[649] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
[877] | 5 | * Copyright (C) 2003-2010 |
---|
[649] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #include <lemon/connectivity.h> |
---|
| 20 | #include <lemon/list_graph.h> |
---|
| 21 | #include <lemon/adaptors.h> |
---|
| 22 | |
---|
| 23 | #include "test_tools.h" |
---|
| 24 | |
---|
| 25 | using namespace lemon; |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | int main() |
---|
| 29 | { |
---|
| 30 | typedef ListDigraph Digraph; |
---|
| 31 | typedef Undirector<Digraph> Graph; |
---|
[877] | 32 | |
---|
[649] | 33 | { |
---|
| 34 | Digraph d; |
---|
| 35 | Digraph::NodeMap<int> order(d); |
---|
| 36 | Graph g(d); |
---|
[877] | 37 | |
---|
[649] | 38 | check(stronglyConnected(d), "The empty digraph is strongly connected"); |
---|
| 39 | check(countStronglyConnectedComponents(d) == 0, |
---|
| 40 | "The empty digraph has 0 strongly connected component"); |
---|
| 41 | check(connected(g), "The empty graph is connected"); |
---|
| 42 | check(countConnectedComponents(g) == 0, |
---|
| 43 | "The empty graph has 0 connected component"); |
---|
| 44 | |
---|
| 45 | check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
---|
| 46 | check(countBiNodeConnectedComponents(g) == 0, |
---|
| 47 | "The empty graph has 0 bi-node-connected component"); |
---|
| 48 | check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
---|
| 49 | check(countBiEdgeConnectedComponents(g) == 0, |
---|
| 50 | "The empty graph has 0 bi-edge-connected component"); |
---|
[877] | 51 | |
---|
[649] | 52 | check(dag(d), "The empty digraph is DAG."); |
---|
| 53 | check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
---|
| 54 | check(loopFree(d), "The empty digraph is loop-free."); |
---|
| 55 | check(parallelFree(d), "The empty digraph is parallel-free."); |
---|
| 56 | check(simpleGraph(d), "The empty digraph is simple."); |
---|
| 57 | |
---|
| 58 | check(acyclic(g), "The empty graph is acyclic."); |
---|
| 59 | check(tree(g), "The empty graph is tree."); |
---|
| 60 | check(bipartite(g), "The empty graph is bipartite."); |
---|
| 61 | check(loopFree(g), "The empty graph is loop-free."); |
---|
| 62 | check(parallelFree(g), "The empty graph is parallel-free."); |
---|
| 63 | check(simpleGraph(g), "The empty graph is simple."); |
---|
| 64 | } |
---|
| 65 | |
---|
| 66 | { |
---|
| 67 | Digraph d; |
---|
| 68 | Digraph::NodeMap<int> order(d); |
---|
| 69 | Graph g(d); |
---|
| 70 | Digraph::Node n = d.addNode(); |
---|
| 71 | |
---|
| 72 | check(stronglyConnected(d), "This digraph is strongly connected"); |
---|
| 73 | check(countStronglyConnectedComponents(d) == 1, |
---|
| 74 | "This digraph has 1 strongly connected component"); |
---|
| 75 | check(connected(g), "This graph is connected"); |
---|
| 76 | check(countConnectedComponents(g) == 1, |
---|
| 77 | "This graph has 1 connected component"); |
---|
| 78 | |
---|
| 79 | check(biNodeConnected(g), "This graph is bi-node-connected"); |
---|
| 80 | check(countBiNodeConnectedComponents(g) == 0, |
---|
| 81 | "This graph has 0 bi-node-connected component"); |
---|
| 82 | check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
---|
| 83 | check(countBiEdgeConnectedComponents(g) == 1, |
---|
| 84 | "This graph has 1 bi-edge-connected component"); |
