|
3043 | /// Returns the the value of the blossom. |
---|
3044 | /// \see BlossomIt |
---|
3045 | Value blossomValue(int k) const { |
---|
3046 | return _blossom_potential[k].value; |
---|
3047 | } |
---|
3048 | |
---|
3049 | /// \brief Lemon iterator for get the items of the blossom. |
---|
3050 | /// |
---|
3051 | /// Lemon iterator for get the nodes of the blossom. This class |
---|
3052 | /// provides a common style lemon iterator which gives back a |
---|
3053 | /// subset of the nodes. |
---|
3054 | class BlossomIt { |
---|
3055 | public: |
---|
3056 | |
---|
3057 | /// \brief Constructor. |
---|
3058 | /// |
---|
3059 | /// Constructor for get the nodes of the variable. |
---|
3060 | BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
---|
3061 | : _algorithm(&algorithm) |
---|
3062 | { |
---|
3063 | _index = _algorithm->_blossom_potential[variable].begin; |
---|
3064 | _last = _algorithm->_blossom_potential[variable].end; |
---|
3065 | } |
---|
3066 | |
---|
3067 | /// \brief Conversion to node. |
---|
3068 | /// |
---|
3069 | /// Conversion to node. |
---|
3070 | operator Node() const { |
---|
3071 | return _algorithm->_blossom_node_list[_index]; |
---|
3072 | } |
---|
3073 | |
---|
3074 | /// \brief Increment operator. |
---|
3075 | /// |
---|
3076 | /// Increment operator. |
---|
3077 | BlossomIt& operator++() { |
---|
3078 | ++_index; |
---|
3079 | return *this; |
---|
3080 | } |
---|
3081 | |
---|
3082 | /// \brief Validity checking |
---|
3083 | /// |
---|
3084 | /// Checks whether the iterator is invalid. |
---|
3085 | bool operator==(Invalid) const { return _index == _last; } |
---|
3086 | |
---|
3087 | /// \brief Validity checking |
---|
3088 | /// |
---|
3089 | /// Checks whether the iterator is valid. |
---|
3090 | bool operator!=(Invalid) const { return _index != _last; } |
---|
3091 | |
---|
3092 | private: |
---|
3093 | const MaxWeightedPerfectMatching* _algorithm; |
---|
3094 | int _last; |
---|
3095 | int _index; |
---|
3096 | }; |
---|
3097 | |
---|
3098 | /// @} |
---|
3099 | |
---|
3100 | }; |
---|
3101 | |
---|
3102 | |
---|
3103 | } //END OF NAMESPACE LEMON |
---|
3104 | |
---|
3105 | #endif //LEMON_MAX_MATCHING_H |
---|