1 | /* PBN, Paint-By-Numbers Puzzle */ |
---|
2 | |
---|
3 | /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ |
---|
4 | |
---|
5 | /* NOTE: See also the document "Solving Paint-By-Numbers Puzzles with |
---|
6 | GLPK", which is included in the GLPK distribution. */ |
---|
7 | |
---|
8 | /* A paint-by-numbers puzzle consists of an m*n grid of pixels (the |
---|
9 | canvas) together with m+n cluster-size sequences, one for each row |
---|
10 | and column. The goal is to paint the canvas with a picture that |
---|
11 | satisfies the following constraints: |
---|
12 | |
---|
13 | 1. Each pixel must be blank or white. |
---|
14 | |
---|
15 | 2. If a row or column has cluster-size sequence s1, s2, ..., sk, |
---|
16 | then it must contain k clusters of black pixels - the first with |
---|
17 | s1 black pixels, the second with s2 black pixels, and so on. |
---|
18 | |
---|
19 | It should be noted that "first" means "leftmost" for rows and |
---|
20 | "topmost" for columns, and that rows and columns need not begin or |
---|
21 | end with black pixels. |
---|
22 | |
---|
23 | Example: |
---|
24 | 1 1 |
---|
25 | 1 1 |
---|
26 | 2 1 1 1 1 1 2 3 |
---|
27 | 3 2 1 2 1 2 3 4 8 9 |
---|
28 | |
---|
29 | 3 6 # # # . # # # # # # |
---|
30 | 1 4 # . . . . . # # # # |
---|
31 | 1 1 3 . . # . # . . # # # |
---|
32 | 2 . . . . . . . . # # |
---|
33 | 3 3 . . # # # . . # # # |
---|
34 | 1 4 # . . . . . # # # # |
---|
35 | 2 5 # # . . . # # # # # |
---|
36 | 2 5 # # . . . # # # # # |
---|
37 | 1 1 . . . # . . . . . # |
---|
38 | 3 . . # # # . . . . . |
---|
39 | |
---|
40 | (In Russia such puzzles are known as "Japanese crosswords".) |
---|
41 | |
---|
42 | References: |
---|
43 | Robert A. Bosch, "Painting by Numbers", 2000. |
---|
44 | <http://www.oberlin.edu/~math/faculty/bosch/pbn-page.html> */ |
---|
45 | |
---|
46 | /*--------------------------------------------------------------------*/ |
---|
47 | /* Main part based on the formulation proposed by Robert Bosch. */ |
---|
48 | |
---|
49 | param m, integer, >= 1; |
---|
50 | /* the number of rows */ |
---|
51 | |
---|
52 | param n, integer, >= 1; |
---|
53 | /* the number of columns */ |
---|
54 | |
---|
55 | param row{i in 1..m, 1..n div 2}, integer, >= 0, default 0; |
---|
56 | /* the cluster-size sequence for row i (raw data) */ |
---|
57 | |
---|
58 | param col{j in 1..n, 1..m div 2}, integer, >= 0, default 0; |
---|
59 | /* the cluster-size sequence for column j (raw data) */ |
---|
60 | |
---|
61 | param kr{i in 1..m} := sum{t in 1..n div 2: row[i,t] > 0} 1; |
---|
62 | /* the number of clusters in row i */ |
---|
63 | |
---|
64 | param kc{j in 1..n} := sum{t in 1..m div 2: col[j,t] > 0} 1; |
---|
65 | /* the number of clusters in column j */ |
---|
66 | |
---|
67 | param sr{i in 1..m, t in 1..kr[i]} := row[i,t], integer, >= 1; |
---|
68 | /* the cluster-size sequence for row i */ |
---|
69 | |
---|
70 | param sc{j in 1..n, t in 1..kc[j]} := col[j,t], integer, >= 1; |
---|