---|
[877] | 85 | |
---|
[649] | 86 | check(dag(d), "This digraph is DAG."); |
---|
| 87 | check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
---|
| 88 | check(loopFree(d), "This digraph is loop-free."); |
---|
| 89 | check(parallelFree(d), "This digraph is parallel-free."); |
---|
| 90 | check(simpleGraph(d), "This digraph is simple."); |
---|
| 91 | |
---|
| 92 | check(acyclic(g), "This graph is acyclic."); |
---|
| 93 | check(tree(g), "This graph is tree."); |
---|
| 94 | check(bipartite(g), "This graph is bipartite."); |
---|
| 95 | check(loopFree(g), "This graph is loop-free."); |
---|
| 96 | check(parallelFree(g), "This graph is parallel-free."); |
---|
| 97 | check(simpleGraph(g), "This graph is simple."); |
---|
| 98 | } |
---|
| 99 | |
---|
| 100 | { |
---|
| 101 | Digraph d; |
---|
| 102 | Digraph::NodeMap<int> order(d); |
---|
| 103 | Graph g(d); |
---|
[877] | 104 | |
---|
[649] | 105 | Digraph::Node n1 = d.addNode(); |
---|
| 106 | Digraph::Node n2 = d.addNode(); |
---|
| 107 | Digraph::Node n3 = d.addNode(); |
---|
| 108 | Digraph::Node n4 = d.addNode(); |
---|
| 109 | Digraph::Node n5 = d.addNode(); |
---|
| 110 | Digraph::Node n6 = d.addNode(); |
---|
[877] | 111 | |
---|
[649] | 112 | d.addArc(n1, n3); |
---|
| 113 | d.addArc(n3, n2); |
---|
| 114 | d.addArc(n2, n1); |
---|
| 115 | d.addArc(n4, n2); |
---|
| 116 | d.addArc(n4, n3); |
---|
| 117 | d.addArc(n5, n6); |
---|
| 118 | d.addArc(n6, n5); |
---|
| 119 | |
---|
| 120 | check(!stronglyConnected(d), "This digraph is not strongly connected"); |
---|
| 121 | check(countStronglyConnectedComponents(d) == 3, |
---|
| 122 | "This digraph has 3 strongly connected components"); |
---|
| 123 | check(!connected(g), "This graph is not connected"); |
---|
| 124 | check(countConnectedComponents(g) == 2, |
---|
| 125 | "This graph has 2 connected components"); |
---|
| 126 | |
---|
| 127 | check(!dag(d), "This digraph is not DAG."); |
---|
| 128 | check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
---|
| 129 | check(loopFree(d), "This digraph is loop-free."); |
---|
| 130 | check(parallelFree(d), "This digraph is parallel-free."); |
---|
| 131 | check(simpleGraph(d), "This digraph is simple."); |
---|
| 132 | |
---|
| 133 | check(!acyclic(g), "This graph is not acyclic."); |
---|
| 134 | check(!tree(g), "This graph is not tree."); |
---|
| 135 | check(!bipartite(g), "This graph is not bipartite."); |
---|
| 136 | check(loopFree(g), "This graph is loop-free."); |
---|
| 137 | check(!parallelFree(g), "This graph is not parallel-free."); |
---|
| 138 | check(!simpleGraph(g), "This graph is not simple."); |
---|
[877] | 139 | |
---|
[649] | 140 | d.addArc(n3, n3); |
---|
[877] | 141 | |
---|
[649] | 142 | check(!loopFree(d), "This digraph is not loop-free."); |
---|
| 143 | check(!loopFree(g), "This graph is not loop-free."); |
---|
| 144 | check(!simpleGraph(d), "This digraph is not simple."); |
---|
[877] | 145 | |
---|
[649] | 146 | d.addArc(n3, n2); |
---|
[877] | 147 | |
---|
[649] | 148 | check(!parallelFree(d), "This digraph is not parallel-free."); |
---|
| 149 | } |
---|
[877] | 150 | |
---|
[649] | 151 | { |
---|
| 152 | Digraph d; |
---|
| 153 | Digraph::ArcMap<bool> cutarcs(d, false); |
---|
| 154 | Graph g(d); |
---|
[877] | 155 | |
---|
[649] | 156 | Digraph::Node n1 = d.addNode(); |
