COIN-OR::LEMON - Graph Library

source: lemon-main/lemon/nagamochi_ibaraki.h @ 1049:7bf489cf624e

Last change on this file since 1049:7bf489cf624e was 978:eb252f805431, checked in by Alpar Juttner <alpar@…>, 13 years ago

GCC 3.3 compatibility fix in nagamochi_ibaraki.h

File size: 21.6 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_NAGAMOCHI_IBARAKI_H
20#define LEMON_NAGAMOCHI_IBARAKI_H
21
22
23/// \ingroup min_cut
24/// \file
25/// \brief Implementation of the Nagamochi-Ibaraki algorithm.
26
27#include <lemon/core.h>
28#include <lemon/bin_heap.h>
29#include <lemon/bucket_heap.h>
30#include <lemon/maps.h>
31#include <lemon/radix_sort.h>
32#include <lemon/unionfind.h>
33
34#include <cassert>
35
36namespace lemon {
37
38  /// \brief Default traits class for NagamochiIbaraki class.
39  ///
40  /// Default traits class for NagamochiIbaraki class.
41  /// \param GR The undirected graph type.
42  /// \param CM Type of capacity map.
43  template <typename GR, typename CM>
44  struct NagamochiIbarakiDefaultTraits {
45    /// The type of the capacity map.
46    typedef typename CM::Value Value;
47
48    /// The undirected graph type the algorithm runs on.
49    typedef GR Graph;
50
51    /// \brief The type of the map that stores the edge capacities.
52    ///
53    /// The type of the map that stores the edge capacities.
54    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
55    typedef CM CapacityMap;
56
57    /// \brief Instantiates a CapacityMap.
58    ///
59    /// This function instantiates a \ref CapacityMap.
60#ifdef DOXYGEN
61    static CapacityMap *createCapacityMap(const Graph& graph)
62#else
63    static CapacityMap *createCapacityMap(const Graph&)
64#endif
65    {
66        LEMON_ASSERT(false, "CapacityMap is not initialized");
67        return 0; // ignore warnings
68    }
69
70    /// \brief The cross reference type used by heap.
71    ///
72    /// The cross reference type used by heap.
73    /// Usually \c Graph::NodeMap<int>.
74    typedef typename Graph::template NodeMap<int> HeapCrossRef;
75
76    /// \brief Instantiates a HeapCrossRef.
77    ///
78    /// This function instantiates a \ref HeapCrossRef.
79    /// \param g is the graph, to which we would like to define the
80    /// \ref HeapCrossRef.
81    static HeapCrossRef *createHeapCrossRef(const Graph& g) {
82      return new HeapCrossRef(g);
83    }
84
85    /// \brief The heap type used by NagamochiIbaraki algorithm.
86    ///
87    /// The heap type used by NagamochiIbaraki algorithm. It has to
88    /// maximize the priorities.
89    ///
90    /// \sa BinHeap
91    /// \sa NagamochiIbaraki
92    typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap;
93
94    /// \brief Instantiates a Heap.
95    ///
96    /// This function instantiates a \ref Heap.
97    /// \param r is the cross reference of the heap.
98    static Heap *createHeap(HeapCrossRef& r) {
99      return new Heap(r);
100    }
101  };
102
103  /// \ingroup min_cut
104  ///
105  /// \brief Calculates the minimum cut in an undirected graph.
106  ///
107  /// Calculates the minimum cut in an undirected graph with the
108  /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
109  /// nodes into two partitions with the minimum sum of edge capacities
110  /// between the two partitions. The algorithm can be used to test
111  /// the network reliability, especially to test how many links have
112  /// to be destroyed in the network to split it to at least two
113  /// distinict subnetworks.
114  ///
115  /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with
116  /// \ref FibHeap "Fibonacci heap" it can be decreased to
117  /// \f$ O(nm+n^2\log(n)) \f$.  When the edges have unit capacities,
118  /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time
119  /// complexity.
120  ///
121  /// \warning The value type of the capacity map should be able to
122  /// hold any cut value of the graph, otherwise the result can
123  /// overflow.
124  /// \note This capacity is supposed to be integer type.
125#ifdef DOXYGEN
126  template <typename GR, typename CM, typename TR>
127#else
128  template <typename GR,
129            typename CM = typename GR::template EdgeMap<int>,
130            typename TR = NagamochiIbarakiDefaultTraits<GR, CM> >
131#endif
132  class NagamochiIbaraki {
133  public:
134
135    typedef TR Traits;
136    /// The type of the underlying graph.
137    typedef typename Traits::Graph Graph;
138
139    /// The type of the capacity map.
