[9] | 1 | %* graphs.tex *% |
---|
| 2 | |
---|
| 3 | %*********************************************************************** |
---|
| 4 | % This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | % |
---|
| 6 | % Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | % 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | % Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | % E-mail: <mao@gnu.org>. |
---|
| 10 | % |
---|
| 11 | % GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | % under the terms of the GNU General Public License as published by |
---|
| 13 | % the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | % (at your option) any later version. |
---|
| 15 | % |
---|
| 16 | % GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | % License for more details. |
---|
| 20 | % |
---|
| 21 | % You should have received a copy of the GNU General Public License |
---|
| 22 | % along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | %*********************************************************************** |
---|
| 24 | |
---|
| 25 | \documentclass[11pt]{report} |
---|
| 26 | \usepackage{amssymb} |
---|
| 27 | \usepackage[dvipdfm,linktocpage,colorlinks,linkcolor=blue, |
---|
| 28 | urlcolor=blue]{hyperref} |
---|
| 29 | \usepackage[all]{xy} |
---|
| 30 | |
---|
| 31 | \renewcommand\contentsname{\sf\bfseries Contents} |
---|
| 32 | \renewcommand\chaptername{\sf\bfseries Chapter} |
---|
| 33 | \renewcommand\appendixname{\sf\bfseries Appendix} |
---|
| 34 | |
---|
| 35 | \begin{document} |
---|
| 36 | |
---|
| 37 | \thispagestyle{empty} |
---|
| 38 | |
---|
| 39 | \begin{center} |
---|
| 40 | |
---|
| 41 | \vspace*{1in} |
---|
| 42 | |
---|
| 43 | \begin{huge} |
---|
| 44 | \sf\bfseries GNU Linear Programming Kit |
---|
| 45 | \end{huge} |
---|
| 46 | |
---|
| 47 | \vspace{0.5in} |
---|
| 48 | |
---|
| 49 | \begin{LARGE} |
---|
| 50 | \sf Graph and Network Routines |
---|
| 51 | \end{LARGE} |
---|
| 52 | |
---|
| 53 | \vspace{0.5in} |
---|
| 54 | |
---|
| 55 | \begin{LARGE} |
---|
| 56 | \sf for GLPK Version 4.45 |
---|
| 57 | \end{LARGE} |
---|
| 58 | |
---|
| 59 | \vspace{0.5in} |
---|
| 60 | \begin{Large} |
---|
| 61 | \sf (DRAFT, December 2010) |
---|
| 62 | \end{Large} |
---|
| 63 | \end{center} |
---|
| 64 | |
---|
| 65 | \newpage |
---|
| 66 | |
---|
| 67 | \vspace*{1in} |
---|
| 68 | |
---|
| 69 | \vfill |
---|
| 70 | |
---|
| 71 | \noindent |
---|
| 72 | The GLPK package is part of the GNU Project released under the aegis of |
---|
| 73 | GNU. |
---|
| 74 | |
---|
| 75 | \medskip \noindent |
---|
| 76 | Copyright \copyright{} 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, |
---|
| 77 | 2008, 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 78 | Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 79 | |
---|
| 80 | \medskip \noindent |
---|
| 81 | Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA |
---|
| 82 | 02110-1301, USA. |
---|
| 83 | |
---|
| 84 | \medskip \noindent |
---|
| 85 | Permission is granted to make and distribute verbatim copies of this |
---|
| 86 | manual provided the copyright notice and this permission notice are |
---|
| 87 | preserved on all copies. |
---|
| 88 | |
---|
| 89 | \medskip \noindent |
---|
| 90 | Permission is granted to copy and distribute modified versions of this |
---|
| 91 | manual under the conditions for verbatim copying, provided also that the |
---|
| 92 | entire resulting derived work is distributed under the terms of |
---|
| 93 | a permission notice identical to this one. |
---|
| 94 | |
---|
| 95 | \medskip \noindent |
---|
| 96 | Permission is granted to copy and distribute translations of this manual |
---|
| 97 | into another language, under the above conditions for modified versions. |
---|
| 98 | |
---|
| 99 | \tableofcontents |
---|
| 100 | |
---|
| 101 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 102 | |
---|
| 103 | \chapter{Basic Graph API Routines} |
---|
| 104 | |
---|
| 105 | \section{Graph program object} |
---|
| 106 | |
---|
| 107 | In GLPK the base program object used to represent graphs and networks |
---|
| 108 | is a directed graph (digraph). |
---|
| 109 | |
---|
| 110 | Formally, {\it digraph} (or simply, {\it graph}) is a pair $G=(V,A)$, |
---|
| 111 | where $V$ is a set of {\it vertices}, and $A$ is a set |
---|
| 112 | {\it arcs}.\footnote{$A$ may be a multiset.} Each arc $a\in A$ is an |
---|
| 113 | ordered pair of vertices $a=(x,y)$, where $x\in V$ is called {\it tail |
---|
| 114 | vertex} of arc $a$, and $y\in V$ is called its {\it head vertex}. |
---|
| 115 | |
---|
| 116 | Representation of a graph in the program includes three structs defined |
---|
| 117 | by typedef in the header \verb|glpk.h|: |
---|
| 118 | |
---|
| 119 | \medskip |
---|
| 120 | |
---|
| 121 | $\bullet$ \verb|glp_graph|, which represents the graph in a whole, |
---|
| 122 | |
---|
| 123 | $\bullet$ \verb|glp_vertex|, which represents a vertex of the graph, and |
---|
| 124 | |
---|
| 125 | $\bullet$ \verb|glp_arc|, which represents an arc of the graph. |
---|
| 126 | |
---|
| 127 | \medskip |
---|
| 128 | |
---|
| 129 | All these three structs are ``semi-opaque'', i.e. the application |
---|
| 130 | program can directly access their fields through pointers, however, |
---|
| 131 | changing the fields directly is not allowed---all changes should be |
---|
| 132 | performed only with appropriate GLPK API routines. |
---|
| 133 | |
---|
| 134 | \newpage |
---|
| 135 | |
---|
| 136 | \newenvironment{comment} |
---|
| 137 | {\addtolength{\leftskip}{17pt}\noindent} |
---|
| 138 | {\par\addtolength{\leftskip}{-17pt}} |
---|
| 139 | |
---|
| 140 | \noindent |
---|
| 141 | {\bf glp\_graph.} The struct \verb|glp_graph| has the following |
---|
| 142 | fields available to the application program: |
---|
| 143 | |
---|
| 144 | \medskip |
---|
| 145 | |
---|
| 146 | \noindent |
---|
| 147 | \verb|char *name;| |
---|
| 148 | |
---|
| 149 | \begin{comment}Symbolic name assigned to the graph. It is a pointer to |
---|
| 150 | a null terminated character string of length from 1 to 255 characters. |
---|
| 151 | If no name is assigned to the graph, this field contains \verb|NULL|. |
---|
| 152 | \end{comment} |
---|
| 153 | |
---|
| 154 | \medskip |
---|
| 155 | |
---|
| 156 | \noindent |
---|
| 157 | \verb|int nv;| |
---|
| 158 | |
---|
| 159 | \begin{comment}The number of vertices in the graph, $nv\geq 0$. |
---|
| 160 | \end{comment} |
---|
| 161 | |
---|
| 162 | \medskip |
---|
| 163 | |
---|
| 164 | \noindent |
---|
| 165 | \verb|int na;| |
---|
| 166 | |
---|
| 167 | \begin{comment}The number of arcs in the graph, $na\geq 0$. |
---|
| 168 | \end{comment} |
---|
| 169 | |
---|
| 170 | \medskip |
---|
| 171 | |
---|
| 172 | \noindent |
---|
| 173 | \verb|glp_vertex **v;| |
---|
| 174 | |
---|
| 175 | \begin{comment}Pointer to an array containing the list of vertices. |
---|
| 176 | Element $v[0]$ is not used. Element $v[i]$, $1\leq i\leq nv$, is a |
---|
| 177 | pointer to $i$-th vertex of the graph. Note that on adding new vertices |
---|
| 178 | to the graph the field $v$ may be altered due to reallocation. However, |
---|
| 179 | pointers $v[i]$ are not changed while corresponding vertices exist in |
---|
| 180 | the graph. |
---|
| 181 | \end{comment} |
---|
| 182 | |
---|
| 183 | \medskip |
---|
| 184 | |
---|
| 185 | \noindent |
---|
| 186 | \verb|int v_size;| |
---|
| 187 | |
---|
| 188 | \begin{comment}Size of vertex data blocks, in bytes, |
---|
| 189 | $0\leq v\_size\leq 256$. (See also the field \verb|data| in the struct |
---|
| 190 | \verb|glp_vertex|.) |
---|
| 191 | \end{comment} |
---|
| 192 | |
---|
| 193 | \medskip |
---|
| 194 | |
---|
| 195 | \noindent |
---|
| 196 | \verb|int a_size;| |
---|
| 197 | |
---|
| 198 | \begin{comment}Size of arc data blocks, in bytes, |
---|
| 199 | $0\leq v\_size\leq 256$. (See also the field \verb|data| in the struct |
---|
| 200 | \verb|glp_arc|.) |
---|
| 201 | \end{comment} |
---|
| 202 | |
---|
| 203 | \bigskip |
---|
| 204 | |
---|
| 205 | \noindent |
---|
| 206 | {\bf glp\_vertex.} The struct \verb|glp_vertex| has the following |
---|
| 207 | fields available to the application program: |
---|
| 208 | |
---|
| 209 | \medskip |
---|
| 210 | |
---|
| 211 | \noindent |
---|
| 212 | \verb|int i;| |
---|
| 213 | |
---|
| 214 | \begin{comment}Ordinal number of the vertex, $1\leq i\leq nv$. Note |
---|
| 215 | that element $v[i]$ in the struct \verb|glp_graph| points to the vertex, |
---|
| 216 | whose ordinal number is $i$. |
---|
| 217 | \end{comment} |
---|
| 218 | |
---|
| 219 | \medskip |
---|
| 220 | |
---|
| 221 | \noindent |
---|
| 222 | \verb|char *name;| |
---|
| 223 | |
---|
| 224 | \begin{comment}Symbolic name assigned to the vertex. It is a pointer to |
---|
| 225 | a null terminated character string of length from 1 to 255 characters. |
---|
| 226 | If no name is assigned to the vertex, this field contains \verb|NULL|. |
---|
| 227 | \end{comment} |
---|
| 228 | |
---|
| 229 | \medskip |
---|
| 230 | |
---|
| 231 | \noindent |
---|
| 232 | \verb|void *data;| |
---|
| 233 | |
---|
| 234 | \begin{comment}Pointer to a data block associated with the vertex. This |
---|
| 235 | data block is automatically allocated on creating a new vertex and freed |
---|
| 236 | on deleting the vertex. If $v\_size=0$, the block is not allocated, and |
---|
| 237 | this field contains \verb|NULL|. |
---|
| 238 | \end{comment} |
---|
| 239 | |
---|
| 240 | \medskip |
---|
| 241 | |
---|
| 242 | \noindent |
---|
| 243 | \verb|void *temp;| |
---|
| 244 | |
---|
| 245 | \begin{comment}Working pointer, which may be used freely for any |
---|
| 246 | purposes. The application program can change this field directly. |
---|
| 247 | \end{comment} |
---|
| 248 | |
---|
| 249 | \medskip |
---|
| 250 | |
---|
| 251 | \noindent |
---|
| 252 | \verb|glp_arc *in;| |
---|
| 253 | |
---|
| 254 | \begin{comment}Pointer to the (unordered) list of incoming arcs. If the |
---|
| 255 | vertex has no incoming arcs, this field contains \verb|NULL|. |
---|
| 256 | \end{comment} |
---|
| 257 | |
---|
| 258 | \medskip |
---|
| 259 | |
---|
| 260 | \noindent |
---|
| 261 | \verb|glp_arc *out;| |
---|
| 262 | |
---|
| 263 | \begin{comment}Pointer to the (unordered) list of outgoing arcs. If the |
---|
| 264 | vertex has no outgoing arcs, this field contains \verb|NULL|. |
---|
| 265 | \end{comment} |
---|
| 266 | |
---|
| 267 | \bigskip |
---|
| 268 | |
---|
| 269 | \noindent |
---|
| 270 | {\bf glp\_arc.} The struct \verb|glp_arc| has the following fields |
---|
| 271 | available to the application program: |
---|
| 272 | |
---|
| 273 | \medskip |
---|
| 274 | |
---|
| 275 | \noindent |
---|
| 276 | \verb|glp_vertex *tail;| |
---|
| 277 | |
---|
| 278 | \begin{comment}Pointer to a vertex, which is tail endpoint of the arc. |
---|
| 279 | \end{comment} |
---|
| 280 | |
---|
| 281 | \medskip |
---|
| 282 | |
---|
| 283 | \noindent |
---|
| 284 | \verb|glp_vertex *head;| |
---|
| 285 | |
---|
| 286 | \begin{comment}Pointer to a vertex, which is head endpoint of the arc. |
---|
| 287 | \end{comment} |
---|
| 288 | |
---|
| 289 | \medskip |
---|
| 290 | |
---|
| 291 | \noindent |
---|
| 292 | \verb|void *data;| |
---|
| 293 | |
---|
| 294 | \begin{comment}Pointer to a data block associated with the arc. This |
---|
| 295 | data block is automatically allocated on creating a new arc and freed on |
---|
| 296 | deleting the arc. If $v\_size=0$, the block is not allocated, and this |
---|
| 297 | field contains \verb|NULL|. |
---|
| 298 | \end{comment} |
---|
| 299 | |
---|
| 300 | \medskip |
---|
| 301 | |
---|
| 302 | \noindent |
---|
| 303 | \verb|void *temp;| |
---|
| 304 | |
---|
| 305 | \begin{comment}Working pointer, which may be used freely for any |
---|
| 306 | purposes. The application program can change this field directly. |
---|
| 307 | \end{comment} |
---|
| 308 | |
---|
| 309 | \medskip |
---|
| 310 | |
---|
| 311 | \noindent |
---|
| 312 | \verb|glp_arc *t_next;| |
---|
| 313 | |
---|
| 314 | \begin{comment}Pointer to another arc, which has the same tail endpoint |
---|
| 315 | as this one. \verb|NULL| in this field indicates the end of the list of |
---|
| 316 | outgoing arcs. |
---|
| 317 | \end{comment} |
---|
| 318 | |
---|
| 319 | \medskip |
---|
| 320 | |
---|
| 321 | \noindent |
---|
| 322 | \verb|glp_arc *h_next;| |
---|
| 323 | |
---|
| 324 | \begin{comment}Pointer to another arc, which has the same head endpoint |
---|
| 325 | as this one. \verb|NULL| in this field indicates the end of the list of |
---|
| 326 | incoming arcs. |
---|
| 327 | \end{comment} |
---|
| 328 | |
---|
| 329 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 330 | |
---|
| 331 | \newpage |
---|
| 332 | |
---|
| 333 | \section{Graph creating and modifying routines} |
---|
| 334 | |
---|
| 335 | \subsection{glp\_create\_graph---create graph} |
---|
| 336 | |
---|
| 337 | \subsubsection*{Synopsis} |
---|
| 338 | |
---|
| 339 | \begin{verbatim} |
---|
| 340 | glp_graph *glp_create_graph(int v_size, int a_size); |
---|
| 341 | \end{verbatim} |
---|
| 342 | |
---|
| 343 | \subsubsection*{Description} |
---|
| 344 | |
---|
| 345 | The routine \verb|glp_create_graph| creates a new graph, which |
---|
| 346 | initially is\linebreak empty, i.e. has no vertices and arcs. |
---|
| 347 | |
---|
| 348 | The parameter \verb|v_size| specifies the size of vertex data blocks, |
---|
| 349 | in bytes, $0\leq v\_size\leq 256$. |
---|
| 350 | |
---|
| 351 | The parameter \verb|a_size| specifies the size of arc data blocks, in |
---|
| 352 | bytes, $0\leq a\_size\leq 256$. |
---|
| 353 | |
---|
| 354 | \subsubsection*{Returns} |
---|
| 355 | |
---|
| 356 | The routine returns a pointer to the graph created. |
---|
| 357 | |
---|
| 358 | \subsection{glp\_set\_graph\_name---assign (change) graph name} |
---|
| 359 | |
---|
| 360 | \subsubsection*{Synopsis} |
---|
| 361 | |
---|
| 362 | \begin{verbatim} |
---|
| 363 | void glp_set_graph_name(glp_graph *G, const char *name); |
---|
| 364 | \end{verbatim} |
---|
| 365 | |
---|
| 366 | \subsubsection*{Description} |
---|
| 367 | |
---|
| 368 | The routine \verb|glp_set_graph_name| assigns a symbolic name specified |
---|
| 369 | by the character string \verb|name| (1 to 255 chars) to the graph. |
---|
| 370 | |
---|
| 371 | If the parameter \verb|name| is \verb|NULL| or an empty string, the |
---|
| 372 | routine erases the existing symbolic name of the graph. |
---|
| 373 | |
---|
| 374 | \newpage |
---|
| 375 | |
---|
| 376 | \subsection{glp\_add\_vertices---add new vertices to graph} |
---|
| 377 | |
---|
| 378 | \subsubsection*{Synopsis} |
---|
| 379 | |
---|
| 380 | \begin{verbatim} |
---|
| 381 | int glp_add_vertices(glp_graph *G, int nadd); |
---|
| 382 | \end{verbatim} |
---|
| 383 | |
---|
| 384 | \subsubsection*{Description} |
---|
| 385 | |
---|
| 386 | The routine \verb|glp_add_vertices| adds \verb|nadd| vertices to the |
---|
| 387 | specified graph. New vertices are always added to the end of the vertex |
---|
| 388 | list, so ordinal numbers of existing vertices remain unchanged. Note |
---|
| 389 | that this operation may change the field \verb|v| in the struct |
---|
| 390 | \verb|glp_graph| (pointer to the vertex array) due to reallocation. |
---|
| 391 | |
---|
| 392 | Being added each new vertex is isolated, i.e. has no incident arcs. |
---|
| 393 | |
---|
| 394 | If the size of vertex data blocks specified on creating the graph is |
---|
| 395 | non-zero, the routine also allocates a memory block of that size for |
---|
| 396 | each new vertex added, fills it by binary zeros, and stores a pointer to |
---|
| 397 | it in the field \verb|data| of the struct \verb|glp_vertex|. Otherwise, |
---|
| 398 | if the block size is zero, the field \verb|data| is set to \verb|NULL|. |
---|
| 399 | |
---|
| 400 | \subsubsection*{Returns} |
---|
| 401 | |
---|
| 402 | The routine \verb|glp_add_vertices| returns the ordinal number of the |
---|
| 403 | first new vertex added to the graph. |
---|
| 404 | |
---|
| 405 | \subsection{glp\_set\_vertex\_name---assign (change) vertex name} |
---|
| 406 | |
---|
| 407 | \subsubsection*{Synopsis} |
---|
| 408 | |
---|
| 409 | \begin{verbatim} |
---|
| 410 | void glp_set_vertex_name(glp_graph *G, int i, const char *name); |
---|
| 411 | \end{verbatim} |
---|
| 412 | |
---|
| 413 | \subsubsection*{Description} |
---|
| 414 | |
---|
| 415 | The routine \verb|glp_set_vertex_name| assigns a given symbolic name |
---|
| 416 | (1 up to 255 characters) to \verb|i|-th vertex of the specified graph. |
---|
| 417 | |
---|
| 418 | If the parameter \verb|name| is \verb|NULL| or empty string, the |
---|
| 419 | routine erases an existing name of \verb|i|-th vertex. |
---|
| 420 | |
---|
| 421 | \newpage |
---|
| 422 | |
---|
| 423 | \subsection{glp\_add\_arc---add new arc to graph} |
---|
| 424 | |
---|
| 425 | \subsubsection*{Synopsis} |
---|
| 426 | |
---|
| 427 | \begin{verbatim} |
---|
| 428 | glp_arc *glp_add_arc(glp_graph *G, int i, int j); |
---|
| 429 | \end{verbatim} |
---|
| 430 | |
---|
| 431 | \subsubsection*{Description} |
---|
| 432 | |
---|
| 433 | The routine \verb|glp_add_arc| adds one new arc to the specified graph. |
---|
| 434 | |
---|
| 435 | The parameters \verb|i| and \verb|j| specify the ordinal numbers of, |
---|
| 436 | resp., tail and head endpoints (vertices) of the arc. Note that |
---|
| 437 | self-loops and multiple arcs are allowed. |
---|
| 438 | |
---|
| 439 | If the size of arc data blocks specified on creating the graph is |
---|
| 440 | non-zero, the routine also allocates a memory block of that size, fills |
---|
| 441 | it by binary zeros, and stores a pointer to it in the field \verb|data| |
---|
| 442 | of the struct \verb|glp_arc|. Otherwise, if the block size is zero, the |
---|
| 443 | field \verb|data| is set to \verb|NULL|. |
---|
| 444 | |
---|
| 445 | \subsection{glp\_del\_vertices---delete vertices from graph} |
---|
| 446 | |
---|
| 447 | \subsubsection*{Synopsis} |
---|
| 448 | |
---|
| 449 | \begin{verbatim} |
---|
| 450 | void glp_del_vertices(glp_graph *G, int ndel, const int num[]); |
---|
| 451 | \end{verbatim} |
---|
| 452 | |
---|
| 453 | \subsubsection*{Description} |
---|
| 454 | |
---|
| 455 | The routine \verb|glp_del_vertices| deletes vertices along with all |
---|
| 456 | incident arcs from the specified graph. Ordinal numbers of vertices to |
---|
| 457 | be deleted should be placed in locations \verb|num[1]|, \dots, |
---|
| 458 | \verb|num[ndel]|, \verb|ndel| $>0$. |
---|
| 459 | |
---|
| 460 | Note that deleting vertices involves changing ordinal numbers of other |
---|
| 461 | vertices remaining in the graph. New ordinal numbers of the remaining |
---|
| 462 | vertices are assigned under the assumption that the original order of |
---|
| 463 | vertices is not changed. |
---|
| 464 | |
---|
| 465 | \subsection{glp\_del\_arc---delete arc from graph} |
---|
| 466 | |
---|
| 467 | \subsubsection*{Synopsis} |
---|
| 468 | |
---|
| 469 | \begin{verbatim} |
---|
| 470 | void glp_del_arc(glp_graph *G, glp_arc *a); |
---|
| 471 | \end{verbatim} |
---|
| 472 | |
---|
| 473 | \subsubsection*{Description} |
---|
| 474 | |
---|
| 475 | The routine \verb|glp_del_arc| deletes an arc from the specified graph. |
---|
| 476 | The arc to be deleted must exist. |
---|
| 477 | |
---|
| 478 | \subsection{glp\_erase\_graph---erase graph content} |
---|
| 479 | |
---|
| 480 | \subsubsection*{Synopsis} |
---|
| 481 | |
---|
| 482 | \begin{verbatim} |
---|
| 483 | void glp_erase_graph(glp_graph *G, int v_size, int a_size); |
---|
| 484 | \end{verbatim} |
---|
| 485 | |
---|
| 486 | \subsubsection*{Description} |
---|
| 487 | |
---|
| 488 | The routine \verb|glp_erase_graph| erases the content of the specified |
---|
| 489 | graph. The effect of this operation is the same as if the graph would be |
---|
| 490 | deleted with the routine \verb|glp_delete_graph| and then created anew |
---|
| 491 | with the routine \verb|glp_create_graph|, with exception that the handle |
---|
| 492 | (pointer) to the graph remains valid. |
---|
| 493 | |
---|
| 494 | The parameters \verb|v_size| and \verb|a_size| have the same meaning as |
---|
| 495 | for the routine \verb|glp_create_graph|. |
---|
| 496 | |
---|
| 497 | \subsection{glp\_delete\_graph---delete graph} |
---|
| 498 | |
---|
| 499 | \subsubsection*{Synopsis} |
---|
| 500 | |
---|
| 501 | \begin{verbatim} |
---|
| 502 | void glp_delete_graph(glp_graph *G); |
---|
| 503 | \end{verbatim} |
---|
| 504 | |
---|
| 505 | \subsubsection*{Description} |
---|
| 506 | |
---|
| 507 | The routine \verb|glp_delete_graph| deletes the specified graph and |
---|
| 508 | frees all the memory allocated to this program object. |
---|
| 509 | |
---|
| 510 | \newpage |
---|
| 511 | |
---|
| 512 | \section{Graph searching routines} |
---|
| 513 | |
---|
| 514 | \subsection{glp\_create\_v\_index---create vertex name index} |
---|
| 515 | |
---|
| 516 | \subsubsection*{Synopsis} |
---|
| 517 | |
---|
| 518 | \begin{verbatim} |
---|
| 519 | void glp_create_v_index(glp_graph *G); |
---|
| 520 | \end{verbatim} |
---|
| 521 | |
---|
| 522 | \subsubsection*{Description} |
---|
| 523 | |
---|
| 524 | The routine \verb|glp_create_v_index| creates the name index for the |
---|
| 525 | specified graph. The name index is an auxiliary data structure, which |
---|
| 526 | is intended to quickly (i.e. for logarithmic time) find vertices by |
---|
| 527 | their names. |
---|
| 528 | |
---|
| 529 | This routine can be called at any time. If the name index already |
---|
| 530 | exists, the routine does nothing. |
---|
| 531 | |
---|
| 532 | \subsection{glp\_find\_vertex---find vertex by its name} |
---|
| 533 | |
---|
| 534 | \subsubsection*{Synopsis} |
---|
| 535 | |
---|
| 536 | \begin{verbatim} |
---|
| 537 | int glp_find_vertex(glp_graph *G, const char *name); |
---|
| 538 | \end{verbatim} |
---|
| 539 | |
---|
| 540 | \subsubsection*{Returns} |
---|
| 541 | |
---|
| 542 | The routine \verb|glp_find_vertex| returns the ordinal number of |
---|
| 543 | a vertex, which is assigned (by the routine \verb|glp_set_vertex_name|) |
---|
| 544 | the specified symbolic \verb|name|. If no such vertex exists, the |
---|
| 545 | routine returns 0. |
---|
| 546 | |
---|
| 547 | \subsection{glp\_delete\_v\_index---delete vertex name index} |