---|
| 157 | Digraph::Node n2 = d.addNode(); |
---|
| 158 | Digraph::Node n3 = d.addNode(); |
---|
| 159 | Digraph::Node n4 = d.addNode(); |
---|
| 160 | Digraph::Node n5 = d.addNode(); |
---|
| 161 | Digraph::Node n6 = d.addNode(); |
---|
| 162 | Digraph::Node n7 = d.addNode(); |
---|
| 163 | Digraph::Node n8 = d.addNode(); |
---|
| 164 | |
---|
| 165 | d.addArc(n1, n2); |
---|
| 166 | d.addArc(n5, n1); |
---|
| 167 | d.addArc(n2, n8); |
---|
| 168 | d.addArc(n8, n5); |
---|
| 169 | d.addArc(n6, n4); |
---|
| 170 | d.addArc(n4, n6); |
---|
| 171 | d.addArc(n2, n5); |
---|
| 172 | d.addArc(n1, n8); |
---|
| 173 | d.addArc(n6, n7); |
---|
| 174 | d.addArc(n7, n6); |
---|
[877] | 175 | |
---|
[649] | 176 | check(!stronglyConnected(d), "This digraph is not strongly connected"); |
---|
| 177 | check(countStronglyConnectedComponents(d) == 3, |
---|
| 178 | "This digraph has 3 strongly connected components"); |
---|
| 179 | Digraph::NodeMap<int> scomp1(d); |
---|
| 180 | check(stronglyConnectedComponents(d, scomp1) == 3, |
---|
| 181 | "This digraph has 3 strongly connected components"); |
---|
| 182 | check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
---|
| 183 | scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
---|
| 184 | check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
---|
| 185 | scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
---|
| 186 | check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
---|
| 187 | "Wrong stronglyConnectedComponents()"); |
---|
| 188 | Digraph::ArcMap<bool> scut1(d, false); |
---|
| 189 | check(stronglyConnectedCutArcs(d, scut1) == 0, |
---|
| 190 | "This digraph has 0 strongly connected cut arc."); |
---|
| 191 | for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
---|
| 192 | check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
---|
| 193 | } |
---|
| 194 | |
---|
| 195 | check(!connected(g), "This graph is not connected"); |
---|
| 196 | check(countConnectedComponents(g) == 3, |
---|
| 197 | "This graph has 3 connected components"); |
---|
| 198 | Graph::NodeMap<int> comp(g); |
---|
| 199 | check(connectedComponents(g, comp) == 3, |
---|
| 200 | "This graph has 3 connected components"); |
---|
| 201 | check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
---|
| 202 | comp[n3] != comp[n4], "Wrong connectedComponents()"); |
---|
| 203 | check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
---|
| 204 | comp[n1] == comp[n8], "Wrong connectedComponents()"); |
---|
| 205 | check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
---|
| 206 | "Wrong connectedComponents()"); |
---|
| 207 | |
---|
| 208 | cutarcs[d.addArc(n3, n1)] = true; |
---|
| 209 | cutarcs[d.addArc(n3, n5)] = true; |
---|
| 210 | cutarcs[d.addArc(n3, n8)] = true; |
---|
| 211 | cutarcs[d.addArc(n8, n6)] = true; |
---|
| 212 | cutarcs[d.addArc(n8, n7)] = true; |
---|
| 213 | |
---|
| 214 | check(!stronglyConnected(d), "This digraph is not strongly connected"); |
---|
| 215 | check(countStronglyConnectedComponents(d) == 3, |
---|
| 216 | "This digraph has 3 strongly connected components"); |
---|
| 217 | Digraph::NodeMap<int> scomp2(d); |
---|
| 218 | check(stronglyConnectedComponents(d, scomp2) == 3, |
---|
| 219 | "This digraph has 3 strongly connected components"); |
---|