71 | /* the cluster-size sequence for column j */ |
---|
72 | |
---|
73 | check{i in 1..m}: sum{t in 1..kr[i]} sr[i,t] <= n - (kr[i] - 1); |
---|
74 | /* check that the sum of the cluster sizes in each row is valid */ |
---|
75 | |
---|
76 | check{j in 1..n}: sum{t in 1..kc[j]} sc[j,t] <= m - (kc[j] - 1); |
---|
77 | /* check that the sum of the cluster sizes in each column is valid */ |
---|
78 | |
---|
79 | check: sum{i in 1..m, t in 1..kr[i]} sr[i,t] = |
---|
80 | sum{j in 1..n, t in 1..kc[j]} sc[j,t]; |
---|
81 | /* check that the sum of the cluster sizes in all rows is equal to the |
---|
82 | sum of the cluster sizes in all columns */ |
---|
83 | |
---|
84 | param er{i in 1..m, t in 1..kr[i]} := |
---|
85 | if t = 1 then 1 else er[i,t-1] + sr[i,t-1] + 1; |
---|
86 | /* the smallest value of j such that row i's t-th cluster can be |
---|
87 | placed in row i with its leftmost pixel occupying pixel j */ |
---|
88 | |
---|
89 | param lr{i in 1..m, t in 1..kr[i]} := |
---|
90 | if t = kr[i] then n + 1 - sr[i,t] else lr[i,t+1] - sr[i,t] - 1; |
---|
91 | /* the largest value of j such that row i's t-th cluster can be |
---|
92 | placed in row i with its leftmost pixel occupying pixel j */ |
---|
93 | |
---|
94 | param ec{j in 1..n, t in 1..kc[j]} := |
---|
95 | if t = 1 then 1 else ec[j,t-1] + sc[j,t-1] + 1; |
---|
96 | /* the smallest value of i such that column j's t-th cluster can be |
---|
97 | placed in column j with its topmost pixel occupying pixel i */ |
---|
98 | |
---|
99 | param lc{j in 1..n, t in 1..kc[j]} := |
---|
100 | if t = kc[j] then m + 1 - sc[j,t] else lc[j,t+1] - sc[j,t] - 1; |
---|
101 | /* the largest value of i such that column j's t-th cluster can be |
---|
102 | placed in column j with its topmost pixel occupying pixel i */ |
---|
103 | |
---|
104 | var z{i in 1..m, j in 1..n}, binary; |
---|
105 | /* z[i,j] = 1, if row i's j-th pixel is painted black |
---|
106 | z[i,j] = 0, if row i's j-th pixel is painted white */ |
---|
107 | |
---|
108 | var y{i in 1..m, t in 1..kr[i], j in er[i,t]..lr[i,t]}, binary; |
---|
109 | /* y[i,t,j] = 1, if row i's t-th cluster is placed in row i with its |
---|
110 | leftmost pixel occupying pixel j |
---|
111 | y[i,t,j] = 0, if not */ |
---|
112 | |
---|
113 | var x{j in 1..n, t in 1..kc[j], i in ec[j,t]..lc[j,t]}, binary; |
---|
114 | /* x[j,t,i] = 1, if column j's t-th cluster is placed in column j with |
---|
115 | its topmost pixel occupying pixel i |
---|
116 | x[j,t,i] = 0, if not */ |
---|
117 | |
---|
118 | s.t. fa{i in 1..m, t in 1..kr[i]}: |
---|
119 | sum{j in er[i,t]..lr[i,t]} y[i,t,j] = 1; |
---|
120 | /* row i's t-th cluster must appear in row i exactly once */ |
---|
121 | |
---|
122 | s.t. fb{i in 1..m, t in 1..kr[i]-1, j in er[i,t]..lr[i,t]}: |
---|
123 | y[i,t,j] <= sum{jp in j+sr[i,t]+1..lr[i,t+1]} y[i,t+1,jp]; |
---|
124 | /* row i's (t+1)-th cluster must be placed to the right of its t-th |
---|
125 | cluster */ |
---|
126 | |
---|
127 | s.t. fc{j in 1..n, t in 1..kc[j]}: |