---|
| 548 | |
---|
| 549 | \subsubsection*{Synopsis} |
---|
| 550 | |
---|
| 551 | \begin{verbatim} |
---|
| 552 | void glp_delete_v_index(glp_graph *G); |
---|
| 553 | \end{verbatim} |
---|
| 554 | |
---|
| 555 | \subsubsection*{Description} |
---|
| 556 | |
---|
| 557 | The routine \verb|glp_delete_v_index| deletes the name index previously |
---|
| 558 | created by the routine \verb|glp_create_v_index| and frees the memory |
---|
| 559 | allocated to this auxiliary data structure. |
---|
| 560 | |
---|
| 561 | This routine can be called at any time. If the name index does not |
---|
| 562 | exist, the routine does nothing. |
---|
| 563 | |
---|
| 564 | \newpage |
---|
| 565 | |
---|
| 566 | \section{Graph reading/writing routines} |
---|
| 567 | |
---|
| 568 | \subsection{glp\_read\_graph---read graph from plain text file} |
---|
| 569 | |
---|
| 570 | \subsubsection*{Synopsis} |
---|
| 571 | |
---|
| 572 | \begin{verbatim} |
---|
| 573 | int glp_read_graph(glp_graph *G, const char *fname); |
---|
| 574 | \end{verbatim} |
---|
| 575 | |
---|
| 576 | \subsubsection*{Description} |
---|
| 577 | |
---|
| 578 | The routine \verb|glp_read_graph| reads a graph from a plain text file, |
---|
| 579 | whose name is specified by the parameter \verb|fname|. Note that before |
---|
| 580 | reading data the current content of the graph object is completely |
---|
| 581 | erased with the routine \verb|glp_erase_graph|. |
---|
| 582 | |
---|
| 583 | For the file format see description of the routine |
---|
| 584 | \verb|glp_write_graph|. |
---|
| 585 | |
---|
| 586 | \subsubsection*{Returns} |
---|
| 587 | |
---|
| 588 | If the operation was successful, the routine returns zero. Otherwise |
---|
| 589 | it prints an error message and returns non-zero. |
---|
| 590 | |
---|
| 591 | \subsection{glp\_write\_graph---write graph to plain text file} |
---|
| 592 | |
---|
| 593 | \subsubsection*{Synopsis} |
---|
| 594 | |
---|
| 595 | \begin{verbatim} |
---|
| 596 | int glp_write_graph(glp_graph *G, const char *fname); |
---|
| 597 | \end{verbatim} |
---|
| 598 | |
---|
| 599 | \subsubsection*{Description} |
---|
| 600 | |
---|
| 601 | The routine \verb|glp_write_graph| writes the graph to a plain text |
---|
| 602 | file, whose name is specified by the parameter \verb|fname|. |
---|
| 603 | |
---|
| 604 | \subsubsection*{Returns} |
---|
| 605 | |
---|
| 606 | If the operation was successful, the routine returns zero. Otherwise |
---|
| 607 | it prints an error message and returns non-zero. |
---|
| 608 | |
---|
| 609 | \subsubsection*{File format} |
---|
| 610 | |
---|
| 611 | The file created by the routine \verb|glp_write_graph| is a plain text |
---|
| 612 | file, which contains the following information: |
---|
| 613 | |
---|
| 614 | \begin{verbatim} |
---|
| 615 | nv na |
---|
| 616 | i[1] j[1] |
---|
| 617 | i[2] j[2] |
---|
| 618 | . . . |
---|
| 619 | i[na] j[na] |
---|
| 620 | \end{verbatim} |
---|
| 621 | |
---|
| 622 | \noindent |
---|
| 623 | where: |
---|
| 624 | |
---|
| 625 | \noindent |
---|
| 626 | \verb|nv| is the number of vertices (nodes); |
---|
| 627 | |
---|
| 628 | \noindent |
---|
| 629 | \verb|na| is the number of arcs; |
---|
| 630 | |
---|
| 631 | \noindent |
---|
| 632 | \verb|i[k]|, $k=1,\dots,na$, is the index of tail vertex of arc $k$; |
---|
| 633 | |
---|
| 634 | \noindent |
---|
| 635 | \verb|j[k]|, $k=1,\dots,na$, is the index of head vertex of arc $k$. |
---|
| 636 | |
---|
| 637 | \subsection{glp\_read\_ccdata---read graph from text file in DIMACS |
---|
| 638 | clique/coloring format} |
---|
| 639 | |
---|
| 640 | \subsubsection*{Synopsis} |
---|
| 641 | |
---|
| 642 | \begin{verbatim} |
---|
| 643 | int glp_read_ccdata(glp_graph *G, int v_wgt, |
---|
| 644 | const char *fname); |
---|
| 645 | \end{verbatim} |
---|
| 646 | |
---|
| 647 | \subsubsection*{Description} |
---|
| 648 | |
---|
| 649 | The routine {\it glp\_read\_ccdata} reads a graph from a text file in |
---|
| 650 | DIMACS clique/coloring format. (Though this format is originally |
---|
| 651 | designed to represent data for the minimal vertex coloring and maximal |
---|
| 652 | clique problems, it may be used to represent general undirected and |
---|
| 653 | directed graphs, because the routine allows reading self-loops and |
---|
| 654 | multiple edges/arcs keeping the order of vertices specified for each |
---|
| 655 | edge/arc of the graph.) |
---|
| 656 | |
---|
| 657 | The parameter $G$ specifies the graph object to be read in. Note that |
---|
| 658 | before reading data the current content of the graph object is |
---|
| 659 | completely erased with the routine {\it glp\_erase\_graph}. |
---|
| 660 | |
---|
| 661 | The parameter {\it v\_wgt} specifies an offset of the field of type |
---|
| 662 | {\bf double} in the vertex data block, to which the routine stores the |
---|
| 663 | vertex weight. If {\it v\_wgt} $<0$, the vertex weights are not stored. |
---|
| 664 | |
---|
| 665 | The character string {\it fname} specifies the name of a text file to |
---|
| 666 | be read in. (If the file name ends with the suffix `\verb|.gz|', the |
---|
| 667 | file is assumed to be compressed, in which case the routine decompresses |
---|
| 668 | it ``on the fly''.) |
---|
| 669 | |
---|
| 670 | \subsubsection*{Returns} |
---|
| 671 | |
---|
| 672 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 673 | it prints an error message and returns non-zero. |
---|
| 674 | |
---|
| 675 | \subsubsection*{DIMACS clique/coloring format\footnote{This material is |
---|
| 676 | based on the paper ``Clique and Coloring Problems Graph Format'', which |
---|
| 677 | is publically available at |
---|
| 678 | {\tt http://dimacs.rutgers.edu/Challenges/}.}} |
---|
| 679 | |
---|
| 680 | The DIMACS input file is a plain ASCII text file. It contains |
---|
| 681 | {\it lines} of several types described below. A line is terminated with |
---|
| 682 | an end-of-line character. Fields in each line are separated by at least |
---|
| 683 | one blank space. Each line begins with a one-character designator to |
---|
| 684 | identify the line type. |
---|
| 685 | |
---|
| 686 | Note that DIMACS requires all numerical quantities to be integers in |
---|
| 687 | the range $[-2^{31},2^{31}-1]$ while GLPK allows the quantities to be |
---|
| 688 | floating-point numbers. |
---|
| 689 | |
---|
| 690 | \paragraph{Comment lines.} Comment lines give human-readable information |
---|
| 691 | about the file and are ignored by programs. Comment lines can appear |
---|
| 692 | anywhere in the file. Each comment line begins with a lower-case |
---|
| 693 | character \verb|c|. |
---|
| 694 | |
---|
| 695 | \begin{verbatim} |
---|
| 696 | c This is a comment line |
---|
| 697 | \end{verbatim} |
---|
| 698 | |
---|
| 699 | \paragraph{Problem line.} There is one problem line per data file. The |
---|
| 700 | problem line must appear before any node or edge descriptor lines. It |
---|
| 701 | has the following format: |
---|
| 702 | |
---|
| 703 | \begin{verbatim} |
---|
| 704 | p edge NODES EDGES |
---|
| 705 | \end{verbatim} |
---|
| 706 | |
---|
| 707 | \noindent |
---|
| 708 | The lower-case letter \verb|p| signifies that this is a problem line. |
---|
| 709 | The four-character problem designator \verb|edge| identifies the file |
---|
| 710 | as containing data for the minimal vertex coloring or maximal clique |
---|
| 711 | problem. The \verb|NODES| field contains an integer value specifying |
---|
| 712 | the number of vertices in the graph. The \verb|EDGES| field contains an |
---|
| 713 | integer value specifying the number of edges (arcs) in the graph. |
---|
| 714 | |
---|
| 715 | \paragraph{Vertex descriptors.} These lines give the weight assigned to |
---|
| 716 | a vertex of the graph. There is one vertex descriptor line for each |
---|
| 717 | vertex, with the following format. Vertices without a descriptor take on |
---|
| 718 | a default value of 1. |
---|
| 719 | |
---|
| 720 | \begin{verbatim} |
---|
| 721 | n ID VALUE |
---|
| 722 | \end{verbatim} |
---|
| 723 | |
---|
| 724 | \noindent |
---|
| 725 | The lower-case character \verb|n| signifies that this is a vertex |
---|
| 726 | descriptor line. The \verb|ID| field gives a vertex identification |
---|
| 727 | number, an integer between 1 and $n$, where $n$ is the number of |
---|
| 728 | vertices in the graph. The \verb|VALUE| field gives a vertex weight, |
---|
| 729 | which can either positive or negative (or zero). |
---|
| 730 | |
---|
| 731 | \paragraph{Edge descriptors.} There is one edge descriptor line for |
---|
| 732 | each edge (arc) of the graph, each with the following format: |
---|
| 733 | |
---|
| 734 | \begin{verbatim} |
---|
| 735 | e I J |
---|
| 736 | \end{verbatim} |
---|
| 737 | |
---|
| 738 | \noindent |
---|
| 739 | The lower-case character \verb|e| signifies that this is an edge |
---|
| 740 | descriptor line. For an edge (arc) $(i,j)$ the fields \verb|I| and |
---|
| 741 | \verb|J| specify its endpoints. |
---|
| 742 | |
---|
| 743 | \paragraph{Example.} The following example of an undirected graph: |
---|
| 744 | |
---|
| 745 | \bigskip |
---|
| 746 | |
---|
| 747 | \noindent\hfil |
---|
| 748 | \xymatrix %@C=32pt |
---|
| 749 | {&{v_1}\ar@{-}[ldd]\ar@{-}[dd]\ar@{-}[rd]\ar@{-}[rr]&&{v_2}\ar@{-}[ld] |
---|
| 750 | \ar@{-}[dd]\ar@{-}[rdd]&\\ |
---|
| 751 | &&{v_7}\ar@{-}[ld]\ar@{-}[rd]&&\\ |
---|
| 752 | {v_6}\ar@{-}[r]\ar@{-}[rdd]&{v_{10}}\ar@{-}[rr]\ar@{-}[rd]\ar@{-}[dd]&& |
---|
| 753 | {v_8}\ar@{-}[ld]\ar@{-}[dd]\ar@{-}[r]&{v_3}\ar@{-}[ldd]\\ |
---|
| 754 | &&{v_9}\ar@{-}[ld]\ar@{-}[rd]&&\\ |
---|
| 755 | &{v_5}\ar@{-}[rr]&&{v_4}&\\ |
---|
| 756 | } |
---|
| 757 | |
---|
| 758 | \bigskip |
---|
| 759 | |
---|
| 760 | \noindent |
---|
| 761 | might be coded in DIMACS clique/coloring format as follows: |
---|
| 762 | |
---|
| 763 | \begin{footnotesize} |
---|
| 764 | \begin{verbatim} |
---|
| 765 | c sample.col |
---|
| 766 | c |
---|
| 767 | c This is an example of the vertex coloring problem data |
---|
| 768 | c in DIMACS format. |
---|
| 769 | c |
---|
| 770 | p edge 10 21 |
---|
| 771 | c |
---|
| 772 | e 1 2 |
---|
| 773 | e 1 6 |
---|
| 774 | e 1 7 |
---|
| 775 | e 1 10 |
---|
| 776 | e 2 3 |
---|
| 777 | e 2 7 |
---|
| 778 | e 2 8 |
---|
| 779 | e 3 4 |
---|
| 780 | e 3 8 |
---|
| 781 | e 4 5 |
---|
| 782 | e 4 8 |
---|
| 783 | e 4 9 |
---|
| 784 | e 5 6 |
---|
| 785 | e 5 9 |
---|
| 786 | e 5 10 |
---|
| 787 | e 6 10 |
---|
| 788 | e 7 8 |
---|
| 789 | e 7 10 |
---|
| 790 | e 8 9 |
---|
| 791 | e 8 10 |
---|
| 792 | e 9 10 |
---|
| 793 | c |
---|
| 794 | c eof |
---|
| 795 | \end{verbatim} |
---|
| 796 | \end{footnotesize} |
---|
| 797 | |
---|
| 798 | \subsection{glp\_write\_ccdata---write graph to text file in DIMACS |
---|
| 799 | clique/coloring format} |
---|
| 800 | |
---|
| 801 | \subsubsection*{Synopsis} |
---|
| 802 | |
---|
| 803 | \begin{verbatim} |
---|
| 804 | int glp_write_ccdata(glp_graph *G, int v_wgt, |
---|
| 805 | const char *fname); |
---|
| 806 | \end{verbatim} |
---|
| 807 | |
---|
| 808 | \subsection*{Description} |
---|
| 809 | |
---|
| 810 | The routine {\it glp\_write\_ccdata} writes the graph object specified |
---|
| 811 | by the parameter $G$ to a text file in DIMACS clique/coloring format. |
---|
| 812 | (Though this format is originally designed to represent data for the |
---|
| 813 | minimal vertex coloring and maximal clique problems, it may be used to |
---|
| 814 | represent general undirected and directed graphs, because the routine |
---|
| 815 | allows writing self-loops and multiple edges/arcs keeping the order of |
---|
| 816 | vertices specified for each edge/arc of the graph.) |
---|
| 817 | |
---|
| 818 | The parameter {\it v\_wgt} specifies an offset of the field of type |
---|
| 819 | {\bf double} in the vertex data block, which contains the vertex weight. |
---|
| 820 | If {\it v\_wgt} $<0$, it is assumed that the weight of each vertex is 1. |
---|
| 821 | |
---|
| 822 | The character string {\it fname} specifies a name of the text file to be |
---|
| 823 | written out. (If the file name ends with suffix `\verb|.gz|', the file |
---|
| 824 | is assumed to be compressed, in which case the routine performs |
---|
| 825 | automatic compression on writing it.) |
---|
| 826 | |
---|
| 827 | \subsubsection*{Returns} |
---|
| 828 | |
---|
| 829 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 830 | it prints an error message and returns non-zero. |
---|
| 831 | |
---|
| 832 | \newpage |
---|
| 833 | |
---|
| 834 | \section{Graph analysis routines} |
---|
| 835 | |
---|
| 836 | \subsection{glp\_weak\_comp---find all weakly connected components of |
---|
| 837 | graph} |
---|
| 838 | |
---|
| 839 | \subsubsection*{Synopsis} |
---|
| 840 | |
---|
| 841 | \begin{verbatim} |
---|
| 842 | int glp_weak_comp(glp_graph *G, int v_num); |
---|
| 843 | \end{verbatim} |
---|
| 844 | |
---|
| 845 | \subsubsection*{Description} |
---|
| 846 | |
---|
| 847 | The routine \verb|glp_weak_comp| finds all weakly connected components |
---|
| 848 | of the specified graph. |
---|
| 849 | |
---|
| 850 | The parameter \verb|v_num| specifies an offset of the field of type |
---|
| 851 | \verb|int| in the vertex data block, to which the routine stores the |
---|
| 852 | number of a weakly connected component containing that vertex. If |
---|
| 853 | \verb|v_num| $<0$, no component numbers are stored. |
---|
| 854 | |
---|
| 855 | The components are numbered in arbitrary order from 1 to \verb|nc|, |
---|
| 856 | where \verb|nc| is the total number of components found, |
---|
| 857 | $0\leq$ \verb|nc| $\leq|V|$. |
---|
| 858 | |
---|
| 859 | \subsubsection*{Returns} |
---|
| 860 | |
---|
| 861 | The routine returns \verb|nc|, the total number of components found. |
---|
| 862 | |
---|
| 863 | \subsection{glp\_strong\_comp---find all strongly connected components |
---|
| 864 | of graph} |
---|
| 865 | |
---|
| 866 | \subsubsection*{Synopsis} |
---|
| 867 | |
---|
| 868 | \begin{verbatim} |
---|
| 869 | int glp_strong_comp(glp_graph *G, int v_num); |
---|
| 870 | \end{verbatim} |
---|
| 871 | |
---|
| 872 | \subsubsection*{Description} |
---|
| 873 | |
---|
| 874 | The routine \verb|glp_strong_comp| finds all strongly connected |
---|
| 875 | components of the specified graph. |
---|
| 876 | |
---|
| 877 | The parameter \verb|v_num| specifies an offset of the field of type |
---|
| 878 | \verb|int| in the vertex data block, to which the routine stores the |
---|
| 879 | number of a strongly connected component containing that vertex. If |
---|
| 880 | \verb|v_num| $<0$, no component numbers are stored. |
---|
| 881 | |
---|
| 882 | The components are numbered in arbitrary order from 1 to \verb|nc|, |
---|
| 883 | where \verb|nc| is the total number of components found, |
---|
| 884 | $0\leq$ \verb|nc| $\leq|V|$. However, the component numbering has the |
---|
| 885 | property that for every arc $(i\rightarrow j)$ in the graph the |
---|
| 886 | condition $num(i)\geq num(j)$ holds. |
---|
| 887 | |
---|
| 888 | \subsubsection*{Returns} |
---|
| 889 | |
---|
| 890 | The routine returns \verb|nc|, the total number of components found. |
---|
| 891 | |
---|
| 892 | \subsubsection*{References} |
---|
| 893 | |
---|
| 894 | I.~S.~Duff, J.~K.~Reid, Algorithm 529: Permutations to block triangular |
---|
| 895 | form, ACM Trans. on Math. Softw. 4 (1978), 189-92. |
---|
| 896 | |
---|
| 897 | \subsubsection*{Example} |
---|
| 898 | |
---|
| 899 | The following program reads a graph from a plain text file |
---|
| 900 | `\verb|graph.txt|' and finds all its strongly connected components. |
---|
| 901 | |
---|
| 902 | \begin{footnotesize} |
---|
| 903 | \begin{verbatim} |
---|
| 904 | #include <stddef.h> |
---|
| 905 | #include <stdio.h> |
---|
| 906 | #include <stdlib.h> |
---|
| 907 | #include <glpk.h> |
---|
| 908 | |
---|
| 909 | typedef struct { int num; } v_data; |
---|
| 910 | |
---|
| 911 | #define vertex(v) ((v_data *)((v)->data)) |
---|
| 912 | |
---|
| 913 | int main(void) |
---|
| 914 | { glp_graph *G; |
---|
| 915 | int i, nc; |
---|
| 916 | G = glp_create_graph(sizeof(v_data), 0); |
---|
| 917 | glp_read_graph(G, "graph.txt"); |
---|
| 918 | nc = glp_strong_comp(G, offsetof(v_data, num)); |
---|
| 919 | printf("nc = %d\n", nc); |
---|
| 920 | for (i = 1; i <= G->nv; i++) |
---|
| 921 | printf("num[%d] = %d\n", i, vertex(G->v[i])->num); |
---|
| 922 | glp_delete_graph(G); |
---|
| 923 | return 0; |
---|
| 924 | } |
---|
| 925 | \end{verbatim} |
---|
| 926 | \end{footnotesize} |
---|
| 927 | |
---|
| 928 | \noindent |
---|
| 929 | If the file `\verb|graph.txt|' contains the graph shown below: |
---|
| 930 | |
---|
| 931 | \bigskip |
---|
| 932 | |
---|
| 933 | \noindent\hfil |
---|
| 934 | \xymatrix |
---|
| 935 | {1\ar[r]&2\ar[r]&3\ar[r]\ar[dd]&4\ar[dd]\\ |
---|
| 936 | 5\ar[u]&6\ar[l]\\ |
---|
| 937 | 7\ar[u]&&8\ar[lu]\ar[ll]\ar[r]&9\ar[r]&10\ar[r]\ar[d]&11\ar[d]\\ |
---|
| 938 | 12\ar[u]\ar[rru]\ar@/_/[rr]&&13\ar[ll]\ar[u]\ar[rr]&&14\ar[lu]&15\ar[l] |
---|
| 939 | \\ |
---|
| 940 | } |
---|
| 941 | |
---|
| 942 | \bigskip\bigskip |
---|
| 943 | |
---|
| 944 | \noindent |
---|
| 945 | the program output may look like follows: |
---|
| 946 | |
---|
| 947 | \begin{footnotesize} |
---|
| 948 | \begin{verbatim} |
---|
| 949 | Reading graph from `graph.txt'... |
---|
| 950 | Graph has 15 vertices and 30 arcs |
---|
| 951 | 31 lines were read |
---|
| 952 | nc = 4 |
---|
| 953 | num[1] = 3 |
---|
| 954 | num[2] = 3 |
---|
| 955 | num[3] = 3 |
---|
| 956 | num[4] = 2 |
---|
| 957 | num[5] = 3 |
---|
| 958 | num[6] = 3 |
---|
| 959 | num[7] = 3 |
---|
| 960 | num[8] = 3 |
---|
| 961 | num[9] = 1 |
---|
| 962 | num[10] = 1 |
---|
| 963 | num[11] = 1 |
---|
| 964 | num[12] = 4 |
---|
| 965 | num[13] = 4 |
---|
| 966 | num[14] = 1 |
---|
| 967 | num[15] = 1 |
---|
| 968 | \end{verbatim} |
---|
| 969 | \end{footnotesize} |
---|
| 970 | |
---|
| 971 | \subsection{glp\_top\_sort---topological sorting of acyclic digraph} |
---|
| 972 | |
---|
| 973 | \subsubsection*{Synopsis} |
---|
| 974 | |
---|
| 975 | \begin{verbatim} |
---|
| 976 | int glp_top_sort(glp_graph *G, int v_num); |
---|
| 977 | \end{verbatim} |
---|
| 978 | |
---|
| 979 | \subsubsection*{Description} |
---|
| 980 | |
---|
| 981 | The routine \verb|glp_top_sort| performs topological sorting of |
---|
| 982 | vertices of the specified acyclic digraph. |
---|
| 983 | |
---|
| 984 | The parameter \verb|v_num| specifies an offset of the field of type |
---|
| 985 | \verb|int| in the vertex data block, to which the routine stores the |
---|
| 986 | vertex number assigned. If \verb|v_num| $<0$, vertex numbers are not |
---|
| 987 | stored. |
---|
| 988 | |
---|
| 989 | The vertices are numbered from 1 to $n$, where $n$ is the total number |
---|
| 990 | of vertices in the graph. The vertex numbering has the property that |
---|
| 991 | for every arc $(i\rightarrow j)$ in the graph the condition |
---|
| 992 | $num(i)<num(j)$ holds. Special case $num(i)=0$ means that vertex $i$ is |
---|
| 993 | not assigned a number, because the graph is {\it not} acyclic. |
---|
| 994 | |
---|
| 995 | \subsubsection*{Returns} |
---|
| 996 | |
---|
| 997 | If the graph is acyclic and therefore all the vertices have been |
---|
| 998 | assigned numbers, the routine \verb|glp_top_sort| returns zero. |
---|
| 999 | Otherwise, if the graph is not acyclic, the routine returns the number |
---|
| 1000 | of vertices which have not been numbered, i.e. for which $num(i)=0$. |
---|
| 1001 | |
---|
| 1002 | \subsubsection*{Example} |
---|
| 1003 | |
---|
| 1004 | The following program reads a digraph from a plain text file |
---|
| 1005 | `\verb|graph.txt|' and performs topological sorting of its vertices. |
---|
| 1006 | |
---|
| 1007 | \begin{footnotesize} |
---|
| 1008 | \begin{verbatim} |
---|
| 1009 | #include <stddef.h> |
---|
| 1010 | #include <stdio.h> |
---|
| 1011 | #include <stdlib.h> |
---|
| 1012 | #include <glpk.h> |
---|
| 1013 | |
---|
| 1014 | typedef struct { int num; } v_data; |
---|
| 1015 | |
---|
| 1016 | #define vertex(v) ((v_data *)((v)->data)) |
---|
| 1017 | |
---|
| 1018 | int main(void) |
---|
| 1019 | { glp_graph *G; |
---|
| 1020 | int i, cnt; |
---|
| 1021 | G = glp_create_graph(sizeof(v_data), 0); |
---|
| 1022 | glp_read_graph(G, "graph.txt"); |
---|
| 1023 | cnt = glp_top_sort(G, offsetof(v_data, num)); |
---|
| 1024 | printf("cnt = %d\n", cnt); |
---|
| 1025 | for (i = 1; i <= G->nv; i++) |
---|
| 1026 | printf("num[%d] = %d\n", i, vertex(G->v[i])->num); |
---|
| 1027 | glp_delete_graph(G); |
---|
| 1028 | return 0; |
---|
| 1029 | } |
---|
| 1030 | \end{verbatim} |
---|
| 1031 | \end{footnotesize} |
---|
| 1032 | |
---|
| 1033 | \noindent |
---|
| 1034 | If the file `\verb|graph.txt|' contains the graph shown below: |
---|
| 1035 | |
---|
| 1036 | \bigskip |
---|
| 1037 | |
---|
| 1038 | \noindent\hfil |
---|
| 1039 | \xymatrix @=20pt |
---|
| 1040 | { |
---|
| 1041 | 1\ar[rrr]&&&2\ar[r]\ar[rddd]&3\ar[rd]&&&&\\ |
---|
| 1042 | &&&4\ar[ru]&&5\ar[r]&6\ar[rd]\ar[dd]&&\\ |
---|
| 1043 | 7\ar[r]&8\ar[r]&9\ar[ruu]\ar[ru]\ar[r]\ar[rd]&10\ar[rr]\ar[rru]&& |
---|
| 1044 | 11\ar[ru]&&12\ar[r]&13\\ |
---|
| 1045 | &&&14\ar[r]&15\ar[rrru]\ar[rr]&&16\ar[rru]\ar[rr]&&17\\ |
---|
| 1046 | } |
---|
| 1047 | |
---|
| 1048 | \bigskip\bigskip |
---|
| 1049 | |
---|
| 1050 | \noindent |
---|
| 1051 | the program output may look like follows: |
---|
| 1052 | |
---|
| 1053 | \begin{footnotesize} |
---|
| 1054 | \begin{verbatim} |
---|
| 1055 | Reading graph from `graph.txt'... |
---|
| 1056 | Graph has 17 vertices and 23 arcs |
---|
| 1057 | 24 lines were read |
---|
| 1058 | cnt = 0 |
---|
| 1059 | num[1] = 8 |
---|
| 1060 | num[2] = 9 |
---|
| 1061 | num[3] = 10 |
---|
| 1062 | num[4] = 4 |
---|
| 1063 | num[5] = 11 |
---|
| 1064 | num[6] = 12 |
---|
| 1065 | num[7] = 1 |
---|
| 1066 | num[8] = 2 |
---|
| 1067 | num[9] = 3 |
---|
| 1068 | num[10] = 5 |
---|
| 1069 | num[11] = 6 |
---|
| 1070 | num[12] = 14 |
---|
| 1071 | num[13] = 16 |
---|
| 1072 | num[14] = 7 |
---|
| 1073 | num[15] = 13 |
---|
| 1074 | num[16] = 15 |
---|
| 1075 | num[17] = 17 |
---|
| 1076 | \end{verbatim} |
---|
| 1077 | \end{footnotesize} |
---|
| 1078 | |
---|
| 1079 | \noindent |
---|
| 1080 | The output corresponds to the following vertex numbering: |