| 220 | check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
---|
| 221 | check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
---|
| 222 | scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
---|
| 223 | check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
---|
| 224 | "Wrong stronglyConnectedComponents()"); |
---|
| 225 | Digraph::ArcMap<bool> scut2(d, false); |
---|
| 226 | check(stronglyConnectedCutArcs(d, scut2) == 5, |
---|
| 227 | "This digraph has 5 strongly connected cut arcs."); |
---|
| 228 | for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
---|
| 229 | check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | { |
---|
| 234 | // DAG example for topological sort from the book New Algorithms |
---|
| 235 | // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
---|
| 236 | Digraph d; |
---|
| 237 | Digraph::NodeMap<int> order(d); |
---|
[877] | 238 | |
---|
[649] | 239 | Digraph::Node belt = d.addNode(); |
---|
| 240 | Digraph::Node trousers = d.addNode(); |
---|
| 241 | Digraph::Node necktie = d.addNode(); |
---|
| 242 | Digraph::Node coat = d.addNode(); |
---|
| 243 | Digraph::Node socks = d.addNode(); |
---|
| 244 | Digraph::Node shirt = d.addNode(); |
---|
| 245 | Digraph::Node shoe = d.addNode(); |
---|
| 246 | Digraph::Node watch = d.addNode(); |
---|
| 247 | Digraph::Node pants = d.addNode(); |
---|
| 248 | |
---|
| 249 | d.addArc(socks, shoe); |
---|
| 250 | d.addArc(pants, shoe); |
---|
| 251 | d.addArc(pants, trousers); |
---|
| 252 | d.addArc(trousers, shoe); |
---|
| 253 | d.addArc(trousers, belt); |
---|
| 254 | d.addArc(belt, coat); |
---|
| 255 | d.addArc(shirt, belt); |
---|
| 256 | d.addArc(shirt, necktie); |
---|
| 257 | d.addArc(necktie, coat); |
---|
[877] | 258 | |
---|
[649] | 259 | check(dag(d), "This digraph is DAG."); |
---|
| 260 | topologicalSort(d, order); |
---|
| 261 | for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
---|
| 262 | check(order[d.source(a)] < order[d.target(a)], |
---|
| 263 | "Wrong topologicalSort()"); |
---|
| 264 | } |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | { |
---|
| 268 | ListGraph g; |
---|
| 269 | ListGraph::NodeMap<bool> map(g); |
---|
[877] | 270 | |
---|
[649] | 271 | ListGraph::Node n1 = g.addNode(); |
---|
| 272 | ListGraph::Node n2 = g.addNode(); |
---|
| 273 | ListGraph::Node n3 = g.addNode(); |
---|
| 274 | ListGraph::Node n4 = g.addNode(); |
---|
| 275 | ListGraph::Node n5 = g.addNode(); |
---|
| 276 | ListGraph::Node n6 = g.addNode(); |
---|
| 277 | ListGraph::Node n7 = g.addNode(); |
---|
| 278 | |
---|
| 279 | g.addEdge(n1, n3); |
---|
| 280 | g.addEdge(n1, n4); |
---|
| 281 | g.addEdge(n2, n5); |
---|
| 282 | g.addEdge(n3, n6); |
---|
| 283 | g.addEdge(n4, n6); |
---|
| 284 | g.addEdge(n4, n7); |
---|
| 285 | g.addEdge(n5, n7); |
---|
[877] | 286 | |
---|
[649] | 287 | check(bipartite(g), "This graph is bipartite"); |
---|
| 288 | check(bipartitePartitions(g, map), "This graph is bipartite"); |
---|
[877] | 289 | |
---|
[649] | 290 | check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
---|
| 291 | "Wrong bipartitePartitions()"); |
---|
| 292 | check(map[n3] == map[n4] && map[n3] == map[n5], |
---|
| 293 | "Wrong bipartitePartitions()"); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | return 0; |
---|
| 297 | } |
---|