---|
128 | sum{i in ec[j,t]..lc[j,t]} x[j,t,i] = 1; |
---|
129 | /* column j's t-th cluster must appear in column j exactly once */ |
---|
130 | |
---|
131 | s.t. fd{j in 1..n, t in 1..kc[j]-1, i in ec[j,t]..lc[j,t]}: |
---|
132 | x[j,t,i] <= sum{ip in i+sc[j,t]+1..lc[j,t+1]} x[j,t+1,ip]; |
---|
133 | /* column j's (t+1)-th cluster must be placed below its t-th cluster */ |
---|
134 | |
---|
135 | s.t. fe{i in 1..m, j in 1..n}: |
---|
136 | z[i,j] <= sum{t in 1..kr[i], jp in er[i,t]..lr[i,t]: |
---|
137 | j-sr[i,t]+1 <= jp and jp <= j} y[i,t,jp]; |
---|
138 | /* the double coverage constraint stating that if row i's j-th pixel |
---|
139 | is painted black, then at least one of row i's clusters must be |
---|
140 | placed in such a way that it covers row i's j-th pixel */ |
---|
141 | |
---|
142 | s.t. ff{i in 1..m, j in 1..n}: |
---|
143 | z[i,j] <= sum{t in 1..kc[j], ip in ec[j,t]..lc[j,t]: |
---|
144 | i-sc[j,t]+1 <= ip and ip <= i} x[j,t,ip]; |
---|
145 | /* the double coverage constraint making sure that if row i's j-th |
---|
146 | pixel is painted black, then at least one of column j's clusters |
---|
147 | covers it */ |
---|
148 | |
---|
149 | s.t. fg{i in 1..m, j in 1..n, t in 1..kr[i], jp in er[i,t]..lr[i,t]: |
---|
150 | j-sr[i,t]+1 <= jp and jp <= j}: z[i,j] >= y[i,t,jp]; |
---|
151 | /* the constraint to prevent white pixels from being covered by the |
---|
152 | row clusters */ |
---|
153 | |
---|
154 | s.t. fh{i in 1..m, j in 1..n, t in 1..kc[j], ip in ec[j,t]..lc[j,t]: |
---|
155 | i-sc[j,t]+1 <= ip and ip <= i}: z[i,j] >= x[j,t,ip]; |
---|
156 | /* the constraint to prevent white pixels from being covered by the |
---|
157 | column clusters */ |
---|
158 | |
---|
159 | /* this is a feasibility problem, so no objective is needed */ |
---|
160 | |
---|
161 | /*--------------------------------------------------------------------*/ |
---|
162 | /* The following part is used only to check for multiple solutions. */ |
---|
163 | |
---|
164 | param zz{i in 1..m, j in 1..n}, binary, default 0; |
---|
165 | /* zz[i,j] is z[i,j] for a previously found solution */ |
---|
166 | |
---|
167 | s.t. fz{1..1 : sum{i in 1..m, j in 1..n} zz[i,j] > 0}: |
---|
168 | sum{i in 1..m, j in 1..n} |
---|
169 | (if zz[i,j] then (1 - z[i,j]) else z[i,j]) >= 1; |
---|
170 | /* the constraint to forbid finding a solution, which is identical to |
---|
171 | the previously found one; this constraint is included in the model |
---|
172 | only if the previously found solution specified by the parameter zz |
---|
173 | is provided in the data section */ |
---|
174 | |
---|
175 | solve; |
---|
176 | |
---|
177 | /*--------------------------------------------------------------------*/ |
---|
178 | /* Print solution to the standard output. */ |
---|
179 | |
---|
180 | for {i in 1..m} |
---|
181 | { printf{j in 1..n} " %s", if z[i,j] then "#" else "."; |
---|
182 | printf "\n"; |
---|
183 | } |
---|
184 | |
---|
185 | /*--------------------------------------------------------------------*/ |