---|
| 1081 | |
---|
| 1082 | \bigskip |
---|
| 1083 | |
---|
| 1084 | \noindent\hfil |
---|
| 1085 | \xymatrix @=20pt |
---|
| 1086 | { |
---|
| 1087 | 8\ar[rrr]&&&9\ar[r]\ar[rddd]&10\ar[rd]&&&&\\ |
---|
| 1088 | &&&4\ar[ru]&&11\ar[r]&12\ar[rd]\ar[dd]&&\\ |
---|
| 1089 | 1\ar[r]&2\ar[r]&3\ar[ruu]\ar[ru]\ar[r]\ar[rd]&5\ar[rr]\ar[rru]&& |
---|
| 1090 | 6\ar[ru]&&14\ar[r]&16\\ |
---|
| 1091 | &&&7\ar[r]&13\ar[rrru]\ar[rr]&&15\ar[rru]\ar[rr]&&17\\ |
---|
| 1092 | } |
---|
| 1093 | |
---|
| 1094 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 1095 | |
---|
| 1096 | \chapter{Network optimization API routines} |
---|
| 1097 | |
---|
| 1098 | \section{Minimum cost flow problem} |
---|
| 1099 | |
---|
| 1100 | \subsection{Background} |
---|
| 1101 | |
---|
| 1102 | The {\it minimum cost flow problem} (MCFP) is stated as follows. Let |
---|
| 1103 | there be given a directed graph (flow network) $G=(V,A)$, where $V$ is |
---|
| 1104 | a set of vertices (nodes), and $A\subseteq V\times V$ is a set of arcs. |
---|
| 1105 | Let for each node $i\in V$ there be given a quantity $b_i$ having the |
---|
| 1106 | following meaning: |
---|
| 1107 | |
---|
| 1108 | if $b_i>0$, then $|b_i|$ is a {\it supply} at node $i$, which shows |
---|
| 1109 | how many flow units are {\it generated} at node $i$ (or, equivalently, |
---|
| 1110 | entering the network through node $i$ from the outside); |
---|
| 1111 | |
---|
| 1112 | if $b_i<0$, then $|b_i|$ is a {\it demand} at node $i$, which shows how |
---|
| 1113 | many flow units are {\it lost} at node $i$ (or, equivalently, leaving |
---|
| 1114 | the network through node $i$ to the outside); |
---|
| 1115 | |
---|
| 1116 | if $b_i=0$, then $i$ is a {\it transshipment} node, at which the flow |
---|
| 1117 | is conserved, i.e. neither generated nor lost. |
---|
| 1118 | |
---|
| 1119 | Let also for each arc $a=(i,j)\in A$ there be given the following three |
---|
| 1120 | quantities: |
---|
| 1121 | |
---|
| 1122 | $l_{ij}$, a (non-negative) lower bound to the flow through arc $(i,j)$; |
---|
| 1123 | |
---|
| 1124 | $u_{ij}$, an upper bound to the flow through arc $(i,j)$, which is the |
---|
| 1125 | {\it arc capacity}; |
---|
| 1126 | |
---|
| 1127 | $c_{ij}$, a per-unit cost of the flow through arc $(i,j)$. |
---|
| 1128 | |
---|
| 1129 | The problem is to find flows $x_{ij}$ through every arc of the network, |
---|
| 1130 | which satisfy the specified bounds and the conservation constraints at |
---|
| 1131 | all nodes, and minimize the total flow cost. Here the conservation |
---|
| 1132 | constraint at a node means that the total flow entering this node |
---|
| 1133 | through its incoming arcs plus the supply at this node must be equal to |
---|
| 1134 | the total flow leaving this node through its outgoing arcs plus the |
---|
| 1135 | demand at this node. |
---|
| 1136 | |
---|
| 1137 | An example of the minimum cost flow problem is shown on Fig.~1. |
---|
| 1138 | |
---|
| 1139 | \bigskip |
---|
| 1140 | |
---|
| 1141 | \noindent\hfil |
---|
| 1142 | \xymatrix @C=48pt |
---|
| 1143 | {_{20}\ar@{~>}[d]& |
---|
| 1144 | v_2\ar[r]|{_{0,10,\$2}}\ar[dd]|{_{0,9,\$3}}& |
---|
| 1145 | v_3\ar[dd]|{_{2,12,\$1}}\ar[r]|{_{0,18,\$0}}& |
---|
| 1146 | v_8\ar[rd]|{_{0,20,\$9}}&\\ |
---|
| 1147 | v_1\ar[ru]|{_{0,14,\$0}}\ar[rd]|{_{0,23,\$0}}&&& |
---|
| 1148 | v_6\ar[d]|{_{0,7,\$0}}\ar[u]|{_{4,8,\$0}}& |
---|
| 1149 | v_9\ar@{~>}[d]\\ |
---|
| 1150 | &v_4\ar[r]|{_{0,26,\$0}}& |
---|
| 1151 | v_5\ar[luu]|{_{0,11,\$1}}\ar[ru]|{_{0,25,\$5}}\ar[r]|{_{0,4,\$7}}& |
---|
| 1152 | v_7\ar[ru]|{_{0,15,\$3}}&_{20}\\ |
---|
| 1153 | } |
---|
| 1154 | |
---|
| 1155 | \medskip |
---|
| 1156 | |
---|
| 1157 | \noindent\hfil |
---|
| 1158 | \begin{tabular}{ccc} |
---|
| 1159 | \xymatrix @C=48pt{v_i\ar[r]|{\ l,u,\$c\ }&v_j\\}& |
---|
| 1160 | \xymatrix{\hbox{\footnotesize supply}\ar@{~>}[r]&v_i\\}& |
---|
| 1161 | \xymatrix{v_i\ar@{~>}[r]&\hbox{\footnotesize demand}\\}\\ |
---|
| 1162 | \end{tabular} |
---|
| 1163 | |
---|
| 1164 | \bigskip |
---|
| 1165 | |
---|
| 1166 | \noindent\hfil |
---|
| 1167 | Fig.~1. An example of the minimum cost flow problem. |
---|
| 1168 | |
---|
| 1169 | \bigskip |
---|
| 1170 | |
---|
| 1171 | The minimum cost flow problem can be naturally formulated as the |
---|
| 1172 | following LP problem: |
---|
| 1173 | |
---|
| 1174 | \medskip |
---|
| 1175 | |
---|
| 1176 | \noindent |
---|
| 1177 | \hspace{.5in}minimize |
---|
| 1178 | $$z=\sum_{(i,j)\in A}c_{ij}x_{ij}\eqno(1)$$ |
---|
| 1179 | \hspace{.5in}subject to |
---|
| 1180 | $$\sum_{(i,j)\in A}x_{ij}-\sum_{(j,i)\in A}x_{ji}=b_i\ \ \ \hbox |
---|
| 1181 | {for all}\ i\in V\eqno(2)$$ |
---|
| 1182 | $$l_{ij}\leq x_{ij}\leq u_{ij}\ \ \ \hbox{for all}\ (i,j)\in A |
---|
| 1183 | \eqno(3)$$ |
---|
| 1184 | |
---|
| 1185 | \newpage |
---|
| 1186 | |
---|
| 1187 | \subsection{glp\_read\_mincost---read minimum cost flow problem\\data |
---|
| 1188 | in DIMACS format} |
---|
| 1189 | |
---|
| 1190 | \subsubsection*{Synopsis} |
---|
| 1191 | |
---|
| 1192 | \begin{verbatim} |
---|
| 1193 | int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, |
---|
| 1194 | int a_cap, int a_cost, const char *fname); |
---|
| 1195 | \end{verbatim} |
---|
| 1196 | |
---|
| 1197 | \subsubsection*{Description} |
---|
| 1198 | |
---|
| 1199 | The routine \verb|glp_read_mincost| reads the minimum cost flow problem |
---|
| 1200 | data from a text file in DIMACS format. |
---|
| 1201 | |
---|
| 1202 | The parameter \verb|G| specifies the graph object, to which the problem |
---|
| 1203 | data have to be stored. Note that before reading data the current |
---|
| 1204 | content of the graph object is completely erased with the routine |
---|
| 1205 | \verb|glp_erase_graph|. |
---|
| 1206 | |
---|
| 1207 | The parameter \verb|v_rhs| specifies an offset of the field of type |
---|
| 1208 | \verb|double| in the vertex data block, to which the routine stores |
---|
| 1209 | $b_i$, the supply/demand value. If \verb|v_rhs| $<0$, the value is not |
---|
| 1210 | stored. |
---|
| 1211 | |
---|
| 1212 | The parameter \verb|a_low| specifies an offset of the field of type |
---|
| 1213 | \verb|double| in the arc data block, to which the routine stores |
---|
| 1214 | $l_{ij}$, the lower bound to the arc flow. If \verb|a_low| $<0$, the |
---|
| 1215 | lower bound is not stored. |
---|
| 1216 | |
---|
| 1217 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 1218 | \verb|double| in the arc data block, to which the routine stores |
---|
| 1219 | $u_{ij}$, the upper bound to the arc flow (the arc capacity). If |
---|
| 1220 | \verb|a_cap| $<0$, the upper bound is not stored. |
---|
| 1221 | |
---|
| 1222 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 1223 | \verb|double| in the arc data block, to which the routine stores |
---|
| 1224 | $c_{ij}$, the per-unit cost of the arc flow. If \verb|a_cost| $<0$, the |
---|
| 1225 | cost is not stored. |
---|
| 1226 | |
---|
| 1227 | The character string \verb|fname| specifies the name of a text file to |
---|
| 1228 | be read in. (If the file name name ends with the suffix `\verb|.gz|', |
---|
| 1229 | the file is assumed to be compressed, in which case the routine |
---|
| 1230 | decompresses it ``on the fly''.) |
---|
| 1231 | |
---|
| 1232 | \subsubsection*{Returns} |
---|
| 1233 | |
---|
| 1234 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 1235 | it prints an error message and returns non-zero. |
---|
| 1236 | |
---|
| 1237 | \newpage |
---|
| 1238 | |
---|
| 1239 | \subsubsection*{Example} |
---|
| 1240 | |
---|
| 1241 | \begin{footnotesize} |
---|
| 1242 | \begin{verbatim} |
---|
| 1243 | typedef struct |
---|
| 1244 | { /* vertex data block */ |
---|
| 1245 | ... |
---|
| 1246 | double rhs; |
---|
| 1247 | ... |
---|
| 1248 | } v_data; |
---|
| 1249 | |
---|
| 1250 | typedef struct |
---|
| 1251 | { /* arc data block */ |
---|
| 1252 | ... |
---|
| 1253 | double low, cap, cost; |
---|
| 1254 | ... |
---|
| 1255 | } a_data; |
---|
| 1256 | |
---|
| 1257 | int main(void) |
---|
| 1258 | { glp_graph *G; |
---|
| 1259 | int ret; |
---|
| 1260 | G = glp_create_graph(sizeof(v_data), sizeof(a_data)); |
---|
| 1261 | ret = glp_read_mincost(G, offsetof(v_data, rhs), |
---|
| 1262 | offsetof(a_data, low), offsetof(a_data, cap), |
---|
| 1263 | offsetof(a_data, cost), "sample.min"); |
---|
| 1264 | if (ret != 0) goto ... |
---|
| 1265 | ... |
---|
| 1266 | } |
---|
| 1267 | \end{verbatim} |
---|
| 1268 | \end{footnotesize} |
---|
| 1269 | |
---|
| 1270 | \subsubsection*{DIMACS minimum cost flow problem format\footnote{This |
---|
| 1271 | material is based on the paper ``The First DIMACS International |
---|
| 1272 | Algorithm Implementation Challenge: Problem Definitions and |
---|
| 1273 | Specifications'', which is publically available at |
---|
| 1274 | {\tt http://dimacs.rutgers.edu/Challenges/}.}} |
---|
| 1275 | \label{subsecmincost} |
---|
| 1276 | |
---|
| 1277 | The DIMACS input file is a plain ASCII text file. It contains |
---|
| 1278 | {\it lines} of several types described below. A line is terminated with |
---|
| 1279 | an end-of-line character. Fields in each line are separated by at least |
---|
| 1280 | one blank space. Each line begins with a one-character designator to |
---|
| 1281 | identify the line type. |
---|
| 1282 | |
---|
| 1283 | Note that DIMACS requires all numerical quantities to be integers in |
---|
| 1284 | the range $[-2^{31},\ 2^{31}-1]$ while GLPK allows the quantities to be |
---|
| 1285 | floating-point numbers. |
---|
| 1286 | |
---|
| 1287 | \newpage |
---|
| 1288 | |
---|
| 1289 | \paragraph{Comment lines.} Comment lines give human-readable information |
---|
| 1290 | about the file and are ignored by programs. Comment lines can appear |
---|
| 1291 | anywhere in the file. Each comment line begins with a lower-case |
---|
| 1292 | character \verb|c|. |
---|
| 1293 | |
---|
| 1294 | \begin{verbatim} |
---|
| 1295 | c This is a comment line |
---|
| 1296 | \end{verbatim} |
---|
| 1297 | |
---|
| 1298 | \paragraph{Problem line.} There is one problem line per data file. The |
---|
| 1299 | problem line must appear before any node or arc descriptor lines. It has |
---|
| 1300 | the following format: |
---|
| 1301 | |
---|
| 1302 | \begin{verbatim} |
---|
| 1303 | p min NODES ARCS |
---|
| 1304 | \end{verbatim} |
---|
| 1305 | |
---|
| 1306 | \noindent |
---|
| 1307 | The lower-case character \verb|p| signifies that this is a problem line. |
---|
| 1308 | The three-character problem designator \verb|min| identifies the file as |
---|
| 1309 | containing specification information for the minimum cost flow problem. |
---|
| 1310 | The \verb|NODES| field contains an integer value specifying the number |
---|
| 1311 | of nodes in the network. The \verb|ARCS| field contains an integer value |
---|
| 1312 | specifying the number of arcs in the network. |
---|
| 1313 | |
---|
| 1314 | \paragraph{Node descriptors.} All node descriptor lines must appear |
---|
| 1315 | before all arc descriptor lines. The node descriptor lines describe |
---|
| 1316 | supply and demand nodes, but not transshipment nodes. That is, only |
---|
| 1317 | nodes with non-zero node supply/demand values appear. There is one node |
---|
| 1318 | descriptor line for each such node, with the following format: |
---|
| 1319 | |
---|
| 1320 | \begin{verbatim} |
---|
| 1321 | n ID FLOW |
---|
| 1322 | \end{verbatim} |
---|
| 1323 | |
---|
| 1324 | \noindent |
---|
| 1325 | The lower-case character \verb|n| signifies that this is a node |
---|
| 1326 | descriptor line. The \verb|ID| field gives a node identification number, |
---|
| 1327 | an integer between 1 and \verb|NODES|. The \verb|FLOW| field gives the |
---|
| 1328 | amount of supply (if positive) or demand (if negative) at node |
---|
| 1329 | \verb|ID|. |
---|
| 1330 | |
---|
| 1331 | \paragraph{Arc descriptors.} There is one arc descriptor line for each |
---|
| 1332 | arc in the network. Arc descriptor lines are of the following format: |
---|
| 1333 | |
---|
| 1334 | \begin{verbatim} |
---|
| 1335 | a SRC DST LOW CAP COST |
---|
| 1336 | \end{verbatim} |
---|
| 1337 | |
---|
| 1338 | \noindent |
---|
| 1339 | The lower-case character \verb|a| signifies that this is an arc |
---|
| 1340 | descriptor line. For a directed arc $(i,j)$ the \verb|SRC| field gives |
---|
| 1341 | the identification number $i$ for the tail endpoint, and the \verb|DST| |
---|
| 1342 | field gives the identification number $j$ for the head endpoint. |
---|
| 1343 | Identification numbers are integers between 1 and \verb|NODES|. The |
---|
| 1344 | \verb|LOW| field specifies the minimum amount of flow that can be sent |
---|
| 1345 | along arc $(i,j)$, and the \verb|CAP| field gives the maximum amount of |
---|
| 1346 | flow that can be sent along arc $(i,j)$ in a feasible flow. The |
---|
| 1347 | \verb|COST| field contains the per-unit cost of flow sent along arc |
---|
| 1348 | $(i,j)$. |
---|
| 1349 | |
---|
| 1350 | \paragraph{Example.} Below here is an example of the data file in |
---|
| 1351 | DIMACS format corresponding to the minimum cost flow problem shown on |
---|
| 1352 | Fig~1. |
---|
| 1353 | |
---|
| 1354 | \begin{footnotesize} |
---|
| 1355 | \begin{verbatim} |
---|
| 1356 | c sample.min |
---|
| 1357 | c |
---|
| 1358 | c This is an example of the minimum cost flow problem data |
---|
| 1359 | c in DIMACS format. |
---|
| 1360 | c |
---|
| 1361 | p min 9 14 |
---|
| 1362 | c |
---|
| 1363 | n 1 20 |
---|
| 1364 | n 9 -20 |
---|
| 1365 | c |
---|
| 1366 | a 1 2 0 14 0 |
---|
| 1367 | a 1 4 0 23 0 |
---|
| 1368 | a 2 3 0 10 2 |
---|
| 1369 | a 2 4 0 9 3 |
---|
| 1370 | a 3 5 2 12 1 |
---|
| 1371 | a 3 8 0 18 0 |
---|
| 1372 | a 4 5 0 26 0 |
---|
| 1373 | a 5 2 0 11 1 |
---|
| 1374 | a 5 6 0 25 5 |
---|
| 1375 | a 5 7 0 4 7 |
---|
| 1376 | a 6 7 0 7 0 |
---|
| 1377 | a 6 8 4 8 0 |
---|
| 1378 | a 7 9 0 15 3 |
---|
| 1379 | a 8 9 0 20 9 |
---|
| 1380 | c |
---|
| 1381 | c eof |
---|
| 1382 | \end{verbatim} |
---|
| 1383 | \end{footnotesize} |
---|
| 1384 | |
---|
| 1385 | \newpage |
---|
| 1386 | |
---|
| 1387 | \subsection{glp\_write\_mincost---write minimum cost flow problem\\data |
---|
| 1388 | in DIMACS format} |
---|
| 1389 | |
---|
| 1390 | \subsubsection*{Synopsis} |
---|
| 1391 | |
---|
| 1392 | \begin{verbatim} |
---|
| 1393 | int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, |
---|
| 1394 | int a_cap, int a_cost, const char *fname); |
---|
| 1395 | \end{verbatim} |
---|
| 1396 | |
---|
| 1397 | \subsubsection*{Description} |
---|
| 1398 | |
---|
| 1399 | The routine \verb|glp_write_mincost| writes the minimum cost flow |
---|
| 1400 | problem data to a text file in DIMACS format. |
---|
| 1401 | |
---|
| 1402 | The parameter \verb|G| is the graph (network) program object, which |
---|
| 1403 | specifies the minimum cost flow problem instance. |
---|
| 1404 | |
---|
| 1405 | The parameter \verb|v_rhs| specifies an offset of the field of type |
---|
| 1406 | \verb|double| in the vertex data block, which contains $b_i$, the |
---|
| 1407 | supply/demand value. If \verb|v_rhs| $<0$, it is assumed that $b_i=0$ |
---|
| 1408 | for all nodes. |
---|
| 1409 | |
---|
| 1410 | The parameter \verb|a_low| specifies an offset of the field of type |
---|
| 1411 | \verb|double| in the arc data block, which contains $l_{ij}$, the lower |
---|
| 1412 | bound to the arc flow. If \verb|a_low| $<0$, it is assumed that |
---|
| 1413 | $l_{ij}=0$ for all arcs. |
---|
| 1414 | |
---|
| 1415 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 1416 | \verb|double| in the arc data block, which contains $u_{ij}$, the upper |
---|
| 1417 | bound to the arc flow (the arc capacity). If the upper bound is |
---|
| 1418 | specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. |
---|
| 1419 | the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that |
---|
| 1420 | $u_{ij}=1$ for all arcs. |
---|
| 1421 | |
---|
| 1422 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 1423 | \verb|double| in the arc data block, which contains $c_{ij}$, the |
---|
| 1424 | per-unit cost of the arc flow. If \verb|a_cost| $<0$, it is assumed that |
---|
| 1425 | $c_{ij}=0$ for all arcs. |
---|
| 1426 | |
---|
| 1427 | The character string \verb|fname| specifies a name of the text file to |
---|
| 1428 | be written out. (If the file name ends with suffix `\verb|.gz|', the |
---|
| 1429 | file is assumed to be compressed, in which case the routine performs |
---|
| 1430 | automatic compression on writing it.) |
---|
| 1431 | |
---|
| 1432 | \subsubsection*{Returns} |
---|
| 1433 | |
---|
| 1434 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 1435 | it prints an error message and returns non-zero. |
---|
| 1436 | |
---|
| 1437 | \newpage |
---|
| 1438 | |
---|
| 1439 | \subsection{glp\_mincost\_lp---convert minimum cost flow problem\\to LP} |
---|
| 1440 | |
---|
| 1441 | \subsubsection*{Synopsis} |
---|
| 1442 | |
---|
| 1443 | \begin{verbatim} |
---|
| 1444 | void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names, |
---|
| 1445 | int v_rhs, int a_low, int a_cap, int a_cost); |
---|
| 1446 | \end{verbatim} |
---|
| 1447 | |
---|
| 1448 | \subsubsection*{Description} |
---|
| 1449 | |
---|
| 1450 | The routine \verb|glp_mincost_lp| builds LP problem (1)---(3), which |
---|
| 1451 | corresponds to the specified minimum cost flow problem. |
---|
| 1452 | |
---|
| 1453 | The parameter \verb|lp| is the resultant LP problem object to be built. |
---|
| 1454 | Note that on entry its current content is erased with the routine |
---|
| 1455 | \verb|glp_erase_prob|. |
---|
| 1456 | |
---|
| 1457 | The parameter \verb|G| is the graph (network) program object, which |
---|
| 1458 | specifies the minimum cost flow problem instance. |
---|
| 1459 | |
---|
| 1460 | The parameter \verb|names| is a flag. If it is \verb|GLP_ON|, the |
---|
| 1461 | routine uses symbolic names of the graph object components to assign |
---|
| 1462 | symbolic names to the LP problem object components. If the flag is |
---|
| 1463 | \verb|GLP_OFF|, no symbolic names are assigned. |
---|
| 1464 | |
---|
| 1465 | The parameter \verb|v_rhs| specifies an offset of the field of type |
---|
| 1466 | \verb|double| in the vertex data block, which contains $b_i$, the |
---|
| 1467 | supply/demand value. If \verb|v_rhs| $<0$, it is assumed that $b_i=0$ |
---|
| 1468 | for all nodes. |
---|
| 1469 | |
---|
| 1470 | The parameter \verb|a_low| specifies an offset of the field of type |
---|
| 1471 | \verb|double| in the arc data block, which contains $l_{ij}$, the lower |
---|
| 1472 | bound to the arc flow. If \verb|a_low| $<0$, it is assumed that |
---|
| 1473 | $l_{ij}=0$ for all arcs. |
---|
| 1474 | |
---|
| 1475 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 1476 | \verb|double| in the arc data block, which contains $u_{ij}$, the upper |
---|
| 1477 | bound to the arc flow (the arc capacity). If the upper bound is |
---|
| 1478 | specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. |
---|
| 1479 | the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that |
---|
| 1480 | $u_{ij}=1$ for all arcs. |
---|
| 1481 | |
---|
| 1482 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 1483 | \verb|double| in the arc data block, which contains $c_{ij}$, the |
---|
| 1484 | per-unit cost of the arc flow. If \verb|a_cost| $<0$, it is assumed that |
---|
| 1485 | $c_{ij}=0$ for all arcs. |
---|
| 1486 | |
---|
| 1487 | \subsubsection*{Example} |
---|
| 1488 | |
---|
| 1489 | The example program below reads the minimum cost problem instance in |
---|
| 1490 | DIMACS format from file `\verb|sample.min|', converts the instance to |
---|
| 1491 | LP, and then writes the resultant LP in CPLEX format to file |
---|
| 1492 | `\verb|mincost.lp|'. |
---|
| 1493 | |
---|
| 1494 | \newpage |
---|
| 1495 | |
---|
| 1496 | \begin{footnotesize} |
---|
| 1497 | \begin{verbatim} |
---|
| 1498 | #include <stddef.h> |
---|
| 1499 | #include <glpk.h> |
---|
| 1500 | |
---|
| 1501 | typedef struct { double rhs; } v_data; |
---|
| 1502 | typedef struct { double low, cap, cost; } a_data; |
---|
| 1503 | |
---|
| 1504 | int main(void) |
---|
| 1505 | { glp_graph *G; |
---|
| 1506 | glp_prob *lp; |
---|
| 1507 | G = glp_create_graph(sizeof(v_data), sizeof(a_data)); |
---|
| 1508 | glp_read_mincost(G, offsetof(v_data, rhs), |
---|
| 1509 | offsetof(a_data, low), offsetof(a_data, cap), |
---|
| 1510 | offsetof(a_data, cost), "sample.min"); |
---|
| 1511 | lp = glp_create_prob(); |
---|
| 1512 | glp_mincost_lp(lp, G, GLP_ON, offsetof(v_data, rhs), |
---|
| 1513 | offsetof(a_data, low), offsetof(a_data, cap), |
---|
| 1514 | offsetof(a_data, cost)); |
---|
| 1515 | glp_delete_graph(G); |
---|
| 1516 | glp_write_lp(lp, NULL, "mincost.lp"); |
---|
| 1517 | glp_delete_prob(lp); |
---|
| 1518 | return 0; |
---|
| 1519 | } |
---|
| 1520 | \end{verbatim} |
---|
| 1521 | \end{footnotesize} |
---|
| 1522 | |
---|
| 1523 | If `\verb|sample.min|' is the example data file from the subsection |
---|
| 1524 | describing the routine \verb|glp_read_mincost|, file `\verb|mincost.lp|' |
---|
| 1525 | may look like follows: |
---|
| 1526 | |
---|
| 1527 | \begin{footnotesize} |
---|
| 1528 | \begin{verbatim} |
---|
| 1529 | Minimize |
---|
| 1530 | obj: + 3 x(2,4) + 2 x(2,3) + x(3,5) + 7 x(5,7) + 5 x(5,6) |
---|
| 1531 | + x(5,2) + 3 x(7,9) + 9 x(8,9) |
---|
| 1532 | |
---|
| 1533 | Subject To |
---|
| 1534 | r_1: + x(1,2) + x(1,4) = 20 |
---|
| 1535 | r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0 |
---|
| 1536 | r_3: + x(3,5) + x(3,8) - x(2,3) = 0 |
---|
| 1537 | r_4: + x(4,5) - x(2,4) - x(1,4) = 0 |
---|
| 1538 | r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0 |
---|
| 1539 | r_6: + x(6,7) + x(6,8) - x(5,6) = 0 |
---|
| 1540 | r_7: + x(7,9) - x(6,7) - x(5,7) = 0 |
---|
| 1541 | r_8: + x(8,9) - x(6,8) - x(3,8) = 0 |
---|
| 1542 | r_9: - x(8,9) - x(7,9) = -20 |
---|
| 1543 | |
---|
| 1544 | Bounds |
---|
| 1545 | 0 <= x(1,4) <= 23 |
---|
| 1546 | 0 <= x(1,2) <= 14 |
---|
| 1547 | 0 <= x(2,4) <= 9 |
---|
| 1548 | 0 <= x(2,3) <= 10 |
---|
| 1549 | 0 <= x(3,8) <= 18 |
---|
| 1550 | 2 <= x(3,5) <= 12 |
---|
| 1551 | 0 <= x(4,5) <= 26 |
---|
| 1552 | 0 <= x(5,7) <= 4 |
---|
| 1553 | 0 <= x(5,6) <= 25 |
---|
| 1554 | 0 <= x(5,2) <= 11 |