140    typedef typename Traits::CapacityMap CapacityMap;
141    /// The value type of the capacity map.
142    typedef typename Traits::CapacityMap::Value Value;
143
144    /// The heap type used by the algorithm.
145    typedef typename Traits::Heap Heap;
146    /// The cross reference type used for the heap.
147    typedef typename Traits::HeapCrossRef HeapCrossRef;
148
149    ///\name Named template parameters
150
151    ///@{
152
153    struct SetUnitCapacityTraits : public Traits {
154      typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap;
155      static CapacityMap *createCapacityMap(const Graph&) {
156        return new CapacityMap();
157      }
158    };
159
160    /// \brief \ref named-templ-param "Named parameter" for setting
161    /// the capacity map to a constMap<Edge, int, 1>() instance
162    ///
163    /// \ref named-templ-param "Named parameter" for setting
164    /// the capacity map to a constMap<Edge, int, 1>() instance
165    struct SetUnitCapacity
166      : public NagamochiIbaraki<Graph, CapacityMap,
167                                SetUnitCapacityTraits> {
168      typedef NagamochiIbaraki<Graph, CapacityMap,
169                               SetUnitCapacityTraits> Create;
170    };
171
172
173    template <class H, class CR>
174    struct SetHeapTraits : public Traits {
175      typedef CR HeapCrossRef;
176      typedef H Heap;
177      static HeapCrossRef *createHeapCrossRef(int num) {
178        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
179        return 0; // ignore warnings
180      }
181      static Heap *createHeap(HeapCrossRef &) {
182        LEMON_ASSERT(false, "Heap is not initialized");
183        return 0; // ignore warnings
184      }
185    };
186
187    /// \brief \ref named-templ-param "Named parameter" for setting
188    /// heap and cross reference type
189    ///
190    /// \ref named-templ-param "Named parameter" for setting heap and
191    /// cross reference type. The heap has to maximize the priorities.
192    template <class H, class CR = RangeMap<int> >
193    struct SetHeap
194      : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > {
195      typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> >
196      Create;
197    };
198
199    template <class H, class CR>
200    struct SetStandardHeapTraits : public Traits {
201      typedef CR HeapCrossRef;
202      typedef H Heap;
203      static HeapCrossRef *createHeapCrossRef(int size) {
204        return new HeapCrossRef(size);
205      }
206      static Heap *createHeap(HeapCrossRef &crossref) {
207        return new Heap(crossref);
208      }
209    };
210
211    /// \brief \ref named-templ-param "Named parameter" for setting
212    /// heap and cross reference type with automatic allocation
213    ///
214    /// \ref named-templ-param "Named parameter" for setting heap and
215    /// cross reference type with automatic allocation. They should
216    /// have standard constructor interfaces to be able to
217    /// automatically created by the algorithm (i.e. the graph should
218    /// be passed to the constructor of the cross reference and the
219    /// cross reference should be passed to the constructor of the
220    /// heap). However, external heap and cross reference objects
221    /// could also be passed to the algorithm using the \ref heap()
222    /// function before calling \ref run() or \ref init(). The heap
223    /// has to maximize the priorities.
224    /// \sa SetHeap
225    template <class H, class CR = RangeMap<int> >
226    struct SetStandardHeap
227      : public NagamochiIbaraki<Graph, CapacityMap,
228                                SetStandardHeapTraits<H, CR> > {
229      typedef NagamochiIbaraki<Graph, CapacityMap,
230                               SetStandardHeapTraits<H, CR> > Create;
231    };
232
233    ///@}
234
235
236  private:
237
238    const Graph &_graph;
239    const CapacityMap *_capacity;
240    bool _local_capacity; // unit capacity
241
242    struct ArcData {
243      typename Graph::Node target;
244      int prev, next;
245    };
246    struct EdgeData {
247      Value capacity;
248      Value cut;
249    };
250
251    struct NodeData {
252      int first_arc;
253      typename Graph::Node prev, next;
254      int curr_arc;
255      typename Graph::Node last_rep;
256      Value sum;
257    };
258
259    typename Graph::template NodeMap<NodeData> *_nodes;
260    std::vector<ArcData> _arcs;
261    std::vector<EdgeData> _edges;
262
263    typename Graph::Node _first_node;
264    int _node_num;
265
266    Value _min_cut;
267
268    HeapCrossRef *_heap_cross_ref;
269    bool _local_heap_cross_ref;
270    Heap *_heap;
271    bool _local_heap;
272
273    typedef typename Graph::template NodeMap<typename Graph::Node> NodeList;
274    NodeList *_next_rep;
275
276    typedef typename Graph::template NodeMap<bool> MinCutMap;
277    MinCutMap *_cut_map;
278
279    void createStructures() {
280      if (!_nodes) {
281        _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph);
282      }
283      if (!_capacity) {
284        _local_capacity = true;
285        _capacity = Traits::createCapacityMap(_graph);
286      }
287      if (!_heap_cross_ref) {
288        _local_heap_cross_ref = true;
289        _heap_cross_ref = Traits::createHeapCrossRef(_graph);
290      }
291      if (!_heap) {
292        _local_heap = true;
293        _heap = Traits::createHeap(*_heap_cross_ref);
294      }
295      if (!_next_rep) {
296        _next_rep = new NodeList(_graph);
297      }
298      if (!_cut_map) {
299        _cut_map = new MinCutMap(_graph);
300      }
301    }
302
303  protected:
304    //This is here to avoid a gcc-3.3 compilation error.