---|
186 | /* Write solution to a text file in PostScript format. */ |
---|
187 | |
---|
188 | param ps, symbolic, default "solution.ps"; |
---|
189 | |
---|
190 | printf "%%!PS-Adobe-3.0\n" > ps; |
---|
191 | printf "%%%%Creator: GLPK (pbn.mod)\n" >> ps; |
---|
192 | printf "%%%%BoundingBox: 0 0 %d %d\n", |
---|
193 | 6 * (n + 2), 6 * (m + 2) >> ps; |
---|
194 | printf "%%%%EndComments\n" >> ps; |
---|
195 | printf "<</PageSize [%d %d]>> setpagedevice\n", |
---|
196 | 6 * (n + 2), 6 * (m + 2) >> ps; |
---|
197 | printf "0.1 setlinewidth\n" >> ps; |
---|
198 | printf "/A { 2 copy 2 copy 2 copy newpath moveto exch 6 add exch line" & |
---|
199 | "to\n" >> ps; |
---|
200 | printf "exch 6 add exch 6 add lineto 6 add lineto closepath } bind de" & |
---|
201 | "f\n" >> ps; |
---|
202 | printf "/W { A stroke } def\n" >> ps; |
---|
203 | printf "/B { A fill } def\n" >> ps; |
---|
204 | printf {i in 1..m, j in 1..n} "%d %d %s\n", |
---|
205 | (j - 1) * 6 + 6, (m - i) * 6 + 6, |
---|
206 | if z[i,j] then "B" else "W" >> ps; |
---|
207 | printf "%%%%EOF\n" >> ps; |
---|
208 | |
---|
209 | printf "Solution has been written to file %s\n", ps; |
---|
210 | |
---|
211 | /*--------------------------------------------------------------------*/ |
---|
212 | /* Write solution to a text file in the form of MathProg data section, |
---|
213 | which can be used later to check for multiple solutions. */ |
---|
214 | |
---|
215 | param dat, symbolic, default "solution.dat"; |
---|
216 | |
---|
217 | printf "data;\n" > dat; |
---|
218 | printf "\n" >> dat; |
---|
219 | printf "param zz :" >> dat; |
---|
220 | printf {j in 1..n} " %d", j >> dat; |
---|
221 | printf " :=\n" >> dat; |
---|
222 | for {i in 1..m} |
---|
223 | { printf " %2d", i >> dat; |
---|
224 | printf {j in 1..n} " %s", if z[i,j] then "1" else "." >> dat; |
---|
225 | printf "\n" >> dat; |
---|
226 | } |
---|
227 | printf ";\n" >> dat; |
---|
228 | printf "\n" >> dat; |
---|
229 | printf "end;\n" >> dat; |
---|
230 | |
---|
231 | printf "Solution has also been written to file %s\n", dat; |
---|
232 | |
---|
233 | /*--------------------------------------------------------------------*/ |
---|
234 | /* The following data correspond to the example above. */ |
---|
235 | |
---|
236 | data; |
---|
237 | |
---|
238 | param m := 10; |
---|
239 | |
---|
240 | param n := 10; |
---|
241 | |
---|
242 | param row : 1 2 3 := |
---|
243 | 1 3 6 . |
---|
244 | 2 1 4 . |
---|
245 | 3 1 1 3 |
---|
246 | 4 2 . . |
---|
247 | 5 3 3 . |
---|
248 | 6 1 4 . |
---|
249 | 7 2 5 . |
---|
250 | 8 2 5 . |
---|
251 | 9 1 1 . |
---|
252 | 10 3 . . |
---|
253 | ; |
---|
254 | |
---|
255 | param col : 1 2 3 4 := |
---|
256 | 1 2 3 . . |
---|
257 | 2 1 2 . . |
---|
258 | 3 1 1 1 1 |
---|
259 | 4 1 2 . . |
---|
260 | 5 1 1 1 1 |
---|
261 | 6 1 2 . . |
---|
262 | 7 2 3 . . |
---|
263 | 8 3 4 . . |
---|
264 | 9 8 . . . |
---|
265 | 10 9 . . . |
---|
266 | ; |
---|
267 | |
---|
268 | end; |
---|