---|
| 1555 | 4 <= x(6,8) <= 8 |
---|
| 1556 | 0 <= x(6,7) <= 7 |
---|
| 1557 | 0 <= x(7,9) <= 15 |
---|
| 1558 | 0 <= x(8,9) <= 20 |
---|
| 1559 | |
---|
| 1560 | End |
---|
| 1561 | \end{verbatim} |
---|
| 1562 | \end{footnotesize} |
---|
| 1563 | |
---|
| 1564 | \subsection{glp\_mincost\_okalg---solve minimum cost flow problem with |
---|
| 1565 | out-of-kilter algorithm} |
---|
| 1566 | |
---|
| 1567 | \subsubsection*{Synopsis} |
---|
| 1568 | |
---|
| 1569 | \begin{verbatim} |
---|
| 1570 | int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, |
---|
| 1571 | int a_cap, int a_cost, double *sol, int a_x, int v_pi); |
---|
| 1572 | \end{verbatim} |
---|
| 1573 | |
---|
| 1574 | \subsubsection*{Description} |
---|
| 1575 | |
---|
| 1576 | The routine \verb|glp_mincost_okalg| finds optimal solution to the |
---|
| 1577 | minimum cost flow problem with the out-of-kilter |
---|
| 1578 | algorithm.\footnote{GLPK implementation of the out-of-kilter algorithm |
---|
| 1579 | is based on the following book: L.~R.~Ford,~Jr., and D.~R.~Fulkerson, |
---|
| 1580 | ``Flows in Networks,'' The RAND Corp., Report R-375-PR (August 1962), |
---|
| 1581 | Chap. III ``Minimal Cost Flow Problems,'' pp.~113-26.} Note that this |
---|
| 1582 | routine requires all the problem data to be integer-valued. |
---|
| 1583 | |
---|
| 1584 | The parameter \verb|G| is a graph (network) program object which |
---|
| 1585 | specifies the minimum cost flow problem instance to be solved. |
---|
| 1586 | |
---|
| 1587 | The parameter \verb|v_rhs| specifies an offset of the field of type |
---|
| 1588 | \verb|double| in the vertex data block, which contains $b_i$, the |
---|
| 1589 | supply/demand value. This value must be integer in the range |
---|
| 1590 | [$-$\verb|INT_MAX|, $+$\verb|INT_MAX|]. If \verb|v_rhs| $<0$, it is |
---|
| 1591 | assumed that $b_i=0$ for all nodes. |
---|
| 1592 | |
---|
| 1593 | The parameter \verb|a_low| specifies an offset of the field of type |
---|
| 1594 | \verb|double| in the arc data block, which contains $l_{ij}$, the lower |
---|
| 1595 | bound to the arc flow. This bound must be integer in the range |
---|
| 1596 | [$0$, \verb|INT_MAX|]. If \verb|a_low| $<0$, it is assumed that |
---|
| 1597 | $l_{ij}=0$ for all arcs. |
---|
| 1598 | |
---|
| 1599 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 1600 | \verb|double| in the arc data block, which contains $u_{ij}$, the upper |
---|
| 1601 | bound to the arc flow (the arc capacity). This bound must be integer in |
---|
| 1602 | the range [$l_{ij}$, \verb|INT_MAX|]. If \verb|a_cap| $<0$, it is |
---|
| 1603 | assumed that $u_{ij}=1$ for all arcs. |
---|
| 1604 | |
---|
| 1605 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 1606 | \verb|double| in the arc data block, which contains $c_{ij}$, the |
---|
| 1607 | per-unit cost of the arc flow. This value must be integer in the range |
---|
| 1608 | [$-$\verb|INT_MAX|, $+$\verb|INT_MAX|]. If \verb|a_cost| $<0$, it is |
---|
| 1609 | assumed that $c_{ij}=0$ for all arcs. |
---|
| 1610 | |
---|
| 1611 | The parameter \verb|sol| specifies a location, to which the routine |
---|
| 1612 | stores the objective value (that is, the total cost) found. If |
---|
| 1613 | \verb|sol| is NULL, the objective value is not stored. |
---|
| 1614 | |
---|
| 1615 | The parameter \verb|a_x| specifies an offset of the field of type |
---|
| 1616 | \verb|double| in the arc data block, to which the routine stores |
---|
| 1617 | $x_{ij}$, the arc flow found. If \verb|a_x| $<0$, the arc flow value is |
---|
| 1618 | not stored. |
---|
| 1619 | |
---|
| 1620 | The parameter \verb|v_pi| specifies an offset of the field of type |
---|
| 1621 | \verb|double| in the vertex data block, to which the routine stores |
---|
| 1622 | $\pi_i$, the node potential, which is the Lagrange multiplier for the |
---|
| 1623 | corresponding flow conservation equality constraint (see (2) in |
---|
| 1624 | Subsection ``Background''). If necessary, the application program may |
---|
| 1625 | use the node potentials to compute $\lambda_{ij}$, reduced costs of the |
---|
| 1626 | arc flows $x_{ij}$, which are the Lagrange multipliers for the arc flow |
---|
| 1627 | bound constraints (see (3) ibid.), using the following formula: |
---|
| 1628 | $$\lambda_{ij}=c_{ij}-(\pi_i-\pi_j),$$ |
---|
| 1629 | where $c_{ij}$ is the per-unit cost for arc $(i,j)$. |
---|
| 1630 | |
---|
| 1631 | Note that all solution components (the objective value, arc flows, and |
---|
| 1632 | node potentials) computed by the routine are always integer-valued. |
---|
| 1633 | |
---|
| 1634 | \subsubsection*{Returns} |
---|
| 1635 | |
---|
| 1636 | \def\arraystretch{1} |
---|
| 1637 | |
---|
| 1638 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
| 1639 | 0 & Optimal solution found.\\ |
---|
| 1640 | \verb|GLP_ENOPFS| & No (primal) feasible solution exists.\\ |
---|
| 1641 | \verb|GLP_EDATA| & Unable to start the search, because some problem |
---|
| 1642 | data are either not integer-valued or out of range. This code is also |
---|
| 1643 | returned if the total supply, which is the sum of $b_i$ over all source |
---|
| 1644 | nodes (nodes with $b_i>0$), exceeds \verb|INT_MAX|.\\ |
---|
| 1645 | \end{tabular} |
---|
| 1646 | |
---|
| 1647 | \noindent |
---|
| 1648 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
| 1649 | \verb|GLP_ERANGE| & The search was prematurely terminated because of |
---|
| 1650 | integer overflow.\\ |
---|
| 1651 | \verb|GLP_EFAIL| & An error has been detected in the program logic. |
---|
| 1652 | (If this code is returned for your problem instance, please report to |
---|
| 1653 | \verb|<bug-glpk@gnu.org>|.)\\ |
---|
| 1654 | \end{tabular} |
---|
| 1655 | |
---|
| 1656 | \subsubsection*{Comments} |
---|
| 1657 | |
---|
| 1658 | By design the out-of-kilter algorithm is applicable only to networks, |
---|
| 1659 | where $b_i=0$ for {\it all} nodes, i.e. actually this algorithm finds a |
---|
| 1660 | minimal cost {\it circulation}. Due to this requirement the routine |
---|
| 1661 | \verb|glp_mincost_okalg| converts the original network to a network |
---|
| 1662 | suitable for the out-of-kilter algorithm in the following |
---|
| 1663 | way:\footnote{The conversion is performed internally and does not change |
---|
| 1664 | the original network program object passed to the routine.} |
---|
| 1665 | |
---|
| 1666 | 1) it adds two auxiliary nodes $s$ and $t$; |
---|
| 1667 | |
---|
| 1668 | 2) for each original node $i$ with $b_i>0$ the routine adds auxiliary |
---|
| 1669 | supply arc $(s\rightarrow i)$, flow $x_{si}$ through which is costless |
---|
| 1670 | ($c_{si}=0$) and fixed to $+b_i$ ($l_{si}=u_{si}=+b_i$); |
---|
| 1671 | |
---|
| 1672 | 3) for each original node $i$ with $b_i<0$ the routine adds auxiliary |
---|
| 1673 | demand arc $(i\rightarrow t)$, flow $x_{it}$ through which is costless |
---|
| 1674 | ($c_{it}=0$) and fixed to $-b_i$ ($l_{it}=u_{it}=-b_i$); |
---|
| 1675 | |
---|
| 1676 | 4) finally, the routine adds auxiliary feedback arc $(t\rightarrow s)$, |
---|
| 1677 | flow $x_{ts}$ through which is also costless ($c_{ts}=0$) and fixed to |
---|
| 1678 | $F$ ($l_{ts}=u_{ts}=F$), where $\displaystyle F=\sum_{b_i>0}b_i$ is the |
---|
| 1679 | total supply. |
---|
| 1680 | |
---|
| 1681 | \subsubsection*{Example} |
---|
| 1682 | |
---|
| 1683 | The example program below reads the minimum cost problem instance in |
---|
| 1684 | DIMACS format from file `\verb|sample.min|', solves it by using the |
---|
| 1685 | routine \verb|glp_mincost_okalg|, and writes the solution found to the |
---|
| 1686 | standard output. |
---|
| 1687 | |
---|
| 1688 | \begin{footnotesize} |
---|
| 1689 | \begin{verbatim} |
---|
| 1690 | #include <stddef.h> |
---|
| 1691 | #include <stdio.h> |
---|
| 1692 | #include <stdlib.h> |
---|
| 1693 | #include <glpk.h> |
---|
| 1694 | |
---|
| 1695 | typedef struct { double rhs, pi; } v_data; |
---|
| 1696 | typedef struct { double low, cap, cost, x; } a_data; |
---|
| 1697 | |
---|
| 1698 | #define node(v) ((v_data *)((v)->data)) |
---|
| 1699 | #define arc(a) ((a_data *)((a)->data)) |
---|
| 1700 | |
---|
| 1701 | int main(void) |
---|
| 1702 | { glp_graph *G; |
---|
| 1703 | glp_vertex *v, *w; |
---|
| 1704 | glp_arc *a; |
---|
| 1705 | int i, ret; |
---|
| 1706 | double sol; |
---|
| 1707 | G = glp_create_graph(sizeof(v_data), sizeof(a_data)); |
---|
| 1708 | glp_read_mincost(G, offsetof(v_data, rhs), |
---|
| 1709 | offsetof(a_data, low), offsetof(a_data, cap), |
---|
| 1710 | offsetof(a_data, cost), "sample.min"); |
---|
| 1711 | ret = glp_mincost_okalg(G, offsetof(v_data, rhs), |
---|
| 1712 | offsetof(a_data, low), offsetof(a_data, cap), |
---|
| 1713 | offsetof(a_data, cost), &sol, offsetof(a_data, x), |
---|
| 1714 | offsetof(v_data, pi)); |
---|
| 1715 | printf("ret = %d; sol = %5g\n", ret, sol); |
---|
| 1716 | for (i = 1; i <= G->nv; i++) |
---|
| 1717 | { v = G->v[i]; |
---|
| 1718 | printf("node %d: pi = %5g\n", i, node(v)->pi); |
---|
| 1719 | for (a = v->out; a != NULL; a = a->t_next) |
---|
| 1720 | { w = a->head; |
---|
| 1721 | printf("arc %d->%d: x = %5g; lambda = %5g\n", |
---|
| 1722 | v->i, w->i, arc(a)->x, |
---|
| 1723 | arc(a)->cost - (node(v)->pi - node(w)->pi)); |
---|
| 1724 | } |
---|
| 1725 | } |
---|
| 1726 | glp_delete_graph(G); |
---|
| 1727 | return 0; |
---|
| 1728 | } |
---|
| 1729 | \end{verbatim} |
---|
| 1730 | \end{footnotesize} |
---|
| 1731 | |
---|
| 1732 | If `\verb|sample.min|' is the example data file from the subsection |
---|
| 1733 | describing the routine \verb|glp_read_mincost|, the output may look like |
---|
| 1734 | follows: |
---|
| 1735 | |
---|
| 1736 | \begin{footnotesize} |
---|
| 1737 | \begin{verbatim} |
---|
| 1738 | Reading min-cost flow problem data from `sample.min'... |
---|
| 1739 | Flow network has 9 nodes and 14 arcs |
---|
| 1740 | 24 lines were read |
---|
| 1741 | ret = 0; sol = 213 |
---|
| 1742 | node 1: pi = -12 |
---|
| 1743 | arc 1->4: x = 13; lambda = 0 |
---|
| 1744 | arc 1->2: x = 7; lambda = 0 |
---|
| 1745 | node 2: pi = -12 |
---|
| 1746 | arc 2->4: x = 0; lambda = 3 |
---|
| 1747 | arc 2->3: x = 7; lambda = 0 |
---|
| 1748 | node 3: pi = -14 |
---|
| 1749 | arc 3->8: x = 5; lambda = 0 |
---|
| 1750 | arc 3->5: x = 2; lambda = 3 |
---|
| 1751 | node 4: pi = -12 |
---|
| 1752 | arc 4->5: x = 13; lambda = 0 |
---|
| 1753 | node 5: pi = -12 |
---|
| 1754 | arc 5->7: x = 4; lambda = -1 |
---|
| 1755 | arc 5->6: x = 11; lambda = 0 |
---|
| 1756 | arc 5->2: x = 0; lambda = 1 |
---|
| 1757 | node 6: pi = -17 |
---|
| 1758 | arc 6->8: x = 4; lambda = 3 |
---|
| 1759 | arc 6->7: x = 7; lambda = -3 |
---|
| 1760 | node 7: pi = -20 |
---|
| 1761 | arc 7->9: x = 11; lambda = 0 |
---|
| 1762 | node 8: pi = -14 |
---|
| 1763 | arc 8->9: x = 9; lambda = 0 |
---|
| 1764 | node 9: pi = -23 |
---|
| 1765 | \end{verbatim} |
---|
| 1766 | \end{footnotesize} |
---|
| 1767 | |
---|
| 1768 | \subsection{glp\_netgen---Klingman's network problem generator} |
---|
| 1769 | |
---|
| 1770 | \subsubsection*{Synopsis} |
---|
| 1771 | |
---|
| 1772 | \begin{verbatim} |
---|
| 1773 | int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost, |
---|
| 1774 | const int parm[1+15]); |
---|
| 1775 | \end{verbatim} |
---|
| 1776 | |
---|
| 1777 | \subsubsection*{Description} |
---|
| 1778 | |
---|
| 1779 | The routine \verb|glp_netgen| is a GLPK version of the network problem |
---|
| 1780 | generator developed by Dr.~Darwin~Klingman.\footnote{D.~Klingman, |
---|
| 1781 | A.~Napier, and J.~Stutz. NETGEN: A program for generating large scale |
---|
| 1782 | capacitated assignment, transportation, and minimum cost flow networks. |
---|
| 1783 | Management Science 20 (1974), 814-20.} It can create capacitated and |
---|
| 1784 | uncapacitated minimum cost flow (or transshipment), transportation, and |
---|
| 1785 | assignment problems. |
---|
| 1786 | |
---|
| 1787 | The parameter \verb|G| specifies the graph object, to which the |
---|
| 1788 | generated problem data have to be stored. Note that on entry the graph |
---|
| 1789 | object is erased with the routine \verb|glp_erase_graph|. |
---|
| 1790 | |
---|
| 1791 | The parameter \verb|v_rhs| specifies an offset of the field of type |
---|
| 1792 | \verb|double| in the vertex data block, to which the routine stores the |
---|
| 1793 | supply or demand value. If \verb|v_rhs| $<0$, the value is not stored. |
---|
| 1794 | |
---|
| 1795 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 1796 | \verb|double| in the arc data block, to which the routine stores the |
---|
| 1797 | arc capacity. If \verb|a_cap| $<0$, the capacity is not stored. |
---|
| 1798 | |
---|
| 1799 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 1800 | \verb|double| in the arc data block, to which the routine stores the |
---|
| 1801 | per-unit cost if the arc flow. If \verb|a_cost| $<0$, the cost is not |
---|
| 1802 | stored. |
---|
| 1803 | |
---|
| 1804 | The array \verb|parm| contains description of the network to be |
---|
| 1805 | generated: |
---|
| 1806 | |
---|
| 1807 | \begin{tabular}{@{}lll@{}} |
---|
| 1808 | \verb|parm[0] |& ¬ used\\ |
---|
| 1809 | \verb|parm[1] |&\verb|iseed |&8-digit positive random number seed\\ |
---|
| 1810 | \verb|parm[2] |&\verb|nprob |&8-digit problem id number\\ |
---|
| 1811 | \verb|parm[3] |&\verb|nodes |&total number of nodes\\ |
---|
| 1812 | \verb|parm[4] |&\verb|nsorc |&total number of source nodes\\ |
---|
| 1813 | &&(including transshipment nodes)\\ |
---|
| 1814 | \verb|parm[5] |&\verb|nsink |&total number of sink nodes\\ |
---|
| 1815 | &&(including transshipment nodes)\\ |
---|
| 1816 | \verb|parm[6] |&\verb|iarcs |&number of arc\\ |
---|
| 1817 | \verb|parm[7] |&\verb|mincst|&minimum cost for arcs\\ |
---|
| 1818 | \verb|parm[8] |&\verb|maxcst|&maximum cost for arcs\\ |
---|
| 1819 | \verb|parm[9] |&\verb|itsup |&total supply\\ |
---|
| 1820 | \end{tabular} |
---|
| 1821 | |
---|
| 1822 | \begin{tabular}{@{}lll@{}} |
---|
| 1823 | \verb|parm[10]|&\verb|ntsorc|&number of transshipment source nodes\\ |
---|
| 1824 | \verb|parm[11]|&\verb|ntsink|&number of transshipment sink nodes\\ |
---|
| 1825 | \verb|parm[12]|&\verb|iphic |&percentage of skeleton arcs to be given |
---|
| 1826 | the maxi-\\&&mum cost\\ |
---|
| 1827 | \verb|parm[13]|&\verb|ipcap |&percentage of arcs to be capacitated\\ |
---|
| 1828 | \verb|parm[14]|&\verb|mincap|&minimum upper bound for capacitated arcs\\ |
---|
| 1829 | \verb|parm[15]|&\verb|maxcap|&maximum upper bound for capacitated arcs\\ |
---|
| 1830 | \end{tabular} |
---|
| 1831 | |
---|
| 1832 | \subsubsection*{Notes} |
---|
| 1833 | |
---|
| 1834 | \noindent\indent |
---|
| 1835 | 1. The routine generates a transportation problem if: |
---|
| 1836 | $${\tt nsorc}+{\tt nsink}={\tt nodes}, |
---|
| 1837 | \ {\tt ntsorc}=0,\ \mbox{and}\ {\tt ntsink}=0.$$ |
---|
| 1838 | |
---|
| 1839 | 2. The routine generates an assignment problem if the requirements for |
---|
| 1840 | a transportation problem are met and: |
---|
| 1841 | $${\tt nsorc}={\tt nsink}\ \mbox{and}\ {\tt itsup}={\tt nsorc}.$$ |
---|
| 1842 | |
---|
| 1843 | 3. The routine always generates connected graphs. So, if the number of |
---|
| 1844 | requested arcs has been reached and the generated instance is not fully |
---|
| 1845 | connected, the routine generates a few remaining arcs to ensure |
---|
| 1846 | connectedness. Thus, the actual number of arcs generated by the routine |
---|
| 1847 | may be greater than the requested number of arcs. |
---|
| 1848 | |
---|
| 1849 | \subsubsection*{Returns} |
---|
| 1850 | |
---|
| 1851 | If the instance was successfully generated, the routine |
---|
| 1852 | \verb|glp_netgen| returns zero; otherwise, if specified parameters are |
---|
| 1853 | inconsistent, the routine returns a non-zero error code. |
---|
| 1854 | |
---|
| 1855 | \subsection{glp\_gridgen---grid-like network problem generator} |
---|
| 1856 | |
---|
| 1857 | \subsubsection*{Synopsis} |
---|
| 1858 | |
---|
| 1859 | \begin{verbatim} |
---|
| 1860 | int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost, |
---|
| 1861 | const int parm[1+14]); |
---|
| 1862 | \end{verbatim} |
---|
| 1863 | |
---|
| 1864 | \subsubsection*{Description} |
---|
| 1865 | |
---|
| 1866 | The routine \verb|glp_gridgen| is a GLPK version of the grid-like |
---|
| 1867 | network problem generator developed by Yusin Lee and Jim |
---|
| 1868 | Orlin.\footnote{Y.~Lee and J.~Orlin. GRIDGEN generator., 1991. The |
---|
| 1869 | original code is publically available from |
---|
| 1870 | {\tt<ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen>}.} |
---|
| 1871 | |
---|
| 1872 | The parameter \verb|G| specifies the graph object, to which the |
---|
| 1873 | generated problem data have to be stored. Note that on entry the graph |
---|
| 1874 | object is erased with the routine \verb|glp_erase_graph|. |
---|
| 1875 | |
---|
| 1876 | The parameter \verb|v_rhs| specifies an offset of the field of type |
---|
| 1877 | \verb|double| in the vertex data block, to which the routine stores the |
---|
| 1878 | supply or demand value. If \verb|v_rhs| $<0$, the value is not stored. |
---|
| 1879 | |
---|
| 1880 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 1881 | \verb|double| in the arc data block, to which the routine stores the |
---|
| 1882 | arc capacity. If \verb|a_cap| $<0$, the capacity is not stored. |
---|
| 1883 | |
---|
| 1884 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 1885 | \verb|double| in the arc data block, to which the routine stores the |
---|
| 1886 | per-unit cost if the arc flow. If \verb|a_cost| $<0$, the cost is not |
---|
| 1887 | stored. |
---|
| 1888 | |
---|
| 1889 | The array \verb|parm| contains parameters of the network to be |
---|
| 1890 | generated: |
---|
| 1891 | |
---|
| 1892 | \begin{tabular}{@{}ll@{}} |
---|
| 1893 | \verb|parm[0] |¬ used\\ |
---|
| 1894 | \verb|parm[1] |&two-ways arcs indicator:\\ |
---|
| 1895 | &1 --- if links in both direction should be generated\\ |
---|
| 1896 | &0 --- otherwise\\ |
---|
| 1897 | \verb|parm[2] |&random number seed (a positive integer)\\ |
---|
| 1898 | \verb|parm[3] |&number of nodes (the number of nodes generated might |
---|
| 1899 | be\\&slightly different to make the network a grid)\\ |
---|
| 1900 | \verb|parm[4] |&grid width\\ |
---|
| 1901 | \verb|parm[5] |&number of sources\\ |
---|
| 1902 | \verb|parm[6] |&number of sinks\\ |
---|
| 1903 | \verb|parm[7] |&average degree\\ |
---|
| 1904 | \verb|parm[8] |&total flow\\ |
---|
| 1905 | \verb|parm[9] |&distribution of arc costs:\\ |
---|
| 1906 | &1 --- uniform\\ |
---|
| 1907 | &2 --- exponential\\ |
---|
| 1908 | \verb|parm[10]|&lower bound for arc cost (uniform)\\ |
---|
| 1909 | &$100\lambda$ (exponential)\\ |
---|
| 1910 | \verb|parm[11]|&upper bound for arc cost (uniform)\\ |
---|
| 1911 | ¬ used (exponential)\\ |
---|
| 1912 | \verb|parm[12]|&distribution of arc capacities:\\ |
---|
| 1913 | &1 --- uniform\\ |
---|
| 1914 | &2 --- exponential\\ |
---|
| 1915 | \verb|parm[13]|&lower bound for arc capacity (uniform)\\ |
---|
| 1916 | &$100\lambda$ (exponential)\\ |
---|
| 1917 | \verb|parm[14]|&upper bound for arc capacity (uniform)\\ |
---|
| 1918 | ¬ used (exponential)\\ |
---|
| 1919 | \end{tabular} |
---|
| 1920 | |
---|
| 1921 | \subsubsection*{Returns} |
---|
| 1922 | |
---|
| 1923 | If the instance was successfully generated, the routine |
---|
| 1924 | \verb|glp_gridgen| returns zero; otherwise, if specified parameters are |
---|
| 1925 | inconsistent, the routine returns a non-zero error code. |
---|
| 1926 | |
---|
| 1927 | \subsubsection*{Comments\footnote{This material is based on comments |
---|
| 1928 | to the original version of GRIDGEN.}} |
---|
| 1929 | |
---|
| 1930 | This network generator generates a grid-like network plus a super node. |
---|
| 1931 | In additional to the arcs connecting the nodes in the grid, there is an |
---|
| 1932 | arc from each supply node to the super node and from the super node to |
---|
| 1933 | each demand node to guarantee feasiblity. These arcs have very high |
---|
| 1934 | costs and very big capacities. |
---|
| 1935 | |
---|
| 1936 | The idea of this network generator is as follows: First, a grid of |
---|
| 1937 | $n_1\times n_2$ is generated. For example, $5\times 3$. The nodes are |
---|
| 1938 | numbered as 1 to 15, and the supernode is numbered as $n_1\times n_2+1$. |
---|
| 1939 | Then arcs between adjacent nodes are generated. For these arcs, the user |
---|
| 1940 | is allowed to specify either to generate two-way arcs or one-way arcs. |
---|
| 1941 | If two-way arcs are to be generated, two arcs, one in each direction, |
---|
| 1942 | will be generated between each adjacent node pairs. Otherwise, only one |
---|
| 1943 | arc will be generated. If this is the case, the arcs will be generated |
---|
| 1944 | in alterntive directions as shown below. |
---|
| 1945 | |
---|
| 1946 | \bigskip |
---|
| 1947 | |
---|
| 1948 | \noindent\hfil |
---|
| 1949 | \xymatrix |
---|
| 1950 | {1\ar[r]\ar[d]&2\ar[r]&3\ar[r]\ar[d]&4\ar[r]&5\ar[d]\\ |
---|
| 1951 | 6\ar[d]&7\ar[l]\ar[u]&8\ar[l]\ar[d]&9\ar[l]\ar[u]&10\ar[l]\ar[d]\\ |
---|
| 1952 | 11\ar[r]&12\ar[r]\ar[u]&13\ar[r]&14\ar[r]\ar[u]&15\\ |
---|
| 1953 | } |
---|
| 1954 | |
---|
| 1955 | \bigskip |
---|
| 1956 | |
---|
| 1957 | Then the arcs between the super node and the source/sink nodes are added |
---|
| 1958 | as mentioned before. If the number of arcs still doesn't reach the |
---|
| 1959 | requirement, additional arcs will be added by uniformly picking random |
---|
| 1960 | node pairs. There is no checking to prevent multiple arcs between any |
---|
| 1961 | pair of nodes. However, there will be no self-arcs (arcs that poins back |
---|
| 1962 | to its tail node) in the network. |
---|
| 1963 | |
---|
| 1964 | The source and sink nodes are selected uniformly in the network, and |
---|
| 1965 | the imbalances of each source/sink node are also assigned by uniform |
---|
| 1966 | distribution. |
---|
| 1967 | |
---|
| 1968 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 1969 | |
---|
| 1970 | \newpage |
---|
| 1971 | |
---|
| 1972 | \section{Maximum flow problem} |
---|
| 1973 | |
---|
| 1974 | \subsection{Background} |
---|
| 1975 | |
---|