305    //It should never be called.
306    NagamochiIbaraki() {}
307   
308  public:
309
310    typedef NagamochiIbaraki Create;
311
312
313    /// \brief Constructor.
314    ///
315    /// \param graph The graph the algorithm runs on.
316    /// \param capacity The capacity map used by the algorithm.
317    NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity)
318      : _graph(graph), _capacity(&capacity), _local_capacity(false),
319        _nodes(0), _arcs(), _edges(), _min_cut(),
320        _heap_cross_ref(0), _local_heap_cross_ref(false),
321        _heap(0), _local_heap(false),
322        _next_rep(0), _cut_map(0) {}
323
324    /// \brief Constructor.
325    ///
326    /// This constructor can be used only when the Traits class
327    /// defines how can the local capacity map be instantiated.
328    /// If the SetUnitCapacity used the algorithm automatically
329    /// constructs the capacity map.
330    ///
331    ///\param graph The graph the algorithm runs on.
332    NagamochiIbaraki(const Graph& graph)
333      : _graph(graph), _capacity(0), _local_capacity(false),
334        _nodes(0), _arcs(), _edges(), _min_cut(),
335        _heap_cross_ref(0), _local_heap_cross_ref(false),
336        _heap(0), _local_heap(false),
337        _next_rep(0), _cut_map(0) {}
338
339    /// \brief Destructor.
340    ///
341    /// Destructor.
342    ~NagamochiIbaraki() {
343      if (_local_capacity) delete _capacity;
344      if (_nodes) delete _nodes;
345      if (_local_heap) delete _heap;
346      if (_local_heap_cross_ref) delete _heap_cross_ref;
347      if (_next_rep) delete _next_rep;
348      if (_cut_map) delete _cut_map;
349    }
350
351    /// \brief Sets the heap and the cross reference used by algorithm.
352    ///
353    /// Sets the heap and the cross reference used by algorithm.
354    /// If you don't use this function before calling \ref run(),
355    /// it will allocate one. The destuctor deallocates this
356    /// automatically allocated heap and cross reference, of course.
357    /// \return <tt> (*this) </tt>
358    NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr)
359    {
360      if (_local_heap_cross_ref) {
361        delete _heap_cross_ref;
362        _local_heap_cross_ref = false;
363      }
364      _heap_cross_ref = &cr;
365      if (_local_heap) {
366        delete _heap;
367        _local_heap = false;
368      }
369      _heap = &hp;
370      return *this;
371    }
372
373    /// \name Execution control
374    /// The simplest way to execute the algorithm is to use
375    /// one of the member functions called \c run().
376    /// \n
377    /// If you need more control on the execution,
378    /// first you must call \ref init() and then call the start()
379    /// or proper times the processNextPhase() member functions.
380
381    ///@{
382
383    /// \brief Initializes the internal data structures.
384    ///
385    /// Initializes the internal data structures.