| 1976 | The {\it maximum flow problem} (MAXFLOW) is stated as follows. Let |
---|
| 1977 | there be given a directed graph (flow network) $G=(V,A)$, where $V$ is |
---|
| 1978 | a set of vertices (nodes), and $A\subseteq V\times V$ is a set of arcs. |
---|
| 1979 | Let also for each arc $a=(i,j)\in A$ there be given its capacity |
---|
| 1980 | $u_{ij}$. The problem is, for given {\it source} node $s\in V$ and |
---|
| 1981 | {\it sink} node $t\in V$, to find flows $x_{ij}$ through every arc of |
---|
| 1982 | the network, which satisfy the specified arc capacities and the |
---|
| 1983 | conservation constraints at all nodes, and maximize the total flow $F$ |
---|
| 1984 | through the network from $s$ to $t$. Here the conservation constraint |
---|
| 1985 | at a node means that the total flow entering this node through its |
---|
| 1986 | incoming arcs (plus $F$, if it is the source node) must be equal to the |
---|
| 1987 | total flow leaving this node through its outgoing arcs (plus $F$, if it |
---|
| 1988 | is the sink node). |
---|
| 1989 | |
---|
| 1990 | An example of the maximum flow problem, where $s=v_1$ and $t=v_9$, is |
---|
| 1991 | shown on Fig.~2. |
---|
| 1992 | |
---|
| 1993 | \bigskip |
---|
| 1994 | |
---|
| 1995 | \noindent\hfil |
---|
| 1996 | \xymatrix @C=48pt |
---|
| 1997 | {_{F}\ar@{~>}[d]& |
---|
| 1998 | v_2\ar[r]|{_{10}}\ar[dd]|{_{9}}& |
---|
| 1999 | v_3\ar[dd]|{_{12}}\ar[r]|{_{18}}& |
---|
| 2000 | v_8\ar[rd]|{_{20}}&\\ |
---|
| 2001 | v_1\ar[ru]|{_{14}}\ar[rd]|{_{23}}&&& |
---|
| 2002 | v_6\ar[d]|{_{7}}\ar[u]|{_{8}}& |
---|
| 2003 | v_9\ar@{~>}[d]\\ |
---|
| 2004 | &v_4\ar[r]|{_{26}}& |
---|
| 2005 | v_5\ar[luu]|{_{11}}\ar[ru]|{_{25}}\ar[r]|{_{4}}& |
---|
| 2006 | v_7\ar[ru]|{_{15}}&_{F}\\ |
---|
| 2007 | } |
---|
| 2008 | |
---|
| 2009 | \bigskip |
---|
| 2010 | |
---|
| 2011 | \noindent\hfil |
---|
| 2012 | Fig.~2. An example of the maximum flow problem. |
---|
| 2013 | |
---|
| 2014 | \bigskip |
---|
| 2015 | |
---|
| 2016 | The maximum flow problem can be naturally formulated as the following |
---|
| 2017 | LP problem: |
---|
| 2018 | |
---|
| 2019 | \medskip |
---|
| 2020 | |
---|
| 2021 | \noindent |
---|
| 2022 | \hspace{.5in}maximize |
---|
| 2023 | $$F\eqno(4)$$ |
---|
| 2024 | \hspace{.5in}subject to |
---|
| 2025 | $$\sum_{(i,j)\in A}x_{ij}-\sum_{(j,i)\in A}x_{ji}=\left\{ |
---|
| 2026 | \begin{array}{@{\ }rl} |
---|
| 2027 | +F,&\hbox{for}\ i=s\\ |
---|
| 2028 | 0,&\hbox{for all}\ i\in V\backslash\{s,t\}\\ |
---|
| 2029 | -F,&\hbox{for}\ i=t\\ |
---|
| 2030 | \end{array} |
---|
| 2031 | \right.\eqno(5) |
---|
| 2032 | $$ |
---|
| 2033 | $$0\leq x_{ij}\leq u_{ij}\ \ \ \hbox{for all}\ (i,j)\in A |
---|
| 2034 | \eqno(6)$$ |
---|
| 2035 | |
---|
| 2036 | \medskip |
---|
| 2037 | |
---|
| 2038 | \noindent |
---|
| 2039 | where $F\geq 0$ is an additional variable playing the role of the |
---|
| 2040 | objective. |
---|
| 2041 | |
---|
| 2042 | \newpage |
---|
| 2043 | |
---|
| 2044 | Another LP formulation of the maximum flow problem, which does not |
---|
| 2045 | include the variable $F$, is the following: |
---|
| 2046 | |
---|
| 2047 | \medskip |
---|
| 2048 | |
---|
| 2049 | \noindent |
---|
| 2050 | \hspace{.5in}maximize |
---|
| 2051 | $$z=\sum_{(s,j)\in A}x_{sj}-\sum_{(j,s)\in A}x_{js}\ (=F)\eqno(7)$$ |
---|
| 2052 | \hspace{.5in}subject to |
---|
| 2053 | $$\sum_{(i,j)\in A}x_{ij}-\sum_{(j,i)\in A}x_{ji}\left\{ |
---|
| 2054 | \begin{array}{@{\ }rl} |
---|
| 2055 | \geq 0,&\hbox{for}\ i=s\\ |
---|
| 2056 | =0,&\hbox{for all}\ i\in V\backslash\{s,t\}\\ |
---|
| 2057 | \leq 0,&\hbox{for}\ i=t\\ |
---|
| 2058 | \end{array} |
---|
| 2059 | \right.\eqno(8) |
---|
| 2060 | $$ |
---|
| 2061 | $$0\leq x_{ij}\leq u_{ij}\ \ \ \hbox{for all}\ (i,j)\in A |
---|
| 2062 | \eqno(9)$$ |
---|
| 2063 | |
---|
| 2064 | \subsection{glp\_read\_maxflow---read maximum flow problem data\\in |
---|
| 2065 | DIMACS format} |
---|
| 2066 | |
---|
| 2067 | \subsubsection*{Synopsis} |
---|
| 2068 | |
---|
| 2069 | \begin{verbatim} |
---|
| 2070 | int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap, |
---|
| 2071 | const char *fname); |
---|
| 2072 | \end{verbatim} |
---|
| 2073 | |
---|
| 2074 | \subsubsection*{Description} |
---|
| 2075 | |
---|
| 2076 | The routine \verb|glp_read_maxflow| reads the maximum flow problem |
---|
| 2077 | data from a text file in DIMACS format. |
---|
| 2078 | |
---|
| 2079 | The parameter \verb|G| specifies the graph object, to which the problem |
---|
| 2080 | data have to be stored. Note that before reading data the current |
---|
| 2081 | content of the graph object is completely erased with the routine |
---|
| 2082 | \verb|glp_erase_graph|. |
---|
| 2083 | |
---|
| 2084 | The pointer \verb|s| specifies a location, to which the routine stores |
---|
| 2085 | the ordinal number of the source node. If \verb|s| is \verb|NULL|, the |
---|
| 2086 | source node number is not stored. |
---|
| 2087 | |
---|
| 2088 | The pointer \verb|t| specifies a location, to which the routine stores |
---|
| 2089 | the ordinal number of the sink node. If \verb|t| is \verb|NULL|, the |
---|
| 2090 | sink node number is not stored. |
---|
| 2091 | |
---|
| 2092 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 2093 | \verb|double| in the arc data block, to which the routine stores |
---|
| 2094 | $u_{ij}$, the arc capacity. If \verb|a_cap| $<0$, the arc capacity is |
---|
| 2095 | not stored. |
---|
| 2096 | |
---|
| 2097 | The character string \verb|fname| specifies the name of a text file to |
---|
| 2098 | be read in. (If the file name name ends with the suffix `\verb|.gz|', |
---|
| 2099 | the file is assumed to be compressed, in which case the routine |
---|
| 2100 | decompresses it ``on the fly''.) |
---|
| 2101 | |
---|
| 2102 | \subsubsection*{Returns} |
---|
| 2103 | |
---|
| 2104 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 2105 | it prints an error message and returns non-zero. |
---|
| 2106 | |
---|
| 2107 | \subsubsection*{Example} |
---|
| 2108 | |
---|
| 2109 | \begin{footnotesize} |
---|
| 2110 | \begin{verbatim} |
---|
| 2111 | typedef struct |
---|
| 2112 | { /* arc data block */ |
---|
| 2113 | ... |
---|
| 2114 | double cap; |
---|
| 2115 | ... |
---|
| 2116 | } a_data; |
---|
| 2117 | |
---|
| 2118 | int main(void) |
---|
| 2119 | { glp_graph *G; |
---|
| 2120 | int s, t, ret; |
---|
| 2121 | G = glp_create_graph(..., sizeof(a_data)); |
---|
| 2122 | ret = glp_read_maxflow(G, &s, &t, offsetof(a_data, cap), |
---|
| 2123 | "sample.max"); |
---|
| 2124 | if (ret != 0) goto ... |
---|
| 2125 | ... |
---|
| 2126 | } |
---|
| 2127 | \end{verbatim} |
---|
| 2128 | \end{footnotesize} |
---|
| 2129 | |
---|
| 2130 | \subsubsection*{DIMACS maximum flow problem format\footnote{This |
---|
| 2131 | material is based on the paper ``The First DIMACS International |
---|
| 2132 | Algorithm Implementation Challenge: Problem Definitions and |
---|
| 2133 | Specifications'', which is publically available at |
---|
| 2134 | {\tt http://dimacs.rutgers.edu/Challenges/}.}} |
---|
| 2135 | \label{subsecmaxflow} |
---|
| 2136 | |
---|
| 2137 | The DIMACS input file is a plain ASCII text file. It contains |
---|
| 2138 | {\it lines} of several types described below. A line is terminated with |
---|
| 2139 | an end-of-line character. Fields in each line are separated by at least |
---|
| 2140 | one blank space. Each line begins with a one-character designator to |
---|
| 2141 | identify the line type. |
---|
| 2142 | |
---|
| 2143 | Note that DIMACS requires all numerical quantities to be integers in |
---|
| 2144 | the range $[-2^{31},\ 2^{31}-1]$ while GLPK allows the quantities to be |
---|
| 2145 | floating-point numbers. |
---|
| 2146 | |
---|
| 2147 | \paragraph{Comment lines.} Comment lines give human-readable information |
---|
| 2148 | about the file and are ignored by programs. Comment lines can appear |
---|
| 2149 | anywhere in the file. Each comment line begins with a lower-case |
---|
| 2150 | character \verb|c|. |
---|
| 2151 | |
---|
| 2152 | \begin{verbatim} |
---|
| 2153 | c This is a comment line |
---|
| 2154 | \end{verbatim} |
---|
| 2155 | |
---|
| 2156 | \newpage |
---|
| 2157 | |
---|
| 2158 | \paragraph{Problem line.} There is one problem line per data file. The |
---|
| 2159 | problem line must appear before any node or arc descriptor lines. It has |
---|
| 2160 | the following format: |
---|
| 2161 | |
---|
| 2162 | \begin{verbatim} |
---|
| 2163 | p max NODES ARCS |
---|
| 2164 | \end{verbatim} |
---|
| 2165 | |
---|
| 2166 | \noindent |
---|
| 2167 | The lower-case character \verb|p| signifies that this is a problem line. |
---|
| 2168 | The three-character problem designator \verb|max| identifies the file as |
---|
| 2169 | containing specification information for the maximum flow problem. The |
---|
| 2170 | \verb|NODES| field contains an integer value specifying the number of |
---|
| 2171 | nodes in the network. The \verb|ARCS| field contains an integer value |
---|
| 2172 | specifying the number of arcs in the network. |
---|
| 2173 | |
---|
| 2174 | \paragraph{Node descriptors.} Two node descriptor lines for the source |
---|
| 2175 | and sink nodes must appear before all arc descriptor lines. They may |
---|
| 2176 | appear in either order, each with the following format: |
---|
| 2177 | |
---|
| 2178 | \begin{verbatim} |
---|
| 2179 | n ID WHICH |
---|
| 2180 | \end{verbatim} |
---|
| 2181 | |
---|
| 2182 | \noindent |
---|
| 2183 | The lower-case character \verb|n| signifies that this a node descriptor |
---|
| 2184 | line. The \verb|ID| field gives a node identification number, an integer |
---|
| 2185 | between 1 and \verb|NODES|. The \verb|WHICH| field gives either a |
---|
| 2186 | lower-case \verb|s| or \verb|t|, designating the source and sink, |
---|
| 2187 | respectively. |
---|
| 2188 | |
---|
| 2189 | \paragraph{Arc descriptors.} There is one arc descriptor line for each |
---|
| 2190 | arc in the network. Arc descriptor lines are of the following format: |
---|
| 2191 | |
---|
| 2192 | \begin{verbatim} |
---|
| 2193 | a SRC DST CAP |
---|
| 2194 | \end{verbatim} |
---|
| 2195 | |
---|
| 2196 | \noindent |
---|
| 2197 | The lower-case character \verb|a| signifies that this is an arc |
---|
| 2198 | descriptor line. For a directed arc $(i,j)$ the \verb|SRC| field gives |
---|
| 2199 | the identification number $i$ for the tail endpoint, and the \verb|DST| |
---|
| 2200 | field gives the identification number $j$ for the head endpoint. |
---|
| 2201 | Identification numbers are integers between 1 and \verb|NODES|. The |
---|
| 2202 | \verb|CAP| field gives the arc capacity, i.e. maximum amount of flow |
---|
| 2203 | that can be sent along arc $(i,j)$ in a feasible flow. |
---|
| 2204 | |
---|
| 2205 | \paragraph{Example.} Below here is an example of the data file in |
---|
| 2206 | DIMACS format corresponding to the maximum flow problem shown on Fig~2. |
---|
| 2207 | |
---|
| 2208 | \newpage |
---|
| 2209 | |
---|
| 2210 | \begin{footnotesize} |
---|
| 2211 | \begin{verbatim} |
---|
| 2212 | c sample.max |
---|
| 2213 | c |
---|
| 2214 | c This is an example of the maximum flow problem data |
---|
| 2215 | c in DIMACS format. |
---|
| 2216 | c |
---|
| 2217 | p max 9 14 |
---|
| 2218 | c |
---|
| 2219 | n 1 s |
---|
| 2220 | n 9 t |
---|
| 2221 | c |
---|
| 2222 | a 1 2 14 |
---|
| 2223 | a 1 4 23 |
---|
| 2224 | a 2 3 10 |
---|
| 2225 | a 2 4 9 |
---|
| 2226 | a 3 5 12 |
---|
| 2227 | a 3 8 18 |
---|
| 2228 | a 4 5 26 |
---|
| 2229 | a 5 2 11 |
---|
| 2230 | a 5 6 25 |
---|
| 2231 | a 5 7 4 |
---|
| 2232 | a 6 7 7 |
---|
| 2233 | a 6 8 8 |
---|
| 2234 | a 7 9 15 |
---|
| 2235 | a 8 9 20 |
---|
| 2236 | c |
---|
| 2237 | c eof |
---|
| 2238 | \end{verbatim} |
---|
| 2239 | \end{footnotesize} |
---|
| 2240 | |
---|
| 2241 | \subsection{glp\_write\_maxflow---write maximum flow problem data\\ |
---|
| 2242 | in DIMACS format} |
---|
| 2243 | |
---|
| 2244 | \subsubsection*{Synopsis} |
---|
| 2245 | |
---|
| 2246 | \begin{verbatim} |
---|
| 2247 | int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap, |
---|
| 2248 | const char *fname); |
---|
| 2249 | \end{verbatim} |
---|
| 2250 | |
---|
| 2251 | \subsubsection*{Description} |
---|
| 2252 | |
---|
| 2253 | The routine \verb|glp_write_maxflow| writes the maximum flow problem |
---|
| 2254 | data to a text file in DIMACS format. |
---|
| 2255 | |
---|
| 2256 | The parameter \verb|G| is the graph (network) program object, which |
---|
| 2257 | specifies the maximum flow problem instance. |
---|
| 2258 | |
---|
| 2259 | The parameter \verb|s| specifies the ordinal number of the source node. |
---|
| 2260 | |
---|
| 2261 | The parameter \verb|t| specifies the ordinal number of the sink node. |
---|
| 2262 | |
---|
| 2263 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 2264 | \verb|double| in the arc data block, which contains $u_{ij}$, the upper |
---|
| 2265 | bound to the arc flow (the arc capacity). If the upper bound is |
---|
| 2266 | specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. |
---|
| 2267 | the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that |
---|
| 2268 | $u_{ij}=1$ for all arcs. |
---|
| 2269 | |
---|
| 2270 | The character string \verb|fname| specifies a name of the text file to |
---|
| 2271 | be written out. (If the file name ends with suffix `\verb|.gz|', the |
---|
| 2272 | file is assumed to be compressed, in which case the routine performs |
---|
| 2273 | automatic compression on writing it.) |
---|
| 2274 | |
---|
| 2275 | \subsubsection*{Returns} |
---|
| 2276 | |
---|
| 2277 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 2278 | it prints an error message and returns non-zero. |
---|
| 2279 | |
---|
| 2280 | \subsection{glp\_maxflow\_lp---convert maximum flow problem to LP} |
---|
| 2281 | |
---|
| 2282 | \subsubsection*{Synopsis} |
---|
| 2283 | |
---|
| 2284 | \begin{verbatim} |
---|
| 2285 | void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, |
---|
| 2286 | int s, int t, int a_cap); |
---|
| 2287 | \end{verbatim} |
---|
| 2288 | |
---|
| 2289 | \subsubsection*{Description} |
---|
| 2290 | |
---|
| 2291 | The routine \verb|glp_maxflow_lp| builds LP problem (7)---(9), which |
---|
| 2292 | corresponds to the specified maximum flow problem. |
---|
| 2293 | |
---|
| 2294 | The parameter \verb|lp| is the resultant LP problem object to be built. |
---|
| 2295 | Note that on entry its current content is erased with the routine |
---|
| 2296 | \verb|glp_erase_prob|. |
---|
| 2297 | |
---|
| 2298 | The parameter \verb|G| is the graph (network) program object, which |
---|
| 2299 | specifies the maximum flow problem instance. |
---|
| 2300 | |
---|
| 2301 | The parameter \verb|names| is a flag. If it is \verb|GLP_ON|, the |
---|
| 2302 | routine uses symbolic names of the graph object components to assign |
---|
| 2303 | symbolic names to the LP problem object components. If the flag is |
---|
| 2304 | \verb|GLP_OFF|, no symbolic names are assigned. |
---|
| 2305 | |
---|
| 2306 | The parameter \verb|s| specifies the ordinal number of the source node. |
---|
| 2307 | |
---|
| 2308 | The parameter \verb|t| specifies the ordinal number of the sink node. |
---|
| 2309 | |
---|
| 2310 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 2311 | \verb|double| in the arc data block, which contains $u_{ij}$, the upper |
---|
| 2312 | bound to the arc flow (the arc capacity). If the upper bound is |
---|
| 2313 | specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. |
---|
| 2314 | the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that |
---|
| 2315 | $u_{ij}=1$ for all arcs. |
---|
| 2316 | |
---|
| 2317 | \subsubsection*{Example} |
---|
| 2318 | |
---|
| 2319 | The example program below reads the maximum flow problem in DIMACS |
---|
| 2320 | format from file `\verb|sample.max|', converts the instance to LP, and |
---|
| 2321 | then writes the resultant LP in CPLEX format to file |
---|
| 2322 | `\verb|maxflow.lp|'. |
---|
| 2323 | |
---|
| 2324 | \begin{footnotesize} |
---|
| 2325 | \begin{verbatim} |
---|
| 2326 | #include <stddef.h> |
---|
| 2327 | #include <glpk.h> |
---|
| 2328 | |
---|
| 2329 | int main(void) |
---|
| 2330 | { glp_graph *G; |
---|
| 2331 | glp_prob *lp; |
---|
| 2332 | int s, t; |
---|
| 2333 | G = glp_create_graph(0, sizeof(double)); |
---|
| 2334 | glp_read_maxflow(G, &s, &t, 0, "sample.max"); |
---|
| 2335 | lp = glp_create_prob(); |
---|
| 2336 | glp_maxflow_lp(lp, G, GLP_ON, s, t, 0); |
---|
| 2337 | glp_delete_graph(G); |
---|
| 2338 | glp_write_lp(lp, NULL, "maxflow.lp"); |
---|
| 2339 | glp_delete_prob(lp); |
---|
| 2340 | return 0; |
---|
| 2341 | } |
---|
| 2342 | \end{verbatim} |
---|
| 2343 | \end{footnotesize} |
---|
| 2344 | |
---|
| 2345 | If `\verb|sample.max|' is the example data file from the previous |
---|
| 2346 | subsection, the output `\verb|maxflow.lp|' may look like follows: |
---|
| 2347 | |
---|
| 2348 | \begin{footnotesize} |
---|
| 2349 | \begin{verbatim} |
---|
| 2350 | Maximize |
---|
| 2351 | obj: + x(1,4) + x(1,2) |
---|
| 2352 | |
---|
| 2353 | Subject To |
---|
| 2354 | r_1: + x(1,2) + x(1,4) >= 0 |
---|
| 2355 | r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0 |
---|
| 2356 | r_3: + x(3,5) + x(3,8) - x(2,3) = 0 |
---|
| 2357 | r_4: + x(4,5) - x(2,4) - x(1,4) = 0 |
---|
| 2358 | r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0 |
---|
| 2359 | r_6: + x(6,7) + x(6,8) - x(5,6) = 0 |
---|
| 2360 | r_7: + x(7,9) - x(6,7) - x(5,7) = 0 |
---|
| 2361 | r_8: + x(8,9) - x(6,8) - x(3,8) = 0 |
---|
| 2362 | r_9: - x(8,9) - x(7,9) <= 0 |
---|
| 2363 | |
---|
| 2364 | Bounds |
---|
| 2365 | 0 <= x(1,4) <= 23 |
---|
| 2366 | 0 <= x(1,2) <= 14 |
---|
| 2367 | 0 <= x(2,4) <= 9 |
---|
| 2368 | 0 <= x(2,3) <= 10 |
---|
| 2369 | 0 <= x(3,8) <= 18 |
---|
| 2370 | 0 <= x(3,5) <= 12 |
---|
| 2371 | 0 <= x(4,5) <= 26 |
---|
| 2372 | 0 <= x(5,7) <= 4 |
---|
| 2373 | 0 <= x(5,6) <= 25 |
---|
| 2374 | 0 <= x(5,2) <= 11 |
---|
| 2375 | 0 <= x(6,8) <= 8 |
---|
| 2376 | 0 <= x(6,7) <= 7 |
---|
| 2377 | 0 <= x(7,9) <= 15 |
---|
| 2378 | 0 <= x(8,9) <= 20 |
---|
| 2379 | |
---|
| 2380 | End |
---|
| 2381 | \end{verbatim} |
---|
| 2382 | \end{footnotesize} |
---|
| 2383 | |
---|
| 2384 | \subsection{glp\_maxflow\_ffalg---solve maximum flow problem with |
---|
| 2385 | Ford-Fulkerson algorithm} |
---|
| 2386 | |
---|
| 2387 | \subsubsection*{Synopsis} |
---|
| 2388 | |
---|
| 2389 | \begin{verbatim} |
---|
| 2390 | int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap, |
---|
| 2391 | double *sol, int a_x, int v_cut); |
---|
| 2392 | \end{verbatim} |
---|
| 2393 | |
---|
| 2394 | \subsubsection*{Description} |
---|
| 2395 | |
---|
| 2396 | The routine \verb|glp_mincost_ffalg| finds optimal solution to the |
---|
| 2397 | maximum flow problem with the Ford-Fulkerson algorithm.\footnote{GLPK |
---|
| 2398 | implementation of the Ford-Fulkerson algorithm is based on the following |
---|
| 2399 | book: L.~R.~Ford,~Jr., and D.~R.~Fulkerson, ``Flows in Networks,'' The |
---|
| 2400 | RAND Corp., Report\linebreak R-375-PR (August 1962), Chap. I |
---|
| 2401 | ``Static Maximal Flow,'' pp.~30-33.} Note that this routine requires all |
---|
| 2402 | the problem data to be integer-valued. |
---|
| 2403 | |
---|
| 2404 | The parameter \verb|G| is a graph (network) program object which |
---|
| 2405 | specifies the maximum flow problem instance to be solved. |
---|
| 2406 | |
---|
| 2407 | The parameter $s$ specifies the ordinal number of the source node. |
---|
| 2408 | |
---|
| 2409 | The parameter $t$ specifies the ordinal number of the sink node. |
---|
| 2410 | |
---|
| 2411 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 2412 | \verb|double| in the arc data block, which contains $u_{ij}$, the upper |
---|
| 2413 | bound to the arc flow (the arc capacity). This bound must be integer in |
---|
| 2414 | the range [0, \verb|INT_MAX|]. If \verb|a_cap| $<0$, it is assumed that |
---|
| 2415 | $u_{ij}=1$ for all arcs. |
---|
| 2416 | |
---|
| 2417 | The parameter \verb|sol| specifies a location, to which the routine |
---|
| 2418 | stores the objective value (that is, the total flow from $s$ to $t$) |
---|
| 2419 | found. If \verb|sol| is NULL, the objective value is not stored. |
---|
| 2420 | |
---|
| 2421 | The parameter \verb|a_x| specifies an offset of the field of type |
---|
| 2422 | \verb|double| in the arc data block, to which the routine stores |
---|
| 2423 | $x_{ij}$, the arc flow found. If \verb|a_x| $<0$, the arc flow values |
---|
| 2424 | are not stored. |
---|
| 2425 | |
---|
| 2426 | The parameter \verb|v_cut| specifies an offset of the field of type |
---|
| 2427 | \verb|int| in the vertex data block, to which the routine stores node |
---|
| 2428 | flags corresponding to the optimal solution found: if the node flag is |
---|
| 2429 | 1, the node is labelled, and if the node flag is 0, the node is |
---|
| 2430 | unlabelled. The calling program may use these node flags to determine |
---|
| 2431 | the {\it minimal cut}, which is a subset of arcs whose one endpoint is |
---|
| 2432 | labelled and other is not. If \verb|v_cut| $<0$, the node flags are not |
---|
| 2433 | stored. |
---|
| 2434 | |
---|
| 2435 | Note that all solution components (the objective value and arc flows) |
---|
| 2436 | computed by the routine are always integer-valued. |
---|
| 2437 | |
---|
| 2438 | \subsubsection*{Returns} |
---|
| 2439 | |
---|
| 2440 | \def\arraystretch{1} |
---|
| 2441 | |
---|
| 2442 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
| 2443 | 0 & Optimal solution found.\\ |
---|
| 2444 | \verb|GLP_EDATA| & Unable to start the search, because some problem |
---|
| 2445 | data are either not integer-valued or out of range.\\ |
---|
| 2446 | \end{tabular} |
---|
| 2447 | |
---|
| 2448 | \subsubsection*{Example} |
---|
| 2449 | |
---|
| 2450 | The example program shown below reads the maximum flow problem instance |
---|
| 2451 | in DIMACS format from file `\verb|sample.max|', solves it using the |
---|
| 2452 | routine \verb|glp_maxflow_ffalg|, and write the solution found to the |
---|
| 2453 | standard output. |
---|
| 2454 | |
---|
| 2455 | \begin{footnotesize} |
---|
| 2456 | \begin{verbatim} |
---|
| 2457 | #include <stddef.h> |
---|
| 2458 | #include <stdio.h> |
---|
| 2459 | #include <stdlib.h> |
---|
| 2460 | #include <glpk.h> |
---|
| 2461 | |
---|
| 2462 | typedef struct { int cut; } v_data; |
---|
| 2463 | typedef struct { double cap, x; } a_data; |
---|
| 2464 | |
---|
| 2465 | #define node(v) ((v_data *)((v)->data)) |
---|
| 2466 | #define arc(a) ((a_data *)((a)->data)) |
---|
| 2467 | |
---|
| 2468 | int main(void) |
---|
| 2469 | { glp_graph *G; |
---|
| 2470 | glp_vertex *v, *w; |
---|
| 2471 | glp_arc *a; |
---|
| 2472 | int i, s, t, ret; |
---|
| 2473 | double sol; |
---|
| 2474 | G = glp_create_graph(sizeof(v_data), sizeof(a_data)); |
---|
| 2475 | glp_read_maxflow(G, &s, &t, offsetof(a_data, cap), |
---|
| 2476 | "sample.max"); |
---|
| 2477 | ret = glp_maxflow_ffalg(G, s, t, offsetof(a_data, cap), |
---|
| 2478 | &sol, offsetof(a_data, x), offsetof(v_data, cut)); |
---|
| 2479 | printf("ret = %d; sol = %5g\n", ret, sol); |
---|
| 2480 | for (i = 1; i <= G->nv; i++) |
---|
| 2481 | { v = G->v[i]; |
---|
| 2482 | for (a = v->out; a != NULL; a = a->t_next) |
---|
| 2483 | { w = a->head; |
---|
| 2484 | printf("x[%d->%d] = %5g (%d)\n", v->i, w->i, |
---|
| 2485 | arc(a)->x, node(v)->cut ^ node(w)->cut); |
---|
| 2486 | } |
---|
| 2487 | } |
---|
| 2488 | glp_delete_graph(G); |
---|
| 2489 | return 0; |
---|
| 2490 | } |
---|
| 2491 | \end{verbatim} |
---|
| 2492 | \end{footnotesize} |
---|
| 2493 | |
---|
| 2494 | If `\verb|sample.max|' is the example data file from the subsection |
---|
| 2495 | describing the routine \verb|glp_read_maxflow|, the output may look like |
---|
| 2496 | follows: |
---|
| 2497 | |
---|
| 2498 | \begin{footnotesize} |
---|
| 2499 | \begin{verbatim} |
---|
| 2500 | Reading maximum flow problem data from `sample.max'... |
---|
| 2501 | Flow network has 9 nodes and 14 arcs |
---|
| 2502 | 24 lines were read |
---|
| 2503 | ret = 0; sol = 29 |
---|
| 2504 | x[1->4] = 19 (0) |
---|
| 2505 | x[1->2] = 10 (0) |
---|
| 2506 | x[2->4] = 0 (0) |
---|
| 2507 | x[2->3] = 10 (1) |
---|
| 2508 | x[3->8] = 10 (0) |
---|
| 2509 | x[3->5] = 0 (1) |
---|
| 2510 | x[4->5] = 19 (0) |
---|
| 2511 | x[5->7] = 4 (1) |
---|
| 2512 | x[5->6] = 15 (0) |
---|
| 2513 | x[5->2] = 0 (0) |
---|
| 2514 | x[6->8] = 8 (1) |
---|
| 2515 | x[6->7] = 7 (1) |
---|
| 2516 | x[7->9] = 11 (0) |
---|
| 2517 | x[8->9] = 18 (0) |
---|
| 2518 | \end{verbatim} |
---|
| 2519 | \end{footnotesize} |
---|
| 2520 | |
---|
| 2521 | \newpage |
---|
| 2522 | |
---|
| 2523 | \subsection{glp\_rmfgen---Goldfarb's maximum flow problem generator} |
---|
| 2524 | |
---|
| 2525 | \subsubsection*{Synopsis} |
---|
| 2526 | |
---|
| 2527 | \begin{verbatim} |
---|
| 2528 | int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap, |
---|
| 2529 | const int parm[1+5]); |
---|
| 2530 | \end{verbatim} |
---|
| 2531 | |
---|
| 2532 | \subsubsection*{Description} |
---|
| 2533 | |
---|
| 2534 | The routine \verb|glp_rmfgen| is a GLPK version of the maximum flow |
---|
| 2535 | problem generator developed by D.~Goldfarb and |
---|
| 2536 | M.~Grigoriadis.\footnote{D.~Goldfarb and M.~D.~Grigoriadis, |
---|
| 2537 | ``A computational comparison of the Dinic and network simplex methods |
---|
| 2538 | for maximum flow.'' Annals of Op. Res. 13 (1988), |
---|
| 2539 | pp.~83-123.}$^{,}$\footnote{U.~Derigs and W.~Meier, ``Implementing |
---|
| 2540 | Goldberg's max-flow algorithm: A computational investigation.'' |
---|
| 2541 | Zeitschrift f\"ur Operations Research 33 (1989), |
---|
| 2542 | pp.~383-403.}$^{,}$\footnote{The original code of RMFGEN implemented by |
---|
| 2543 | Tamas Badics is publically available from |
---|
| 2544 | {\tt <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf>}.} |
---|
| 2545 | |
---|
| 2546 | The parameter \verb|G| specifies the graph object, to which the |
---|
| 2547 | generated problem data have to be stored. Note that on entry the graph |
---|
| 2548 | object is erased with the routine \verb|glp_erase_graph|. |
---|
| 2549 | |
---|
| 2550 | The pointers \verb|s| and \verb|t| specify locations, to which the |
---|
| 2551 | routine stores the source and sink node numbers, respectively. If |
---|
| 2552 | \verb|s| or \verb|t| is \verb|NULL|, corresponding node number is not |
---|
| 2553 | stored. |
---|
| 2554 | |
---|
| 2555 | The parameter \verb|a_cap| specifies an offset of the field of type |
---|
| 2556 | \verb|double| in the arc data block, to which the routine stores the arc |
---|
| 2557 | capacity. If \verb|a_cap| $<0$, the capacity is not stored. |
---|
| 2558 | |
---|
| 2559 | The array \verb|parm| contains description of the network to be |
---|
| 2560 | generated: |
---|
| 2561 | |
---|
| 2562 | \begin{tabular}{@{}lll@{}} |
---|
| 2563 | \verb|parm[0]|& ¬ used\\ |
---|
| 2564 | \verb|parm[1]|&\verb|seed|&random number seed (a positive integer)\\ |
---|
| 2565 | \verb|parm[2]|&\verb|a |&frame size\\ |
---|
| 2566 | \verb|parm[3]|&\verb|b |&depth\\ |
---|
| 2567 | \verb|parm[4]|&\verb|c1 |&minimal arc capacity\\ |
---|
| 2568 | \verb|parm[5]|&\verb|c2 |&maximal arc capacity\\ |
---|
| 2569 | \end{tabular} |
---|
| 2570 | |
---|
| 2571 | \subsubsection*{Returns} |
---|
| 2572 | |
---|
| 2573 | If the instance was successfully generated, the routine |
---|
| 2574 | \verb|glp_netgen| returns zero; otherwise, if specified parameters are |
---|
| 2575 | inconsistent, the routine returns a non-zero error code. |
---|
| 2576 | |
---|
| 2577 | \newpage |
---|
| 2578 | |
---|
| 2579 | \subsubsection*{Comments\footnote{This material is based on comments |
---|
| 2580 | to the original version of RMFGEN.}} |
---|
| 2581 | |
---|
| 2582 | The generated network is as follows. It has $b$ pieces of frames of |
---|
| 2583 | size $a\times a$. (So alltogether the number of vertices is |
---|
| 2584 | $a\times a\times b$.) |
---|
| 2585 | |
---|
| 2586 | In each frame all the vertices are connected with their neighbours |
---|
| 2587 | (forth and back). In addition the vertices of a frame are connected |
---|
| 2588 | one to one with the vertices of next frame using a random permutation |
---|
| 2589 | of those vertices. |
---|
| 2590 | |
---|
| 2591 | The source is the lower left vertex of the first frame, the sink is |
---|
| 2592 | the upper right vertex of the $b$-th frame. |
---|
| 2593 | |
---|
| 2594 | \begin{verbatim} |
---|
| 2595 | t |
---|
| 2596 | +-------+ |
---|
| 2597 | | .| |
---|
| 2598 | | . | |
---|
| 2599 | / | / | |
---|
| 2600 | +-------+/ -+ b |
---|
| 2601 | | | |/. |
---|
| 2602 | a | -v- |/ |
---|
| 2603 | | | |/ |
---|
| 2604 | +-------+ 1 |
---|
| 2605 | s a |
---|
| 2606 | \end{verbatim} |
---|
| 2607 | |
---|
| 2608 | The capacities are randomly chosen integers from the range of |
---|
| 2609 | $[c_1,c_2]$ in the case of interconnecting edges, and $c_2\cdot a^2$ |
---|
| 2610 | for the in-frame edges. |
---|
| 2611 | |
---|
| 2612 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 2613 | |
---|
| 2614 | \newpage |
---|
| 2615 | |
---|
| 2616 | \section{Assignment problem} |
---|
| 2617 | |
---|
| 2618 | \subsection{Background} |
---|
| 2619 | |
---|
| 2620 | Let there be given an undirected bipartite graph $G=(R\cup S,E)$, where |
---|
| 2621 | $R$ and $S$ are disjoint sets of vertices (nodes), and |
---|
| 2622 | $E\subseteq R\times S$ is a set of edges. Let also for each edge |
---|
| 2623 | $e=(i,j)\in E$ there be given its cost $c_{ij}$. A {\it matching} |
---|
| 2624 | (which in case of bipartite graph is also called {\it assignment}) |
---|
| 2625 | $M\subseteq E$ in $G$ is a set of pairwise non-adjacent edges, that is, |
---|
| 2626 | no two edges in $M$ share a common vertex. A matching, which matches |
---|
| 2627 | all vertices of the graph, is called a {\it perfect matching}. |
---|
| 2628 | Obviously, a perfect matching in bipartite graph $G=(R\cup S,E)$ |
---|
| 2629 | defines some bijection $R\leftrightarrow S$. |
---|
| 2630 | |
---|
| 2631 | The {\it assignment problem} has two different variants. In the first |
---|
| 2632 | variant the problem is to find matching (assignment) $M$, which |
---|
| 2633 | maximizes the sum: |
---|
| 2634 | $$\sum_{(i,j)\in M}c_{ij}\eqno(10)$$ |
---|
| 2635 | (so this variant is also called the {\it maximum weighted bipartite |
---|
| 2636 | matching problem} or, if all $c_{ij}=1$, the {\it maximum cardinality |
---|
| 2637 | bipartite matching problem}). In the second, classic variant the |
---|
| 2638 | problem is to find {\it perfect} matching (assignment) $M$, which |
---|
| 2639 | minimizes or maximizes the sum (10). |
---|
| 2640 | |
---|
| 2641 | An example of the assignment problem, which is the maximum weighted |
---|
| 2642 | bipartite matching problem, is shown on Fig. 3. |
---|
| 2643 | |
---|
| 2644 | The maximum weighted bipartite matching problem can be naturally |
---|
| 2645 | formulated as the following LP problem: |
---|
| 2646 | |
---|
| 2647 | \medskip |
---|
| 2648 | |
---|
| 2649 | \noindent |
---|
| 2650 | \hspace{.5in}maximize |
---|
| 2651 | $$z=\sum_{(i,j)\in E}c_{ij}x_{ij}\eqno(11)$$ |
---|
| 2652 | \hspace{.5in}subject to |
---|
| 2653 | $$\sum_{(i,j)\in E}x_{ij}\leq 1\ \ \ \hbox{for all}\ i\in R\eqno(12)$$ |
---|
| 2654 | $$\sum_{(i,j)\in E}x_{ij}\leq 1\ \ \ \hbox{for all}\ j\in S\eqno(13)$$ |
---|
| 2655 | $$\ \ \ \ \ \ \ \ 0\leq x_{ij}\leq 1\ \ \ \hbox{for all}\ (i,j)\in E |
---|
| 2656 | \eqno(14)$$ |
---|
| 2657 | |
---|
| 2658 | \medskip |
---|
| 2659 | |
---|
| 2660 | \noindent |
---|
| 2661 | where $x_{ij}=1$ means that $(i,j)\in M$, and $x_{ij}=0$ means that |
---|
| 2662 | $(i,j)\notin M$.\footnote{The constraint matrix of LP formulation |
---|
| 2663 | (11)---(14) is totally unimodular, due to which $x_{ij}\in\{0,1\}$ for |
---|
| 2664 | any basic solution.} |
---|
| 2665 | |
---|
| 2666 | \newpage |
---|
| 2667 | |
---|
| 2668 | \bigskip |
---|
| 2669 | |
---|
| 2670 | \noindent\hfil |
---|
| 2671 | \xymatrix @C=48pt |
---|
| 2672 | {v_1\ar@{-}[rr]|{_{13}}\ar@{-}[rrd]|{_{21}}\ar@{-}[rrddd]|(.2){_{20}}&& |
---|
| 2673 | v_9\\ |
---|
| 2674 | v_2\ar@{-}[rr]|{_{12}}\ar@{-}[rrdd]|(.3){_{8}} |
---|
| 2675 | \ar@{-}[rrddd]|(.4){_{26}}&&v_{10}\\ |
---|
| 2676 | v_3\ar@{-}[rr]|(.2){_{22}}\ar@{-}[rrdd]|(.3){_{11}}&&v_{11}\\ |
---|
| 2677 | v_4\ar@{-}[rruuu]|(.6){_{12}}\ar@{-}[rr]|(.2){_{36}} |
---|
| 2678 | \ar@{-}[rrdd]|(.7){_{25}}&&v_{12}\\ |
---|
| 2679 | v_5\ar@{-}[rruu]|(.42){_{41}}\ar@{-}[rru]|(.4){_{40}} |
---|
| 2680 | \ar@{-}[rr]|(.75){_{11}}\ar@{-}[rrd]|(.6){_{4}}\ar@{-}[rrdd]|{_{8}} |
---|
| 2681 | \ar@{-}[rrddd]|{_{35}}\ar@{-}[rrdddd]|{_{32}}&&v_{13}\\ |
---|
| 2682 | v_6\ar@{-}[rruuuuu]|(.7){_{13}}&&v_{14}\\ |
---|
| 2683 | v_7\ar@{-}[rruuuuu]|(.15){_{19}}&&v_{15}\\ |
---|
| 2684 | v_8\ar@{-}[rruuuuuu]|(.25){_{39}}\ar@{-}[rruuuuu]|(.65){_{15}}&& |
---|
| 2685 | v_{16}\\ |
---|
| 2686 | &&v_{17}\\ |
---|
| 2687 | } |
---|
| 2688 | |
---|
| 2689 | \bigskip |
---|
| 2690 | |
---|
| 2691 | \noindent\hfil |
---|
| 2692 | Fig.~3. An example of the assignment problem. |
---|
| 2693 | |
---|
| 2694 | \bigskip |
---|
| 2695 | |
---|
| 2696 | Similarly, the perfect assignment problem can be naturally formulated |
---|
| 2697 | as the following LP problem: |
---|
| 2698 | |
---|
| 2699 | \medskip |
---|
| 2700 | |
---|
| 2701 | \noindent |
---|
| 2702 | \hspace{.5in}minimize (or maximize) |
---|
| 2703 | $$z=\sum_{(i,j)\in E}c_{ij}x_{ij}\eqno(15)$$ |
---|
| 2704 | \hspace{.5in}subject to |
---|
| 2705 | $$\sum_{(i,j)\in E}x_{ij}=1\ \ \ \hbox{for all}\ i\in R\eqno(16)$$ |
---|
| 2706 | $$\sum_{(i,j)\in E}x_{ij}=1\ \ \ \hbox{for all}\ j\in S\eqno(17)$$ |
---|
| 2707 | $$\ \ \ \ \ \ \ \ 0\leq x_{ij}\leq 1\ \ \ \hbox{for all}\ (i,j)\in E |
---|
| 2708 | \eqno(18)$$ |
---|
| 2709 | |
---|
| 2710 | \medskip |
---|
| 2711 | |
---|
| 2712 | \noindent |
---|
| 2713 | where variables $x_{ij}$ have the same meaning as for (11)---(14) |
---|
| 2714 | above. |
---|
| 2715 | |
---|
| 2716 | \newpage |
---|
| 2717 | |
---|
| 2718 | In GLPK an undirected bipartite graph $G=(R\cup S,E)$ is represented as |
---|
| 2719 | directed graph $\overline{G}=(V,A)$, where $V=R\cup S$ and |
---|
| 2720 | $A=\{(i,j):(i,j)\in E\}$, i.e. every edge $(i,j)\in E$ in $G$ |
---|
| 2721 | corresponds to arc $(i\rightarrow j)\in A$ in $\overline{G}$. |
---|
| 2722 | |
---|
| 2723 | \subsection{glp\_read\_asnprob---read assignment problem data in\\DIMACS |
---|
| 2724 | format} |
---|
| 2725 | |
---|
| 2726 | \subsubsection*{Synopsis} |
---|
| 2727 | |
---|
| 2728 | \begin{verbatim} |
---|
| 2729 | int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, |
---|
| 2730 | const char *fname); |
---|
| 2731 | \end{verbatim} |
---|
| 2732 | |
---|
| 2733 | \subsubsection*{Description} |
---|
| 2734 | |
---|
| 2735 | The routine \verb|glp_read_asnprob| reads the assignment problem data |
---|
| 2736 | from a text file in DIMACS format. |
---|
| 2737 | |
---|
| 2738 | The parameter \verb|G| specifies the graph object, to which the problem |
---|
| 2739 | data have to be stored. Note that before reading data the current |
---|
| 2740 | content of the graph object is completely erased with the routine |
---|
| 2741 | \verb|glp_erase_graph|. |
---|
| 2742 | |
---|
| 2743 | The parameter \verb|v_set| specifies an offset of the field of type |
---|
| 2744 | \verb|int| in the vertex data block, to which the routine stores the |
---|
| 2745 | node set indicator: |
---|
| 2746 | |
---|
| 2747 | 0 --- the node is in set $R$; |
---|
| 2748 | |
---|
| 2749 | 1 --- the node is in set $S$. |
---|
| 2750 | |
---|
| 2751 | \noindent |
---|
| 2752 | If \verb|v_set| $<0$, the node set indicator is not stored. |
---|
| 2753 | |
---|
| 2754 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 2755 | \verb|double| in the arc data block, to which the routine stores the |
---|
| 2756 | edge cost $c_{ij}$. If \verb|a_cost| $<0$, the edge cost is not stored. |
---|
| 2757 | |
---|
| 2758 | The character string \verb|fname| specifies the name of a text file to |
---|
| 2759 | be read in. (If the file name name ends with the suffix `\verb|.gz|', |
---|
| 2760 | the file is assumed to be compressed, in which case the routine |
---|
| 2761 | decompresses it ``on the fly''.) |
---|
| 2762 | |
---|
| 2763 | \subsubsection*{Returns} |
---|
| 2764 | |
---|
| 2765 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 2766 | it prints an error message and returns non-zero. |
---|
| 2767 | |
---|
| 2768 | \newpage |
---|
| 2769 | |
---|
| 2770 | \subsubsection*{Example} |
---|
| 2771 | |
---|
| 2772 | \begin{footnotesize} |
---|
| 2773 | \begin{verbatim} |
---|
| 2774 | typedef struct |
---|
| 2775 | { /* vertex data block */ |
---|
| 2776 | ... |
---|
| 2777 | int set; |
---|
| 2778 | ... |
---|
| 2779 | } v_data; |
---|
| 2780 | |
---|
| 2781 | typedef struct |
---|
| 2782 | { /* arc data block */ |
---|
| 2783 | ... |
---|
| 2784 | double cost; |
---|
| 2785 | ... |
---|
| 2786 | } a_data; |
---|
| 2787 | |
---|
| 2788 | int main(void) |
---|
| 2789 | { glp_graph *G; |
---|
| 2790 | int ret; |
---|
| 2791 | G = glp_create_graph(sizeof(v_data), sizeof(a_data)); |
---|
| 2792 | ret = glp_read_asnprob(G, offsetof(v_data, set), |
---|
| 2793 | offsetof(a_data, cost), "sample.asn"); |
---|
| 2794 | if (ret != 0) goto ... |
---|
| 2795 | ... |
---|
| 2796 | } |
---|
| 2797 | \end{verbatim} |
---|
| 2798 | \end{footnotesize} |
---|
| 2799 | |
---|
| 2800 | \subsubsection*{DIMACS assignment problem format\footnote{This |
---|
| 2801 | material is based on the paper ``The First DIMACS International |
---|
| 2802 | Algorithm Implementation Challenge: Problem Definitions and |
---|
| 2803 | Specifications'', which is publically available at |
---|
| 2804 | {\tt http://dimacs.rutgers.edu/Challenges/}.}} |
---|
| 2805 | \label{subsecasnprob} |
---|
| 2806 | |
---|
| 2807 | The DIMACS input file is a plain ASCII text file. It contains |
---|
| 2808 | {\it lines} of several types described below. A line is terminated with |
---|
| 2809 | an end-of-line character. Fields in each line are separated by at least |
---|
| 2810 | one blank space. Each line begins with a one-character designator to |
---|
| 2811 | identify the line type. |
---|
| 2812 | |
---|
| 2813 | Note that DIMACS requires all numerical quantities to be integers in |
---|
| 2814 | the range $[-2^{31},\ 2^{31}-1]$ while GLPK allows the quantities to be |
---|
| 2815 | floating-point numbers. |
---|
| 2816 | |
---|
| 2817 | \paragraph{Comment lines.} Comment lines give human-readable information |
---|
| 2818 | about the file and are ignored by programs. Comment lines can appear |
---|
| 2819 | anywhere in the file. Each comment line begins with a lower-case |
---|
| 2820 | character \verb|c|. |
---|
| 2821 | |
---|
| 2822 | \begin{verbatim} |
---|
| 2823 | c This is a comment line |
---|
| 2824 | \end{verbatim} |
---|
| 2825 | |
---|
| 2826 | \newpage |
---|
| 2827 | |
---|
| 2828 | \paragraph{Problem line.} There is one problem line per data file. The |
---|
| 2829 | problem line must appear before any node or arc descriptor lines. It has |
---|
| 2830 | the following format: |
---|
| 2831 | |
---|
| 2832 | \begin{verbatim} |
---|
| 2833 | p asn NODES EDGES |
---|
| 2834 | \end{verbatim} |
---|
| 2835 | |
---|
| 2836 | \noindent |
---|
| 2837 | The lower-case character \verb|p| signifies that this is a problem line. |
---|
| 2838 | The three-character problem designator \verb|asn| identifies the file as |
---|
| 2839 | containing specification information for the assignment problem. |
---|
| 2840 | The \verb|NODES| field contains an integer value specifying the total |
---|
| 2841 | number of nodes in the graph (i.e. in both sets $R$ and $S$). The |
---|
| 2842 | \verb|EDGES| field contains an integer value specifying the number of |
---|
| 2843 | edges in the graph. |
---|
| 2844 | |
---|
| 2845 | \paragraph{Node descriptors.} All node descriptor lines must appear |
---|
| 2846 | before all edge descriptor lines. The node descriptor lines lists the |
---|
| 2847 | nodes in set $R$ only, and all other nodes are assumed to be in set |
---|
| 2848 | $S$. There is one node descriptor line for each such node, with the |
---|
| 2849 | following format: |
---|
| 2850 | |
---|
| 2851 | \begin{verbatim} |
---|
| 2852 | n ID |
---|
| 2853 | \end{verbatim} |
---|
| 2854 | |
---|
| 2855 | \noindent |
---|
| 2856 | The lower-case character \verb|n| signifies that this is a node |
---|
| 2857 | descriptor line. The \verb|ID| field gives a node identification number, |
---|
| 2858 | an integer between 1 and \verb|NODES|. |
---|
| 2859 | |
---|
| 2860 | \paragraph{Edge descriptors.} There is one edge descriptor line for |
---|
| 2861 | each edge in the graph. Edge descriptor lines are of the following |
---|
| 2862 | format: |
---|
| 2863 | |
---|
| 2864 | \begin{verbatim} |
---|
| 2865 | a SRC DST COST |
---|
| 2866 | \end{verbatim} |
---|
| 2867 | |
---|
| 2868 | \noindent |
---|
| 2869 | The lower-case character \verb|a| signifies that this is an edge |
---|
| 2870 | descriptor line. For each edge $(i,j)$, where $i\in R$ and $j\in S$, |
---|
| 2871 | the \verb|SRC| field gives the identification number of vertex $i$, and |
---|
| 2872 | the \verb|DST| field gives the identification number of vertex $j$. |
---|
| 2873 | Identification numbers are integers between 1 and \verb|NODES|. The |
---|
| 2874 | \verb|COST| field contains the cost of edge $(i,j)$. |
---|
| 2875 | |
---|
| 2876 | \paragraph{Example.} Below here is an example of the data file in |
---|
| 2877 | DIMACS format corresponding to the assignment problem shown on Fig~3. |
---|
| 2878 | |
---|
| 2879 | \newpage |
---|
| 2880 | |
---|
| 2881 | \begin{footnotesize} |
---|
| 2882 | \begin{verbatim} |
---|
| 2883 | c sample.asn |
---|
| 2884 | c |
---|
| 2885 | c This is an example of the assignment problem data |
---|
| 2886 | c in DIMACS format. |
---|
| 2887 | c |
---|
| 2888 | p asn 17 22 |
---|
| 2889 | c |
---|
| 2890 | n 1 |
---|
| 2891 | n 2 |
---|
| 2892 | n 3 |
---|
| 2893 | n 4 |
---|
| 2894 | n 5 |
---|
| 2895 | n 6 |
---|
| 2896 | n 7 |
---|
| 2897 | n 8 |
---|
| 2898 | c |
---|
| 2899 | a 1 9 13 |
---|
| 2900 | a 1 10 21 |
---|
| 2901 | a 1 12 20 |
---|
| 2902 | a 2 10 12 |
---|
| 2903 | a 2 12 8 |
---|
| 2904 | a 2 13 26 |
---|
| 2905 | a 3 11 22 |
---|
| 2906 | a 3 13 11 |
---|
| 2907 | a 4 9 12 |
---|
| 2908 | a 4 12 36 |
---|
| 2909 | a 4 14 25 |
---|
| 2910 | a 5 11 41 |
---|
| 2911 | a 5 12 40 |
---|
| 2912 | a 5 13 11 |
---|
| 2913 | a 5 14 4 |
---|
| 2914 | a 5 15 8 |
---|
| 2915 | a 5 16 35 |
---|
| 2916 | a 5 17 32 |
---|
| 2917 | a 6 9 13 |
---|
| 2918 | a 7 10 19 |
---|
| 2919 | a 8 10 39 |
---|
| 2920 | a 8 11 15 |
---|
| 2921 | c |
---|
| 2922 | c eof |
---|
| 2923 | \end{verbatim} |
---|
| 2924 | \end{footnotesize} |
---|
| 2925 | |
---|
| 2926 | \newpage |
---|
| 2927 | |
---|
| 2928 | \subsection{glp\_write\_asnprob---write assignment problem data in\\ |
---|
| 2929 | DIMACS format} |
---|
| 2930 | |
---|
| 2931 | \subsubsection*{Synopsis} |
---|
| 2932 | |
---|
| 2933 | \begin{verbatim} |
---|
| 2934 | int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, |
---|
| 2935 | const char *fname); |
---|
| 2936 | \end{verbatim} |
---|
| 2937 | |
---|
| 2938 | \subsubsection*{Description} |
---|
| 2939 | |
---|
| 2940 | The routine \verb|glp_write_asnprob| writes the assignment problem data |
---|
| 2941 | to a text file in DIMACS format. |
---|
| 2942 | |
---|
| 2943 | The parameter \verb|G| is the graph program object, which specifies the |
---|
| 2944 | assignment problem instance. |
---|
| 2945 | |
---|
| 2946 | The parameter \verb|v_set| specifies an offset of the field of type |
---|
| 2947 | \verb|int| in the vertex data block, which contains the node set |
---|
| 2948 | indicator: |
---|
| 2949 | |
---|
| 2950 | 0 --- the node is in set $R$; |
---|
| 2951 | |
---|
| 2952 | 1 --- the node is in set $S$. |
---|
| 2953 | |
---|
| 2954 | \noindent |
---|
| 2955 | If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs |
---|
| 2956 | is in set $R$, and a node having no outgoing arcs is in set $S$. |
---|
| 2957 | |
---|
| 2958 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 2959 | \verb|double| in the arc data block, which contains $c_{ij}$, the edge |
---|
| 2960 | cost. If \verb|a_cost| $<0$, it is assumed that $c_{ij}=1$ for all |
---|
| 2961 | edges. |
---|
| 2962 | |
---|
| 2963 | The character string \verb|fname| specifies a name of the text file to |