386    void init() {
387      createStructures();
388
389      int edge_num = countEdges(_graph);
390      _edges.resize(edge_num);
391      _arcs.resize(2 * edge_num);
392
393      typename Graph::Node prev = INVALID;
394      _node_num = 0;
395      for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
396        (*_cut_map)[n] = false;
397        (*_next_rep)[n] = INVALID;
398        (*_nodes)[n].last_rep = n;
399        (*_nodes)[n].first_arc = -1;
400        (*_nodes)[n].curr_arc = -1;
401        (*_nodes)[n].prev = prev;
402        if (prev != INVALID) {
403          (*_nodes)[prev].next = n;
404        }
405        (*_nodes)[n].next = INVALID;
406        (*_nodes)[n].sum = 0;
407        prev = n;
408        ++_node_num;
409      }
410
411      _first_node = typename Graph::NodeIt(_graph);
412
413      int index = 0;
414      for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
415        for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) {
416          typename Graph::Node m = _graph.target(a);
417         
418          if (!(n < m)) continue;
419
420          (*_nodes)[n].sum += (*_capacity)[a];
421          (*_nodes)[m].sum += (*_capacity)[a];
422         
423          int c = (*_nodes)[m].curr_arc;
424          if (c != -1 && _arcs[c ^ 1].target == n) {
425            _edges[c >> 1].capacity += (*_capacity)[a];
426          } else {
427            _edges[index].capacity = (*_capacity)[a];
428           
429            _arcs[index << 1].prev = -1;
430            if ((*_nodes)[n].first_arc != -1) {
431              _arcs[(*_nodes)[n].first_arc].prev = (index << 1);
432            }
433            _arcs[index << 1].next = (*_nodes)[n].first_arc;
434            (*_nodes)[n].first_arc = (index << 1);
435            _arcs[index << 1].target = m;
436
437            (*_nodes)[m].curr_arc = (index << 1);
438           
439            _arcs[(index << 1) | 1].prev = -1;
440            if ((*_nodes)[m].first_arc != -1) {
441              _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1);
442            }
443            _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc;
444            (*_nodes)[m].first_arc = ((index << 1) | 1);
445            _arcs[(index << 1) | 1].target = n;
446           
447            ++index;
448          }
449        }
450      }
451
452      typename Graph::Node cut_node = INVALID;
453      _min_cut = std::numeric_limits<Value>::max();
454
455      for (typename Graph::Node n = _first_node;
456           n != INVALID; n = (*_nodes)[n].next) {
457        if ((*_nodes)[n].sum < _min_cut) {
458          cut_node = n;
459          _min_cut = (*_nodes)[n].sum;
460        }
461      }
462      (*_cut_map)[cut_node] = true;
463      if (_min_cut == 0) {
464        _first_node = INVALID;
465      }
466    }
467
468  public:
469
470    /// \brief Processes the next phase
471    ///
472    /// Processes the next phase in the algorithm. It must be called
473    /// at most one less the number of the nodes in the graph.
474    ///
475    ///\return %True when the algorithm finished.
476    bool processNextPhase() {
477      if (_first_node == INVALID) return true;
478
479      _heap->clear();
480      for (typename Graph::Node n = _first_node;
481           n != INVALID; n = (*_nodes)[n].next) {
482        (*_heap_cross_ref)[n] = Heap::PRE_HEAP;
483      }
484
485      std::vector<typename Graph::Node> order;
486      order.reserve(_node_num);
487      int sep = 0;
488
489      Value alpha = 0;
490      Value pmc = std::numeric_limits<Value>::max();
491
492      _heap->push(_first_node, static_cast<Value>(0));
493      while (!_heap->empty()) {
494        typename Graph::Node n = _heap->top();
495        Value v = _heap->prio();
496
497        _heap->pop();
498        for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
499          switch (_heap->state(_arcs[a].target)) {
500          case Heap::PRE_HEAP:
501            {
502              Value nv = _edges[a >> 1].capacity;
503              _heap->push(_arcs[a].target, nv);
504              _edges[a >> 1].cut = nv;
505            } break;
506          case Heap::IN_HEAP:
507            {
508              Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target];
509              _heap->decrease(_arcs[a].target, nv);
510              _edges[a >> 1].cut = nv;
511            } break;
512          case Heap::POST_HEAP:
513            break;
514          }
515        }
516
517        alpha += (*_nodes)[n].sum;
518        alpha -= 2 * v;
519
520        order.push_back(n);
521        if (!_heap->empty()) {
522          if (alpha < pmc) {
523            pmc = alpha;
524            sep = order.size();
525          }
526        }
527      }
528
529      if (static_cast<int>(order.size()) < _node_num) {
530        _first_node = INVALID;
531        for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
532          (*_cut_map)[n] = false;
533        }
534        for (int i = 0; i < static_cast<int>(order.size()); ++i) {
535          typename Graph::Node n = order[i];
536          while (n != INVALID) {
537            (*_cut_map)[n] = true;
538            n = (*_next_rep)[n];
539          }
540        }
541        _min_cut = 0;
542        return true;
543      }
544
545      if (pmc < _min_cut) {