---|
| 2964 | be written out. (If the file name ends with suffix `\verb|.gz|', the |
---|
| 2965 | file is assumed to be compressed, in which case the routine performs |
---|
| 2966 | automatic compression on writing it.) |
---|
| 2967 | |
---|
| 2968 | \subsubsection*{Note} |
---|
| 2969 | |
---|
| 2970 | The routine \verb|glp_write_asnprob| does not check that the specified |
---|
| 2971 | graph object correctly represents a bipartite graph. To make sure that |
---|
| 2972 | the problem data are correct, use the routine \verb|glp_check_asnprob|. |
---|
| 2973 | |
---|
| 2974 | \subsubsection*{Returns} |
---|
| 2975 | |
---|
| 2976 | If the operation was successful, the routine returns zero. Otherwise, |
---|
| 2977 | it prints an error message and returns non-zero. |
---|
| 2978 | |
---|
| 2979 | \newpage |
---|
| 2980 | |
---|
| 2981 | \subsection{glp\_check\_asnprob---check correctness of assignment |
---|
| 2982 | problem data} |
---|
| 2983 | |
---|
| 2984 | \subsubsection*{Synopsis} |
---|
| 2985 | |
---|
| 2986 | \begin{verbatim} |
---|
| 2987 | int glp_check_asnprob(glp_graph *G, int v_set); |
---|
| 2988 | \end{verbatim} |
---|
| 2989 | |
---|
| 2990 | \subsubsection*{Description} |
---|
| 2991 | |
---|
| 2992 | The routine \verb|glp_check_asnprob| checks that the specified graph |
---|
| 2993 | object \verb|G| correctly represents a bipartite graph. |
---|
| 2994 | |
---|
| 2995 | The parameter \verb|v_set| specifies an offset of the field of type |
---|
| 2996 | \verb|int| in the vertex data block, which contains the node set |
---|
| 2997 | indicator: |
---|
| 2998 | |
---|
| 2999 | 0 --- the node is in set $R$; |
---|
| 3000 | |
---|
| 3001 | 1 --- the node is in set $S$. |
---|
| 3002 | |
---|
| 3003 | \noindent |
---|
| 3004 | If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs |
---|
| 3005 | is in set $R$, and a node having no outgoing arcs is in set $S$. |
---|
| 3006 | |
---|
| 3007 | \subsubsection*{Returns} |
---|
| 3008 | |
---|
| 3009 | The routine \verb|glp_check_asnprob| may return the following codes: |
---|
| 3010 | |
---|
| 3011 | 0 --- the data are correct; |
---|
| 3012 | |
---|
| 3013 | 1 --- the set indicator of some node is 0, however, that node has one |
---|
| 3014 | or more incoming arcs; |
---|
| 3015 | |
---|
| 3016 | 2 --- the set indicator of some node is 1, however, that node has one |
---|
| 3017 | or more outgoing arcs; |
---|
| 3018 | |
---|
| 3019 | 3 --- the set indicator of some node is invalid (neither 0 nor 1); |
---|
| 3020 | |
---|
| 3021 | 4 --- some node has both incoming and outgoing arcs. |
---|
| 3022 | |
---|
| 3023 | \subsection{glp\_asnprob\_lp---convert assignment problem to LP} |
---|
| 3024 | |
---|
| 3025 | \subsubsection*{Synopsis} |
---|
| 3026 | |
---|
| 3027 | \begin{verbatim} |
---|
| 3028 | int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, |
---|
| 3029 | int names, int v_set, int a_cost); |
---|
| 3030 | \end{verbatim} |
---|
| 3031 | |
---|
| 3032 | \subsubsection*{Description} |
---|
| 3033 | |
---|
| 3034 | The routine \verb|glp_asnprob_lp| builds LP problem, which corresponds |
---|
| 3035 | to the specified assignment problem. |
---|
| 3036 | |
---|
| 3037 | The parameter \verb|lp| is the resultant LP problem object to be built. |
---|
| 3038 | Note that on entry its current content is erased with the routine |
---|
| 3039 | \verb|glp_erase_prob|. |
---|
| 3040 | |
---|
| 3041 | The parameter \verb|form| defines which LP formulation should be used: |
---|
| 3042 | |
---|
| 3043 | \verb|GLP_ASN_MIN| --- perfect matching (15)---(18), minimization; |
---|
| 3044 | |
---|
| 3045 | \verb|GLP_ASN_MAX| --- perfect matching (15)---(18), maximization; |
---|
| 3046 | |
---|
| 3047 | \verb|GLP_ASN_MMP| --- maximum weighted matching (11)---(14). |
---|
| 3048 | |
---|
| 3049 | The parameter \verb|G| is the graph program object, which specifies the |
---|
| 3050 | assignment problem instance. |
---|
| 3051 | |
---|
| 3052 | The parameter \verb|names| is a flag. If it is \verb|GLP_ON|, the |
---|
| 3053 | routine uses symbolic names of the graph object components to assign |
---|
| 3054 | symbolic names to the LP problem object components. If the \verb|flag| |
---|
| 3055 | is \verb|GLP_OFF|, no symbolic names are assigned. |
---|
| 3056 | |
---|
| 3057 | The parameter \verb|v_set| specifies an offset of the field of type |
---|
| 3058 | \verb|int| in the vertex data block, which contains the node set |
---|
| 3059 | indicator: |
---|
| 3060 | |
---|
| 3061 | 0 --- the node is in set $R$; |
---|
| 3062 | |
---|
| 3063 | 1 --- the node is in set $S$. |
---|
| 3064 | |
---|
| 3065 | \noindent |
---|
| 3066 | If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs |
---|
| 3067 | is in set $R$, and a node having no outgoing arcs is in set $S$. |
---|
| 3068 | |
---|
| 3069 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 3070 | \verb|double| in the arc data block, which contains $c_{ij}$, the edge |
---|
| 3071 | cost. If \verb|a_cost| $<0$, it is assumed that $c_{ij}=1$ for all |
---|
| 3072 | edges. |
---|
| 3073 | |
---|
| 3074 | \subsubsection*{Returns} |
---|
| 3075 | |
---|
| 3076 | If the LP problem has been successfully built, the routine |
---|
| 3077 | \verb|glp_asnprob_lp| returns zero, otherwise, non-zero (see the |
---|
| 3078 | routine \verb|glp_check_asnprob|). |
---|
| 3079 | |
---|
| 3080 | \subsubsection*{Example} |
---|
| 3081 | |
---|
| 3082 | The example program below reads the assignment problem instance in |
---|
| 3083 | DIMACS format from file `\verb|sample.asn|', converts the instance to |
---|
| 3084 | LP (11)---(14), and writes the resultant LP in CPLEX format to file |
---|
| 3085 | `\verb|matching.lp|'. |
---|
| 3086 | |
---|
| 3087 | \begin{footnotesize} |
---|
| 3088 | \begin{verbatim} |
---|
| 3089 | #include <stddef.h> |
---|
| 3090 | #include <glpk.h> |
---|
| 3091 | |
---|
| 3092 | typedef struct { int set; } v_data; |
---|
| 3093 | typedef struct { double cost; } a_data; |
---|
| 3094 | |
---|
| 3095 | int main(void) |
---|
| 3096 | { glp_graph *G; |
---|
| 3097 | glp_prob *P; |
---|
| 3098 | G = glp_create_graph(sizeof(v_data), sizeof(a_data)); |
---|
| 3099 | glp_read_asnprob(G, offsetof(v_data, set), |
---|
| 3100 | offsetof(a_data, cost), "sample.asn"); |
---|
| 3101 | P = glp_create_prob(); |
---|
| 3102 | glp_asnprob_lp(P, GLP_ASN_MMP, G, GLP_ON, |
---|
| 3103 | offsetof(v_data, set), offsetof(a_data, cost)); |
---|
| 3104 | glp_delete_graph(G); |
---|
| 3105 | glp_write_lp(P, NULL, "matching.lp"); |
---|
| 3106 | glp_delete_prob(P); |
---|
| 3107 | return 0; |
---|
| 3108 | } |
---|
| 3109 | \end{verbatim} |
---|
| 3110 | \end{footnotesize} |
---|
| 3111 | |
---|
| 3112 | If `\verb|sample.asn|' is the example data file from the subsection |
---|
| 3113 | describing the routine \verb|glp_read_asnprob|, file |
---|
| 3114 | `\verb|matching.lp|' may look like follows: |
---|
| 3115 | |
---|
| 3116 | \begin{footnotesize} |
---|
| 3117 | \begin{verbatim} |
---|
| 3118 | Maximize |
---|
| 3119 | obj: + 20 x(1,12) + 21 x(1,10) + 13 x(1,9) + 26 x(2,13) + 8 x(2,12) |
---|
| 3120 | + 12 x(2,10) + 11 x(3,13) + 22 x(3,11) + 25 x(4,14) + 36 x(4,12) |
---|
| 3121 | + 12 x(4,9) + 32 x(5,17) + 35 x(5,16) + 8 x(5,15) + 4 x(5,14) |
---|
| 3122 | + 11 x(5,13) + 40 x(5,12) + 41 x(5,11) + 13 x(6,9) + 19 x(7,10) |
---|
| 3123 | + 15 x(8,11) + 39 x(8,10) |
---|
| 3124 | |
---|
| 3125 | Subject To |
---|
| 3126 | r_1: + x(1,9) + x(1,10) + x(1,12) <= 1 |
---|
| 3127 | r_2: + x(2,10) + x(2,12) + x(2,13) <= 1 |
---|
| 3128 | r_3: + x(3,11) + x(3,13) <= 1 |
---|
| 3129 | r_4: + x(4,9) + x(4,12) + x(4,14) <= 1 |
---|
| 3130 | r_5: + x(5,11) + x(5,12) + x(5,13) + x(5,14) + x(5,15) + x(5,16) |
---|
| 3131 | + x(5,17) <= 1 |
---|
| 3132 | r_6: + x(6,9) <= 1 |
---|
| 3133 | r_7: + x(7,10) <= 1 |
---|
| 3134 | r_8: + x(8,10) + x(8,11) <= 1 |
---|
| 3135 | r_9: + x(6,9) + x(4,9) + x(1,9) <= 1 |
---|
| 3136 | r_10: + x(8,10) + x(7,10) + x(2,10) + x(1,10) <= 1 |
---|
| 3137 | r_11: + x(8,11) + x(5,11) + x(3,11) <= 1 |
---|
| 3138 | r_12: + x(5,12) + x(4,12) + x(2,12) + x(1,12) <= 1 |
---|
| 3139 | r_13: + x(5,13) + x(3,13) + x(2,13) <= 1 |
---|
| 3140 | r_14: + x(5,14) + x(4,14) <= 1 |
---|
| 3141 | r_15: + x(5,15) <= 1 |
---|
| 3142 | r_16: + x(5,16) <= 1 |
---|
| 3143 | r_17: + x(5,17) <= 1 |
---|
| 3144 | |
---|
| 3145 | Bounds |
---|
| 3146 | 0 <= x(1,12) <= 1 |
---|
| 3147 | 0 <= x(1,10) <= 1 |
---|
| 3148 | 0 <= x(1,9) <= 1 |
---|
| 3149 | 0 <= x(2,13) <= 1 |
---|
| 3150 | 0 <= x(2,12) <= 1 |
---|
| 3151 | 0 <= x(2,10) <= 1 |
---|
| 3152 | 0 <= x(3,13) <= 1 |
---|
| 3153 | 0 <= x(3,11) <= 1 |
---|
| 3154 | 0 <= x(4,14) <= 1 |
---|
| 3155 | 0 <= x(4,12) <= 1 |
---|
| 3156 | 0 <= x(4,9) <= 1 |
---|
| 3157 | 0 <= x(5,17) <= 1 |
---|
| 3158 | 0 <= x(5,16) <= 1 |
---|
| 3159 | 0 <= x(5,15) <= 1 |
---|
| 3160 | 0 <= x(5,14) <= 1 |
---|
| 3161 | 0 <= x(5,13) <= 1 |
---|
| 3162 | 0 <= x(5,12) <= 1 |
---|
| 3163 | 0 <= x(5,11) <= 1 |
---|
| 3164 | 0 <= x(6,9) <= 1 |
---|
| 3165 | 0 <= x(7,10) <= 1 |
---|
| 3166 | 0 <= x(8,11) <= 1 |
---|
| 3167 | 0 <= x(8,10) <= 1 |
---|
| 3168 | |
---|
| 3169 | End |
---|
| 3170 | \end{verbatim} |
---|
| 3171 | \end{footnotesize} |
---|
| 3172 | |
---|
| 3173 | \subsection{glp\_asnprob\_okalg---solve assignment problem with |
---|
| 3174 | out-of-kilter algorithm} |
---|
| 3175 | |
---|
| 3176 | \subsubsection*{Synopsis} |
---|
| 3177 | |
---|
| 3178 | \begin{verbatim} |
---|
| 3179 | int glp_asnprob_okalg(int form, glp_graph *G, int v_set, |
---|
| 3180 | int a_cost, double *sol, int a_x); |
---|
| 3181 | \end{verbatim} |
---|
| 3182 | |
---|
| 3183 | \subsubsection*{Description} |
---|
| 3184 | |
---|
| 3185 | The routine \verb|glp_mincost_okalg| finds optimal solution to the |
---|
| 3186 | assignment problem with the out-of-kilter |
---|
| 3187 | algorithm.\footnote{GLPK implementation of the out-of-kilter algorithm |
---|
| 3188 | is based on the following book: L.~R.~Ford,~Jr., and D.~R.~Fulkerson, |
---|
| 3189 | ``Flows in Networks,'' The RAND Corp., Report R-375-PR (August 1962), |
---|
| 3190 | Chap. III ``Minimal Cost Flow Problems,'' pp.~113-26.} Note that this |
---|
| 3191 | routine requires all the problem data to be integer-valued. |
---|
| 3192 | |
---|
| 3193 | The parameter \verb|form| defines which LP formulation should be used: |
---|
| 3194 | |
---|
| 3195 | \verb|GLP_ASN_MIN| --- perfect matching (15)---(18), minimization; |
---|
| 3196 | |
---|
| 3197 | \verb|GLP_ASN_MAX| --- perfect matching (15)---(18), maximization; |
---|
| 3198 | |
---|
| 3199 | \verb|GLP_ASN_MMP| --- maximum weighted matching (11)---(14). |
---|
| 3200 | |
---|
| 3201 | The parameter \verb|G| is the graph program object, which specifies the |
---|
| 3202 | assignment problem instance. |
---|
| 3203 | |
---|
| 3204 | The parameter \verb|v_set| specifies an offset of the field of type |
---|
| 3205 | \verb|int| in the vertex data block, which contains the node set |
---|
| 3206 | indicator: |
---|
| 3207 | |
---|
| 3208 | 0 --- the node is in set $R$; |
---|
| 3209 | |
---|
| 3210 | 1 --- the node is in set $S$. |
---|
| 3211 | |
---|
| 3212 | \newpage |
---|
| 3213 | |
---|
| 3214 | \noindent |
---|
| 3215 | If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs |
---|
| 3216 | is in set $R$, and a node having no outgoing arcs is in set $S$. |
---|
| 3217 | |
---|
| 3218 | The parameter \verb|a_cost| specifies an offset of the field of type |
---|
| 3219 | \verb|double| in the arc data block, which contains $c_{ij}$, the edge |
---|
| 3220 | cost. This value must be integer in the range [\verb|-INT_MAX|, |
---|
| 3221 | \verb|+INT_MAX|]. If \verb|a_cost| $<0$, it is assumed that $c_{ij}=1$ |
---|
| 3222 | for all edges. |
---|
| 3223 | |
---|
| 3224 | The parameter \verb|sol| specifies a location, to which the routine |
---|
| 3225 | stores the objective value (that is, the total cost) found. |
---|
| 3226 | If \verb|sol| is \verb|NULL|, the objective value is not stored. |
---|
| 3227 | |
---|
| 3228 | The parameter \verb|a_x| specifies an offset of the field of type |
---|
| 3229 | \verb|int| in the arc data block, to which the routine stores $x_{ij}$. |
---|
| 3230 | If \verb|a_x| $<0$, this value is not stored. |
---|
| 3231 | |
---|
| 3232 | \subsubsection*{Returns} |
---|
| 3233 | |
---|
| 3234 | \def\arraystretch{1} |
---|
| 3235 | |
---|
| 3236 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
| 3237 | 0 & Optimal solution found.\\ |
---|
| 3238 | \verb|GLP_ENOPFS| & No (primal) feasible solution exists.\\ |
---|
| 3239 | \verb|GLP_EDATA| & Unable to start the search, because the assignment |
---|
| 3240 | problem data are either incorrect (this error is detected by the |
---|
| 3241 | routine \verb|glp_check_asnprob|), not integer-valued or out of range.\\ |
---|
| 3242 | \verb|GLP_ERANGE| & The search was prematurely terminated because of |
---|
| 3243 | integer overflow.\\ |
---|
| 3244 | \verb|GLP_EFAIL| & An error has been detected in the program logic. |
---|
| 3245 | (If this code is returned for your problem instance, please report to |
---|
| 3246 | \verb|<bug-glpk@gnu.org>|.)\\ |
---|
| 3247 | \end{tabular} |
---|
| 3248 | |
---|
| 3249 | \subsubsection*{Comments} |
---|
| 3250 | |
---|
| 3251 | Since the out-of-kilter algorithm is designed to find a minimal cost |
---|
| 3252 | circulation, the routine \verb|glp_asnprob_okalg| converts the original |
---|
| 3253 | graph to a network suitable for this algorithm in the following |
---|
| 3254 | way:\footnote{The conversion is performed internally and does not change |
---|
| 3255 | the original graph program object passed to the routine.} |
---|
| 3256 | |
---|
| 3257 | 1) it replaces each edge $(i,j)$ by arc $(i\rightarrow j)$, |
---|
| 3258 | flow $x_{ij}$ through which has zero lower bound ($l_{ij}=0$), unity |
---|
| 3259 | upper bound ($u_{ij}=1$), and per-unit cost $+c_{ij}$ (in case of |
---|
| 3260 | \verb|GLP_ASN_MIN|), or $-c_{ij}$ (in case of \verb|GLP_ASN_MAX| and |
---|
| 3261 | \verb|GLP_ASN_MMP|); |
---|
| 3262 | |
---|
| 3263 | 2) then it adds one auxiliary feedback node $k$; |
---|
| 3264 | |
---|
| 3265 | \newpage |
---|
| 3266 | |
---|
| 3267 | 3) for each original node $i\in R$ the routine adds auxiliary supply |
---|
| 3268 | arc $(k\rightarrow i)$, flow $x_{ki}$ through which is costless |
---|
| 3269 | ($c_{ki}=0$) and either fixed at 1 ($l_{ki}=u_{ki}=1$, in case of |
---|
| 3270 | \verb|GLP_ASN_MIN| and \verb|GLP_ASN_MAX|) or has zero lower bound and |
---|
| 3271 | unity upper bound ($l_{ij}=0$, $u_{ij}=1$, in case of |
---|
| 3272 | \verb|GLP_ASN_MMP|); |
---|
| 3273 | |
---|
| 3274 | 4) similarly, for each original node $j\in S$ the routine adds |
---|
| 3275 | auxiliary demand arc $(j\rightarrow k)$, flow $x_{jk}$ through which is |
---|
| 3276 | costless ($c_{jk}=0$) and either fixed at 1 ($l_{jk}=u_{jk}=1$, in case |
---|
| 3277 | of \verb|GLP_ASN_MIN| and \verb|GLP_ASN_MAX|) or has zero lower bound |
---|
| 3278 | and unity upper bound ($l_{jk}=0$, $u_{jk}=1$, in case of |
---|
| 3279 | \verb|GLP_ASN_MMP|). |
---|
| 3280 | |
---|
| 3281 | \subsubsection*{Example} |
---|
| 3282 | |
---|
| 3283 | The example program shown below reads the assignment problem instance |
---|
| 3284 | in DIMACS format from file `\verb|sample.asn|', solves it by using the |
---|
| 3285 | routine \verb|glp_asnprob_okalg|, and writes the solution found to the |
---|
| 3286 | standard output. |
---|
| 3287 | |
---|
| 3288 | \begin{footnotesize} |
---|
| 3289 | \begin{verbatim} |
---|
| 3290 | #include <stddef.h> |
---|
| 3291 | #include <stdio.h> |
---|
| 3292 | #include <stdlib.h> |
---|
| 3293 | #include <glpk.h> |
---|
| 3294 | |
---|
| 3295 | typedef struct { int set; } v_data; |
---|
| 3296 | typedef struct { double cost; int x; } e_data; |
---|
| 3297 | |
---|
| 3298 | #define node(v) ((v_data *)((v)->data)) |
---|
| 3299 | #define edge(e) ((e_data *)((e)->data)) |
---|
| 3300 | |
---|
| 3301 | int main(void) |
---|
| 3302 | { glp_graph *G; |
---|
| 3303 | glp_vertex *v; |
---|
| 3304 | glp_arc *e; |
---|
| 3305 | int i, ret; |
---|
| 3306 | double sol; |
---|
| 3307 | G = glp_create_graph(sizeof(v_data), sizeof(e_data)); |
---|
| 3308 | glp_read_asnprob(G, offsetof(v_data, set), |
---|
| 3309 | offsetof(e_data, cost), "sample.asn"); |
---|
| 3310 | ret = glp_asnprob_okalg(GLP_ASN_MMP, G, |
---|
| 3311 | offsetof(v_data, set), offsetof(e_data, cost), &sol, |
---|
| 3312 | offsetof(e_data, x)); |
---|
| 3313 | printf("ret = %d; sol = %5g\n", ret, sol); |
---|
| 3314 | for (i = 1; i <= G->nv; i++) |
---|
| 3315 | { v = G->v[i]; |
---|
| 3316 | for (e = v->out; e != NULL; e = e->t_next) |
---|
| 3317 | printf("edge %2d %2d: x = %d; c = %g\n", |
---|
| 3318 | e->tail->i, e->head->i, edge(e)->x, edge(e)->cost); |
---|
| 3319 | } |
---|
| 3320 | glp_delete_graph(G); |
---|
| 3321 | return 0; |
---|
| 3322 | } |
---|
| 3323 | \end{verbatim} |
---|
| 3324 | \end{footnotesize} |
---|
| 3325 | |
---|
| 3326 | If `\verb|sample.asn|' is the example data file from the subsection |
---|
| 3327 | describing the routine \verb|glp_read_asnprob|, the output may look |
---|
| 3328 | like follows: |
---|
| 3329 | |
---|
| 3330 | \begin{footnotesize} |
---|
| 3331 | \begin{verbatim} |
---|
| 3332 | Reading assignment problem data from `sample.asn'... |
---|
| 3333 | Assignment problem has 8 + 9 = 17 nodes and 22 arcs |
---|
| 3334 | 38 lines were read |
---|
| 3335 | ret = 0; sol = 180 |
---|
| 3336 | edge 1 12: x = 1; c = 20 |
---|
| 3337 | edge 1 10: x = 0; c = 21 |
---|
| 3338 | edge 1 9: x = 0; c = 13 |
---|
| 3339 | edge 2 13: x = 1; c = 26 |
---|
| 3340 | edge 2 12: x = 0; c = 8 |
---|
| 3341 | edge 2 10: x = 0; c = 12 |
---|
| 3342 | edge 3 13: x = 0; c = 11 |
---|
| 3343 | edge 3 11: x = 1; c = 22 |
---|
| 3344 | edge 4 14: x = 1; c = 25 |
---|
| 3345 | edge 4 12: x = 0; c = 36 |
---|
| 3346 | edge 4 9: x = 0; c = 12 |
---|
| 3347 | edge 5 17: x = 0; c = 32 |
---|
| 3348 | edge 5 16: x = 1; c = 35 |
---|
| 3349 | edge 5 15: x = 0; c = 8 |
---|
| 3350 | edge 5 14: x = 0; c = 4 |
---|
| 3351 | edge 5 13: x = 0; c = 11 |
---|
| 3352 | edge 5 12: x = 0; c = 40 |
---|
| 3353 | edge 5 11: x = 0; c = 41 |
---|
| 3354 | edge 6 9: x = 1; c = 13 |
---|
| 3355 | edge 7 10: x = 0; c = 19 |
---|
| 3356 | edge 8 11: x = 0; c = 15 |
---|
| 3357 | edge 8 10: x = 1; c = 39 |
---|
| 3358 | \end{verbatim} |
---|
| 3359 | \end{footnotesize} |
---|
| 3360 | |
---|
| 3361 | \newpage |
---|
| 3362 | |
---|
| 3363 | \subsection{glp\_asnprob\_hall---find bipartite matching of maximum |
---|
| 3364 | cardinality} |
---|
| 3365 | |
---|
| 3366 | \subsubsection*{Synopsis} |
---|
| 3367 | |
---|
| 3368 | \begin{verbatim} |
---|
| 3369 | int glp_asnprob_hall(glp_graph *G, int v_set, int a_x); |
---|
| 3370 | \end{verbatim} |
---|
| 3371 | |
---|
| 3372 | \subsubsection*{Description} |
---|
| 3373 | |
---|
| 3374 | The routine \verb|glp_asnprob_hall| finds a matching of maximal |
---|
| 3375 | cardinality in the specified bipartite graph. It uses a version of the |
---|
| 3376 | Fortran routine \verb|MC21A| developed by |
---|
| 3377 | I.~S.~Duff\footnote{I.~S.~Duff, Algorithm 575: Permutations for |
---|
| 3378 | zero-free diagonal, ACM Trans. on Math. Softw. 7 (1981), pp.~387-390.}, |
---|
| 3379 | which implements Hall's algorithm.\footnote{M.~Hall, ``An Algorithm for |
---|
| 3380 | Distinct Representatives,'' Am. Math. Monthly 63 (1956), pp.~716-717.} |
---|
| 3381 | |
---|
| 3382 | The parameter \verb|G| is a pointer to the graph program object. |
---|
| 3383 | |
---|
| 3384 | The parameter \verb|v_set| specifies an offset of the field of type |
---|
| 3385 | \verb|int| in the vertex data block, which contains the node set |
---|
| 3386 | indicator: |
---|
| 3387 | |
---|
| 3388 | 0 --- the node is in set $R$; |
---|
| 3389 | |
---|
| 3390 | 1 --- the node is in set $S$. |
---|
| 3391 | |
---|
| 3392 | \noindent |
---|
| 3393 | If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs |
---|
| 3394 | is in set $R$, and a node having no outgoing arcs is in set $S$. |
---|
| 3395 | |
---|
| 3396 | The parameter \verb|a_x| specifies an offset of the field of type |
---|
| 3397 | \verb|int| in the arc data block, to which the routine stores $x_{ij}$. |
---|
| 3398 | If \verb|a_x| $<0$, this value is not stored. |
---|
| 3399 | |
---|
| 3400 | \subsubsection*{Returns} |
---|
| 3401 | |
---|
| 3402 | The routine \verb|glp_asnprob_hall| returns the cardinality of the |
---|
| 3403 | matching found. However, if the specified graph is incorrect (as |
---|
| 3404 | detected by the routine \verb|glp_check_asnprob|), this routine returns |
---|
| 3405 | a negative value. |
---|
| 3406 | |
---|
| 3407 | \subsubsection*{Comments} |
---|
| 3408 | |
---|
| 3409 | The same solution may be obtained with the routine |
---|
| 3410 | \verb|glp_asnprob_okalg| (for LP formulation \verb|GLP_ASN_MMP| and |
---|
| 3411 | all edge costs equal to 1). However, the routine \verb|glp_asnprob_hall| |
---|
| 3412 | is much faster. |
---|
| 3413 | |
---|
| 3414 | \newpage |
---|
| 3415 | |
---|
| 3416 | \subsubsection*{Example} |
---|
| 3417 | |
---|
| 3418 | The example program shown below reads the assignment problem instance |
---|
| 3419 | in DIMACS format from file `\verb|sample.asn|', finds a bipartite |
---|
| 3420 | matching of maximal cardinality by using the routine |
---|
| 3421 | \verb|glp_asnprob_hall|, and writes the solution found to the standard |
---|
| 3422 | output. |
---|
| 3423 | |
---|
| 3424 | \begin{footnotesize} |
---|
| 3425 | \begin{verbatim} |
---|
| 3426 | #include <stddef.h> |
---|
| 3427 | #include <stdio.h> |
---|
| 3428 | #include <stdlib.h> |
---|
| 3429 | #include <glpk.h> |
---|
| 3430 | |
---|
| 3431 | typedef struct { int set; } v_data; |
---|
| 3432 | typedef struct { int x; } e_data; |
---|
| 3433 | |
---|
| 3434 | #define node(v) ((v_data *)((v)->data)) |
---|
| 3435 | #define edge(e) ((e_data *)((e)->data)) |
---|
| 3436 | |
---|
| 3437 | int main(void) |
---|
| 3438 | { glp_graph *G; |
---|
| 3439 | glp_vertex *v; |
---|
| 3440 | glp_arc *e; |
---|
| 3441 | int i, card; |
---|
| 3442 | G = glp_create_graph(sizeof(v_data), sizeof(e_data)); |
---|
| 3443 | glp_read_asnprob(G, offsetof(v_data, set), -1, |
---|
| 3444 | "sample.asn"); |
---|
| 3445 | card = glp_asnprob_hall(G, offsetof(v_data, set), |
---|
| 3446 | offsetof(e_data, x)); |
---|
| 3447 | printf("card = %d\n", card); |
---|
| 3448 | for (i = 1; i <= G->nv; i++) |
---|
| 3449 | { v = G->v[i]; |
---|
| 3450 | for (e = v->out; e != NULL; e = e->t_next) |
---|
| 3451 | printf("edge %2d %2d: x = %d\n", |
---|
| 3452 | e->tail->i, e->head->i, edge(e)->x); |
---|
| 3453 | } |
---|
| 3454 | glp_delete_graph(G); |
---|
| 3455 | return 0; |
---|
| 3456 | } |
---|
| 3457 | \end{verbatim} |
---|
| 3458 | \end{footnotesize} |
---|
| 3459 | |
---|
| 3460 | If `\verb|sample.asn|' is the example data file from the subsection |
---|
| 3461 | describing the routine \verb|glp_read_asnprob|, the output may look |
---|
| 3462 | like follows: |
---|
| 3463 | |
---|
| 3464 | \begin{footnotesize} |
---|
| 3465 | \begin{verbatim} |
---|
| 3466 | Reading assignment problem data from `sample.asn'... |
---|
| 3467 | Assignment problem has 8 + 9 = 17 nodes and 22 arcs |
---|
| 3468 | 38 lines were read |
---|
| 3469 | card = 7 |
---|
| 3470 | edge 1 12: x = 1 |
---|
| 3471 | edge 1 10: x = 0 |
---|
| 3472 | edge 1 9: x = 0 |
---|
| 3473 | edge 2 13: x = 1 |
---|
| 3474 | edge 2 12: x = 0 |
---|
| 3475 | edge 2 10: x = 0 |
---|
| 3476 | edge 3 13: x = 0 |
---|
| 3477 | edge 3 11: x = 1 |
---|
| 3478 | edge 4 14: x = 1 |
---|
| 3479 | edge 4 12: x = 0 |
---|
| 3480 | edge 4 9: x = 0 |
---|
| 3481 | edge 5 17: x = 1 |
---|
| 3482 | edge 5 16: x = 0 |
---|
| 3483 | edge 5 15: x = 0 |
---|
| 3484 | edge 5 14: x = 0 |
---|
| 3485 | edge 5 13: x = 0 |
---|
| 3486 | edge 5 12: x = 0 |
---|
| 3487 | edge 5 11: x = 0 |
---|
| 3488 | edge 6 9: x = 1 |
---|
| 3489 | edge 7 10: x = 1 |
---|
| 3490 | edge 8 11: x = 0 |
---|
| 3491 | edge 8 10: x = 0 |
---|
| 3492 | \end{verbatim} |
---|
| 3493 | \end{footnotesize} |
---|
| 3494 | |
---|
| 3495 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 3496 | |
---|
| 3497 | \newpage |
---|
| 3498 | |
---|
| 3499 | \section{Critical path problem} |
---|
| 3500 | |
---|
| 3501 | \subsection{Background} |
---|
| 3502 | |
---|
| 3503 | The {\it critical path problem} (CPP) is stated as follows. Let there |
---|
| 3504 | be given a project $J$, which a set of jobs (tasks, activities, etc.). |
---|
| 3505 | Performing each job $i\in J$ requires time $t_i\geq 0$. Besides, over |
---|
| 3506 | the set $J$ there is given a precedence relation $R\subseteq J\times J$, |
---|
| 3507 | where $(i,j)\in R$ means that job $i$ immediately precedes job $j$, i.e. |
---|
| 3508 | performing job $j$ cannot start until job $i$ has been completely |
---|
| 3509 | performed. The problem is to find starting times $x_i$ for each job |
---|
| 3510 | $i\in J$, which satisfy to the precedence relation and minimize the |
---|
| 3511 | total duration (makespan) of the project. |
---|
| 3512 | |
---|
| 3513 | The following is an example of the critical path problem: |
---|
| 3514 | |
---|
| 3515 | \begin{center} |
---|
| 3516 | \begin{tabular}{|c|l|c|c|} |
---|
| 3517 | \hline |
---|
| 3518 | Job&Desription&Time&Predecessors\\ |
---|
| 3519 | \hline |
---|
| 3520 | A&Excavate&3&---\\ |
---|
| 3521 | B&Lay foundation&4&A\\ |
---|
| 3522 | C&Rough plumbing&3&B\\ |
---|
| 3523 | D&Frame&10&B\\ |
---|
| 3524 | E&Finish exterior&8&D\\ |
---|
| 3525 | F&Install HVAC&4&D\\ |
---|
| 3526 | G&Rough electric&6&D\\ |
---|
| 3527 | H&Sheet rock&8&C, E, F, G\\ |
---|
| 3528 | I&Install cabinets&5&H\\ |
---|
| 3529 | J&Paint&5&H\\ |
---|
| 3530 | K&Final plumbing&4&I\\ |
---|
| 3531 | L&Final electric&2&J\\ |
---|
| 3532 | M&Install flooring&4&K, L\\ |
---|
| 3533 | \hline |
---|
| 3534 | \end{tabular} |
---|
| 3535 | \end{center} |
---|
| 3536 | |
---|
| 3537 | Obviously, the project along with the precedence relation can be |
---|
| 3538 | represented as a directed graph $G=(J,R)$ called {\it project network}, |
---|
| 3539 | where each node $i\in J$ corresponds to a job, and arc |
---|
| 3540 | $(i\rightarrow j)\in R$ means that job $i$ immediately precedes job |
---|
| 3541 | $j$.\footnote{There exists another network representation of the |
---|
| 3542 | critical path problem, where jobs correspond to arcs while nodes |
---|
| 3543 | correspond to events introduced to express the precedence relation. |
---|
| 3544 | That representation, however, is much less convenient than the one, |
---|
| 3545 | where jobs are represented as nodes of the network.} The project network |
---|
| 3546 | for the example above is shown on Fig.~4. |
---|
| 3547 | |
---|
| 3548 | May note that the project network must be acyclic; otherwise, it would |
---|
| 3549 | be impossible to satisfy to the precedence relation for any job that |
---|
| 3550 | belongs to a cycle. |
---|
| 3551 | |
---|
| 3552 | \newpage |
---|
| 3553 | |
---|
| 3554 | \xymatrix |
---|
| 3555 | {&&&C|3\ar[rd]&&I|5\ar[r]&K|4\ar[rd]&\\ |
---|
| 3556 | A|3\ar[r]&B|4\ar[rru]\ar[rd]&&E|8\ar[r]&H|8\ar[ru]\ar[rd]&&&M|4\\ |
---|
| 3557 | &&D|10\ar[ru]\ar[r]\ar[rd]&F|4\ar[ru]&&J|5\ar[r]&L|2\ar[ru]&\\ |
---|
| 3558 | &&&G|6\ar[ruu]&&&&\\ |
---|
| 3559 | } |
---|
| 3560 | |
---|
| 3561 | \bigskip |
---|
| 3562 | |
---|
| 3563 | \noindent\hfil |
---|
| 3564 | Fig.~4. An example of the project network. |
---|
| 3565 | |
---|
| 3566 | \bigskip |
---|
| 3567 | |
---|
| 3568 | The critical path problem can be naturally formulated as the following |
---|
| 3569 | LP problem: |
---|
| 3570 | |
---|
| 3571 | \medskip |
---|
| 3572 | |
---|
| 3573 | \noindent |
---|
| 3574 | \hspace{.5in}minimize |
---|
| 3575 | $$z\eqno(19)$$ |
---|
| 3576 | \hspace{.5in}subject to |
---|
| 3577 | $$x_i+t_i\leq z\ \ \ \hbox{for all}\ i\in J\ \ \ \ \eqno(20)$$ |
---|
| 3578 | $$x_i+t_i\leq x_j\ \ \ \hbox{for all}\ (i,j)\in R\eqno(21)$$ |
---|
| 3579 | $$x_i\geq 0\ \ \ \ \ \ \ \hbox{for all}\ i\in J\ \ \eqno(22)$$ |
---|
| 3580 | |
---|
| 3581 | The inequality constraints (21), which are active in the optimal |
---|
| 3582 | solution, define so called {\it critical path} having the following |
---|
| 3583 | property: the minimal project duration $z$ can be decreased only by |
---|
| 3584 | decreasing the times $t_j$ for jobs on the critical path, and delaying |
---|
| 3585 | any critical job delays the entire project. |
---|
| 3586 | |
---|
| 3587 | \subsection{glp\_cpp---solve critical path problem} |
---|
| 3588 | |
---|
| 3589 | \subsubsection{Synopsis} |
---|
| 3590 | |
---|
| 3591 | \begin{verbatim} |
---|
| 3592 | double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls); |
---|
| 3593 | \end{verbatim} |
---|
| 3594 | |
---|
| 3595 | \subsubsection{Description} |
---|
| 3596 | |
---|
| 3597 | The routine \verb|glp_cpp| solves the critical path problem represented |
---|
| 3598 | in the form of the project network. |
---|
| 3599 | |
---|
| 3600 | The parameter \verb|G| is a pointer to the graph object, which |
---|
| 3601 | specifies the project network. This graph must be acyclic. Multiple |
---|
| 3602 | arcs are allowed being considered as single arcs. |
---|
| 3603 | |
---|
| 3604 | The parameter \verb|v_t| specifies an offset of the field of type |
---|
| 3605 | \verb|double| in the vertex data block, which contains time $t_i\geq 0$ |
---|
| 3606 | needed to perform corresponding job $j\in J$. If \verb|v_t| $<0$, it is |
---|
| 3607 | assumed that $t_i=1$ for all jobs. |
---|
| 3608 | |
---|
| 3609 | The parameter \verb|v_es| specifies an offset of the field of type |
---|
| 3610 | \verb|double| in the vertex data block, to which the routine stores |
---|
| 3611 | the {\it earliest start time} for corresponding job. If \verb|v_es| |
---|
| 3612 | $<0$, this time is not stored. |
---|
| 3613 | |
---|
| 3614 | The parameter \verb|v_ls| specifies an offset of the field of type |
---|
| 3615 | \verb|double| in the vertex data block, to which the routine stores |
---|
| 3616 | the {\it latest start time} for corresponding job. If \verb|v_ls| |
---|
| 3617 | $<0$, this time is not stored. |
---|
| 3618 | |
---|
| 3619 | The difference between the latest and earliest start times of some job |
---|
| 3620 | is called its {\it time reserve}. Delaying a job within its time reserve |
---|
| 3621 | does not affect the project duration, so if the time reserve is zero, |
---|
| 3622 | the corresponding job is critical. |
---|
| 3623 | |
---|
| 3624 | \subsubsection{Returns} |
---|
| 3625 | |
---|
| 3626 | The routine \verb|glp_cpp| returns the minimal project duration, i.e. |
---|
| 3627 | minimal time needed to perform all jobs in the project. |
---|
| 3628 | |
---|
| 3629 | \subsubsection{Example} |
---|
| 3630 | |
---|
| 3631 | The example program below solves the critical path problem shown on |
---|
| 3632 | Fig.~4 by using the routine \verb|glp_cpp| and writes the solution found |
---|
| 3633 | to the standard output. |
---|
| 3634 | |
---|
| 3635 | \begin{footnotesize} |
---|
| 3636 | \begin{verbatim} |
---|
| 3637 | #include <stddef.h> |
---|
| 3638 | #include <stdio.h> |
---|
| 3639 | #include <stdlib.h> |
---|
| 3640 | #include <glpk.h> |
---|
| 3641 | |
---|
| 3642 | typedef struct { double t, es, ls; } v_data; |
---|
| 3643 | |
---|
| 3644 | #define node(v) ((v_data *)((v)->data)) |
---|
| 3645 | |
---|
| 3646 | int main(void) |
---|
| 3647 | { glp_graph *G; |
---|
| 3648 | int i; |
---|
| 3649 | double t, es, ef, ls, lf, total; |
---|
| 3650 | G = glp_create_graph(sizeof(v_data), 0); |
---|
| 3651 | glp_add_vertices(G, 13); |
---|
| 3652 | node(G->v[1])->t = 3; /* A: Excavate */ |
---|
| 3653 | node(G->v[2])->t = 4; /* B: Lay foundation */ |
---|
| 3654 | node(G->v[3])->t = 3; /* C: Rough plumbing */ |
---|
| 3655 | node(G->v[4])->t = 10; /* D: Frame */ |
---|
| 3656 | node(G->v[5])->t = 8; /* E: Finish exterior */ |
---|
| 3657 | node(G->v[6])->t = 4; /* F: Install HVAC */ |
---|
| 3658 | node(G->v[7])->t = 6; /* G: Rough elecrtic */ |
---|
| 3659 | node(G->v[8])->t = 8; /* H: Sheet rock */ |
---|
| 3660 | node(G->v[9])->t = 5; /* I: Install cabinets */ |
---|
| 3661 | node(G->v[10])->t = 5; /* J: Paint */ |
---|
| 3662 | node(G->v[11])->t = 4; /* K: Final plumbing */ |
---|
| 3663 | node(G->v[12])->t = 2; /* L: Final electric */ |
---|
| 3664 | node(G->v[13])->t = 4; /* M: Install flooring */ |
---|
| 3665 | glp_add_arc(G, 1, 2); /* A precedes B */ |
---|
| 3666 | glp_add_arc(G, 2, 3); /* B precedes C */ |
---|
| 3667 | glp_add_arc(G, 2, 4); /* B precedes D */ |
---|
| 3668 | glp_add_arc(G, 4, 5); /* D precedes E */ |
---|
| 3669 | glp_add_arc(G, 4, 6); /* D precedes F */ |
---|
| 3670 | glp_add_arc(G, 4, 7); /* D precedes G */ |
---|
| 3671 | glp_add_arc(G, 3, 8); /* C precedes H */ |
---|
| 3672 | glp_add_arc(G, 5, 8); /* E precedes H */ |
---|
| 3673 | glp_add_arc(G, 6, 8); /* F precedes H */ |
---|
| 3674 | glp_add_arc(G, 7, 8); /* G precedes H */ |
---|
| 3675 | glp_add_arc(G, 8, 9); /* H precedes I */ |
---|
| 3676 | glp_add_arc(G, 8, 10); /* H precedes J */ |
---|
| 3677 | glp_add_arc(G, 9, 11); /* I precedes K */ |
---|
| 3678 | glp_add_arc(G, 10, 12); /* J precedes L */ |
---|
| 3679 | glp_add_arc(G, 11, 13); /* K precedes M */ |
---|
| 3680 | glp_add_arc(G, 12, 13); /* L precedes M */ |
---|
| 3681 | total = glp_cpp(G, offsetof(v_data, t), offsetof(v_data, es), |
---|
| 3682 | offsetof(v_data, ls)); |
---|
| 3683 | printf("Minimal project duration is %.2f\n\n", total); |
---|
| 3684 | printf("Job Time ES EF LS LF\n"); |
---|
| 3685 | printf("--- ------ ------ ------ ------ ------\n"); |
---|
| 3686 | for (i = 1; i <= G->nv; i++) |
---|
| 3687 | { t = node(G->v[i])->t; |
---|
| 3688 | es = node(G->v[i])->es; |
---|
| 3689 | ef = es + node(G->v[i])->t; |
---|
| 3690 | ls = node(G->v[i])->ls; |
---|
| 3691 | lf = ls + node(G->v[i])->t; |
---|
| 3692 | printf("%3d %6.2f %s %6.2f %6.2f %6.2f %6.2f\n", |
---|
| 3693 | i, t, ls - es < 0.001 ? "*" : " ", es, ef, ls, lf); |
---|
| 3694 | } |
---|
| 3695 | glp_delete_graph(G); |
---|
| 3696 | return 0; |
---|
| 3697 | } |
---|
| 3698 | \end{verbatim} |
---|
| 3699 | \end{footnotesize} |
---|
| 3700 | |
---|
| 3701 | The output from the example program shown below includes job number, |
---|
| 3702 | the time needed to perform a job, earliest start time (\verb|ES|), |
---|
| 3703 | earliest finish time (\verb|EF|), latest start time (\verb|LS|), and |
---|
| 3704 | latest finish time (\verb|LF|) for each job in the project. Critical |
---|
| 3705 | jobs are marked by asterisks. |
---|
| 3706 | |
---|
| 3707 | \newpage |
---|
| 3708 | |
---|
| 3709 | \begin{footnotesize} |
---|
| 3710 | \begin{verbatim} |
---|
| 3711 | Minimal project duration is 46.00 |
---|
| 3712 | |
---|
| 3713 | Job Time ES EF LS LF |
---|
| 3714 | --- ------ ------ ------ ------ ------ |
---|
| 3715 | 1 3.00 * 0.00 3.00 0.00 3.00 |
---|
| 3716 | 2 4.00 * 3.00 7.00 3.00 7.00 |
---|
| 3717 | 3 3.00 7.00 10.00 22.00 25.00 |
---|
| 3718 | 4 10.00 * 7.00 17.00 7.00 17.00 |
---|
| 3719 | 5 8.00 * 17.00 25.00 17.00 25.00 |
---|
| 3720 | 6 4.00 17.00 21.00 21.00 25.00 |
---|
| 3721 | 7 6.00 17.00 23.00 19.00 25.00 |
---|
| 3722 | 8 8.00 * 25.00 33.00 25.00 33.00 |
---|
| 3723 | 9 5.00 * 33.00 38.00 33.00 38.00 |
---|
| 3724 | 10 5.00 33.00 38.00 35.00 40.00 |
---|
| 3725 | 11 4.00 * 38.00 42.00 38.00 42.00 |
---|
| 3726 | 12 2.00 38.00 40.00 40.00 42.00 |
---|
| 3727 | 13 4.00 * 42.00 46.00 42.00 46.00 |
---|
| 3728 | \end{verbatim} |
---|
| 3729 | \end{footnotesize} |
---|
| 3730 | |
---|
| 3731 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 3732 | |
---|
| 3733 | \chapter{Graph Optimization API Routines} |
---|
| 3734 | |
---|
| 3735 | \section{Maximum clique problem} |
---|
| 3736 | |
---|
| 3737 | \subsection{Background} |
---|
| 3738 | |
---|
| 3739 | The {\it maximum clique problem (MCP)} is a classic combinatorial |
---|
| 3740 | optimization problem. Given an undirected graph $G=(V,E)$, where $V$ is |
---|
| 3741 | a set of vertices, and $E$ is a set of edges, this problem is to find |
---|
| 3742 | the largest {\it clique} $C\subseteq G$, i.e. the largest induced |
---|
| 3743 | complete subgraph. A generalization of this problem is the {\it maximum |
---|
| 3744 | weight clique problem (MWCP)}, which is to find a clique $C\subseteq G$ |
---|
| 3745 | of the largest weight $\displaystyle\sum_{v\in C}w(v)\rightarrow\max$, |
---|
| 3746 | where $w(v)$ is a weight of vertex $v\in V$. |
---|
| 3747 | |
---|
| 3748 | An example of the maximum weight clique problem is shown on Fig.~5. |
---|
| 3749 | |
---|
| 3750 | \begin{figure} |
---|
| 3751 | \noindent\hfil |
---|
| 3752 | \begin{tabular}{c} |
---|
| 3753 | {\xymatrix %@C=16pt |
---|
| 3754 | {&&&{v_1}\ar@{-}[lllddd]\ar@{-}[llddddd]\ar@{-}[dddddd] |
---|
| 3755 | \ar@{-}[rrrddd]&&&\\ |
---|
| 3756 | &{v_2}\ar@{-}[rrrr]\ar@{-}[rrrrdddd]\ar@{-}[rrddddd]\ar@{-}[dddd]&&&& |
---|
| 3757 | {v_3}\ar@{-}[llllldd]\ar@{-}[lllldddd]\ar@{-}[dddd]&\\ |
---|
| 3758 | &&&&&&\\ |
---|
| 3759 | {v_4}\ar@{-}[rrrrrr]\ar@{-}[rrrddd]&&&&&&{v_5}\ar@{-}[lllddd] |
---|
| 3760 | \ar@{-}[ldd]\\ |
---|
| 3761 | &&&&&&\\ |
---|
| 3762 | &{v_6}\ar@{-}[rrrr]&&&&{v_7}&\\ |
---|
| 3763 | &&&{v_8}&&&\\ |
---|
| 3764 | }} |
---|
| 3765 | \end{tabular} |
---|
| 3766 | \begin{tabular}{r@{\ }c@{\ }l} |
---|
| 3767 | $w(v_1)$&=&3\\$w(v_2)$&=&4\\$w(v_3)$&=&8\\$w(v_4)$&=&1\\ |
---|
| 3768 | $w(v_5)$&=&5\\$w(v_6)$&=&2\\$w(v_7)$&=&1\\$w(v_8)$&=&3\\ |
---|
| 3769 | \end{tabular} |
---|
| 3770 | |
---|
| 3771 | \begin{center} |
---|
| 3772 | Fig.~5. An example of the maximum weight clique problem. |
---|
| 3773 | \end{center} |
---|
| 3774 | \end{figure} |
---|
| 3775 | |
---|
| 3776 | \subsection{glp\_wclique\_exact---find maximum weight clique with exact |
---|
| 3777 | algorithm} |
---|
| 3778 | |
---|
| 3779 | \subsubsection*{Synopsis} |
---|
| 3780 | |
---|
| 3781 | \begin{verbatim} |
---|
| 3782 | int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, |
---|
| 3783 | int v_set); |
---|
| 3784 | \end{verbatim} |
---|
| 3785 | |
---|
| 3786 | \subsection*{Description} |
---|
| 3787 | |
---|
| 3788 | The routine {\it glp\_wclique\_exact} finds a maximum weight clique in |
---|
| 3789 | the specified undirected graph with the exact algorithm developed by |
---|
| 3790 | Patric \"Osterg{\aa}rd.\footnote{P.~R.~J.~\"Osterg{\aa}rd, A new |
---|
| 3791 | algorithm for the maximum-weight clique problem, Nordic J. of Computing, |
---|
| 3792 | Vol.~8, No.~4, 2001, pp.~424--36.} |
---|
| 3793 | |
---|
| 3794 | The parameter $G$ is the program object, which specifies an undirected |
---|
| 3795 | graph. Each arc $(x\rightarrow y)$ in $G$ is considered as edge |
---|
| 3796 | $(x,y)$, self-loops are ignored, and multiple edges, if present, are |
---|
| 3797 | replaced (internally) by simple edges. |
---|
| 3798 | |
---|
| 3799 | The parameter {\it v\_wgt} specifies an offset of the field of type |
---|
| 3800 | {\bf double} in the vertex data block, which contains a weight of |
---|
| 3801 | corresponding vertex. Vertex weights must be integer-valued in the |
---|
| 3802 | range $[0,$ {\it INT\_MAX}$]$. If {\it v\_wgt} $<0$, it is assumed that |
---|
| 3803 | all vertices of the graph have the weight 1. |
---|
| 3804 | |
---|
| 3805 | The parameter {\it sol} specifies a location, to which the routine |
---|
| 3806 | stores the weight of the clique found (the clique weight is the sum |
---|
| 3807 | of weights of all vertices included in the clique.) If {\it sol} is |
---|
| 3808 | {\it NULL}, the solution is not stored. |
---|
| 3809 | |
---|
| 3810 | The parameter {\it v\_set} specifies an offset of the field of type |
---|
| 3811 | {\bf int} in the vertex data block, to which the routines stores a |
---|
| 3812 | vertex flag: 1 means that the corresponding vertex is included in the |
---|
| 3813 | clique found, and 0 otherwise. If {\it v\_set} $<0$, vertex flags are |
---|
| 3814 | not stored. |
---|
| 3815 | |
---|
| 3816 | \subsubsection*{Returns} |
---|
| 3817 | |
---|
| 3818 | \def\arraystretch{1} |
---|
| 3819 | |
---|
| 3820 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
| 3821 | 0 & Optimal solution found.\\ |
---|
| 3822 | \verb|GLP_EDATA| & Unable to start the search, because some vertex |
---|
| 3823 | weights are either not integer-valued or out of range. This code is |
---|
| 3824 | also returned if the sum of weights of all vertices exceeds |
---|
| 3825 | {\it INT\_MAX}. \\ |
---|
| 3826 | \end{tabular} |
---|
| 3827 | |
---|
| 3828 | \subsubsection*{Notes} |
---|
| 3829 | |
---|
| 3830 | \noindent\indent |
---|
| 3831 | 1. The routine {\it glp\_wclique\_exact} finds exact solution. Since |
---|
| 3832 | both MCP and MWCP problems are NP-complete, the algorithm may require |
---|
| 3833 | exponential time in worst cases. |
---|
| 3834 | |
---|
| 3835 | 2. Internally the specified graph is converted to an adjacency matrix |
---|
| 3836 | in {\it dense} format. This requires about $|V|^2/16$ bytes of memory, |
---|
| 3837 | where $|V|$ is the number of vertices in the graph. |
---|
| 3838 | |
---|
| 3839 | \subsubsection*{Example} |
---|
| 3840 | |
---|
| 3841 | The example program shown below reads a MWCP instance in DIMACS |
---|
| 3842 | clique/coloring format from file `\verb|sample.clq|', finds the clique |
---|
| 3843 | of largest weight, and writes the solution found to the standard output. |
---|
| 3844 | |
---|
| 3845 | \begin{footnotesize} |
---|
| 3846 | \begin{verbatim} |
---|
| 3847 | #include <stddef.h> |
---|
| 3848 | #include <stdio.h> |
---|
| 3849 | #include <stdlib.h> |
---|
| 3850 | #include <glpk.h> |
---|
| 3851 | |
---|
| 3852 | typedef struct { double wgt; int set; } v_data; |
---|
| 3853 | |
---|
| 3854 | #define vertex(v) ((v_data *)((v)->data)) |
---|
| 3855 | |
---|
| 3856 | int main(void) |
---|
| 3857 | { glp_graph *G; |
---|
| 3858 | glp_vertex *v; |
---|
| 3859 | int i, ret; |
---|
| 3860 | double sol; |
---|
| 3861 | G = glp_create_graph(sizeof(v_data), 0); |
---|
| 3862 | glp_read_ccdata(G, offsetof(v_data, wgt), "sample.clq"); |
---|
| 3863 | ret = glp_wclique_exact(G, offsetof(v_data, wgt), &sol, |
---|
| 3864 | offsetof(v_data, set)); |
---|
| 3865 | printf("ret = %d; sol = %g\n", ret, sol); |
---|
| 3866 | for (i = 1; i <= G->nv; i++) |
---|
| 3867 | { v = G->v[i]; |
---|
| 3868 | printf("vertex %d: weight = %g, flag = %d\n", |
---|
| 3869 | i, vertex(v)->wgt, vertex(v)->set); |
---|
| 3870 | } |
---|
| 3871 | glp_delete_graph(G); |
---|
| 3872 | return 0; |
---|
| 3873 | } |
---|
| 3874 | \end{verbatim} |
---|
| 3875 | \end{footnotesize} |
---|
| 3876 | |
---|
| 3877 | \noindent |
---|
| 3878 | For the example shown on Fig.~5 the data file may look like follows: |
---|
| 3879 | |
---|
| 3880 | \begin{footnotesize} |
---|
| 3881 | \begin{verbatim} |
---|
| 3882 | c sample.clq |
---|
| 3883 | c |
---|
| 3884 | c This is an example of the maximum weight clique |
---|
| 3885 | c problem in DIMACS clique/coloring format. |
---|
| 3886 | c |
---|
| 3887 | p edge 8 16 |
---|
| 3888 | n 1 3 |
---|
| 3889 | n 2 4 |
---|
| 3890 | n 3 8 |
---|
| 3891 | n 5 5 |
---|
| 3892 | n 6 2 |
---|
| 3893 | n 8 3 |
---|
| 3894 | e 1 4 |
---|
| 3895 | e 1 5 |
---|
| 3896 | e 1 6 |
---|
| 3897 | e 1 8 |
---|
| 3898 | e 2 3 |
---|
| 3899 | e 2 6 |
---|
| 3900 | e 2 7 |
---|
| 3901 | e 2 8 |
---|
| 3902 | e 3 4 |
---|
| 3903 | e 3 6 |
---|
| 3904 | e 3 7 |
---|
| 3905 | e 4 5 |
---|
| 3906 | e 4 8 |
---|
| 3907 | e 5 7 |
---|
| 3908 | e 5 8 |
---|
| 3909 | e 6 7 |
---|
| 3910 | c |
---|
| 3911 | c eof |
---|
| 3912 | \end{verbatim} |
---|
| 3913 | \end{footnotesize} |
---|
| 3914 | |
---|
| 3915 | \noindent |
---|
| 3916 | The corresponding output from the example program is the following: |
---|
| 3917 | |
---|
| 3918 | \begin{footnotesize} |
---|
| 3919 | \begin{verbatim} |
---|
| 3920 | Reading graph from `sample.clq'... |
---|
| 3921 | Graph has 8 vertices and 16 edges |
---|
| 3922 | 28 lines were read |
---|
| 3923 | ret = 0; sol = 15 |
---|
| 3924 | vertex 1: weight = 3, flag = 0 |
---|
| 3925 | vertex 2: weight = 4, flag = 1 |
---|
| 3926 | vertex 3: weight = 8, flag = 1 |
---|
| 3927 | vertex 4: weight = 1, flag = 0 |
---|
| 3928 | vertex 5: weight = 5, flag = 0 |
---|
| 3929 | vertex 6: weight = 2, flag = 1 |
---|
| 3930 | vertex 7: weight = 1, flag = 1 |
---|
| 3931 | vertex 8: weight = 3, flag = 0 |
---|
| 3932 | \end{verbatim} |
---|
| 3933 | \end{footnotesize} |
---|
| 3934 | |
---|
| 3935 | \end{document} |
---|