546        for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
547          (*_cut_map)[n] = false;
548        }
549        for (int i = 0; i < sep; ++i) {
550          typename Graph::Node n = order[i];
551          while (n != INVALID) {
552            (*_cut_map)[n] = true;
553            n = (*_next_rep)[n];
554          }
555        }
556        _min_cut = pmc;
557      }
558
559      for (typename Graph::Node n = _first_node;
560           n != INVALID; n = (*_nodes)[n].next) {
561        bool merged = false;
562        for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
563          if (!(_edges[a >> 1].cut < pmc)) {
564            if (!merged) {
565              for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) {
566                (*_nodes)[_arcs[b].target].curr_arc = b;         
567              }
568              merged = true;
569            }
570            typename Graph::Node m = _arcs[a].target;
571            int nb = 0;
572            for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) {
573              nb = _arcs[b].next;
574              if ((b ^ a) == 1) continue;
575              typename Graph::Node o = _arcs[b].target;
576              int c = (*_nodes)[o].curr_arc;
577              if (c != -1 && _arcs[c ^ 1].target == n) {
578                _edges[c >> 1].capacity += _edges[b >> 1].capacity;
579                (*_nodes)[n].sum += _edges[b >> 1].capacity;
580                if (_edges[b >> 1].cut < _edges[c >> 1].cut) {
581                  _edges[b >> 1].cut = _edges[c >> 1].cut;
582                }
583                if (_arcs[b ^ 1].prev != -1) {
584                  _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next;
585                } else {
586                  (*_nodes)[o].first_arc = _arcs[b ^ 1].next;
587                }
588                if (_arcs[b ^ 1].next != -1) {
589                  _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev;
590                }
591              } else {
592                if (_arcs[a].next != -1) {
593                  _arcs[_arcs[a].next].prev = b;
594                }
595                _arcs[b].next = _arcs[a].next;
596                _arcs[b].prev = a;
597                _arcs[a].next = b;
598                _arcs[b ^ 1].target = n;
599
600                (*_nodes)[n].sum += _edges[b >> 1].capacity;
601                (*_nodes)[o].curr_arc = b;
602              }
603            }
604
605            if (_arcs[a].prev != -1) {
606              _arcs[_arcs[a].prev].next = _arcs[a].next;
607            } else {
608              (*_nodes)[n].first_arc = _arcs[a].next;
609            }           
610            if (_arcs[a].next != -1) {
611              _arcs[_arcs[a].next].prev = _arcs[a].prev;
612            }
613
614            (*_nodes)[n].sum -= _edges[a >> 1].capacity;
615            (*_next_rep)[(*_nodes)[n].last_rep] = m;
616            (*_nodes)[n].last_rep = (*_nodes)[m].last_rep;
617           
618            if ((*_nodes)[m].prev != INVALID) {
619              (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next;
620            } else{
621              _first_node = (*_nodes)[m].next;
622            }
623            if ((*_nodes)[m].next != INVALID) {
624              (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev;
625            }
626            --_node_num;
627          }
628        }
629      }
630
631      if (_node_num == 1) {
632        _first_node = INVALID;
633        return true;
634      }
635
636      return false;
637    }
638
639    /// \brief Executes the algorithm.
640    ///
641    /// Executes the algorithm.
642    ///
643    /// \pre init() must be called
644    void start() {
645      while (!processNextPhase()) {}
646    }
647
648
649    /// \brief Runs %NagamochiIbaraki algorithm.
650    ///
651    /// This method runs the %Min cut algorithm
652    ///
653    /// \note mc.run(s) is just a shortcut of the following code.
654    ///\code
655    ///  mc.init();
656    ///  mc.start();
657    ///\endcode
658    void run() {
659      init();
660      start();
661    }
662
663    ///@}
664
665    /// \name Query Functions
666    ///
667    /// The result of the %NagamochiIbaraki
668    /// algorithm can be obtained using these functions.\n
669    /// Before the use of these functions, either run() or start()
670    /// must be called.
671
672    ///@{
673
674    /// \brief Returns the min cut value.
675    ///
676    /// Returns the min cut value if the algorithm finished.
677    /// After the first processNextPhase() it is a value of a
678    /// valid cut in the graph.
679    Value minCutValue() const {
680      return _min_cut;
681    }
682
683    /// \brief Returns a min cut in a NodeMap.
684    ///
685    /// It sets the nodes of one of the two partitions to true and
686    /// the other partition to false.
687    /// \param cutMap A \ref concepts::WriteMap "writable" node map with
688    /// \c bool (or convertible) value type.
689    template <typename CutMap>
690    Value minCutMap(CutMap& cutMap) const {
691      for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
692        cutMap.set(n, (*_cut_map)[n]);
693      }
694      return minCutValue();
695    }
696
697    ///@}
698
699  };
700}
701
702#endif
Note: See TracBrowser for help on using the repository browser.