1 | # PROD, a multiperiod production model |
---|
2 | # |
---|
3 | # References: |
---|
4 | # Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language |
---|
5 | # for Mathematical Programming." Management Science 36 (1990) 519-554. |
---|
6 | |
---|
7 | ### PRODUCTION SETS AND PARAMETERS ### |
---|
8 | |
---|
9 | set prd 'products'; # Members of the product group |
---|
10 | |
---|
11 | param pt 'production time' {prd} > 0; |
---|
12 | |
---|
13 | # Crew-hours to produce 1000 units |
---|
14 | |
---|
15 | param pc 'production cost' {prd} > 0; |
---|
16 | |
---|
17 | # Nominal production cost per 1000, used |
---|
18 | # to compute inventory and shortage costs |
---|
19 | |
---|
20 | ### TIME PERIOD SETS AND PARAMETERS ### |
---|
21 | |
---|
22 | param first > 0 integer; |
---|
23 | # Index of first production period to be modeled |
---|
24 | |
---|
25 | param last > first integer; |
---|
26 | |
---|
27 | # Index of last production period to be modeled |
---|
28 | |
---|
29 | set time 'planning horizon' := first..last; |
---|
30 | |
---|
31 | ### EMPLOYMENT PARAMETERS ### |
---|
32 | |
---|
33 | param cs 'crew size' > 0 integer; |
---|
34 | |
---|
35 | # Workers per crew |
---|
36 | |
---|
37 | param sl 'shift length' > 0; |
---|
38 | |
---|
39 | # Regular-time hours per shift |
---|
40 | |
---|
41 | param rtr 'regular time rate' > 0; |
---|
42 | |
---|
43 | # Wage per hour for regular-time labor |
---|
44 | |
---|
45 | param otr 'overtime rate' > rtr; |
---|
46 | |
---|
47 | # Wage per hour for overtime labor |
---|
48 | |
---|
49 | param iw 'initial workforce' >= 0 integer; |
---|
50 | |
---|
51 | # Crews employed at start of first period |
---|
52 | |
---|
53 | param dpp 'days per period' {time} > 0; |
---|
54 | |
---|
55 | # Regular working days in a production period |
---|
56 | |
---|
57 | param ol 'overtime limit' {time} >= 0; |
---|
58 | |
---|
59 | # Maximum crew-hours of overtime in a period |
---|
60 | |
---|
61 | param cmin 'crew minimum' {time} >= 0; |
---|
62 | |
---|
63 | # Lower limit on average employment in a period |
---|
64 | |
---|
65 | param cmax 'crew maximum' {t in time} >= cmin[t]; |
---|
66 | |
---|
67 | # Upper limit on average employment in a period |
---|
68 | |
---|
69 | param hc 'hiring cost' {time} >= 0; |
---|
70 | |
---|
71 | # Penalty cost of hiring a crew |
---|
72 | |
---|
73 | param lc 'layoff cost' {time} >= 0; |
---|
74 | |
---|
75 | # Penalty cost of laying off a crew |
---|
76 | |
---|
77 | ### DEMAND PARAMETERS ### |
---|
78 | |
---|
79 | param dem 'demand' {prd,first..last+1} >= 0; |
---|
80 | |
---|
81 | # Requirements (in 1000s) |
---|
82 | # to be met from current production and inventory |
---|
83 | |
---|
84 | param pro 'promoted' {prd,first..last+1} logical; |
---|
85 | |
---|
86 | # true if product will be the subject |
---|
87 | # of a special promotion in the period |
---|
88 | |
---|
89 | ### INVENTORY AND SHORTAGE PARAMETERS ### |
---|
90 | |
---|
91 | param rir 'regular inventory ratio' >= 0; |
---|
92 | |
---|
93 | # Proportion of non-promoted demand |
---|
94 | # that must be in inventory the previous period |
---|
95 | |
---|
96 | param pir 'promotional inventory ratio' >= 0; |
---|
97 | |
---|
98 | # Proportion of promoted demand |
---|
99 | # that must be in inventory the previous period |
---|
100 | |
---|
101 | param life 'inventory lifetime' > 0 integer; |
---|
102 | |
---|
103 | # Upper limit on number of periods that |
---|
104 | # any product may sit in inventory |
---|
105 | |
---|
106 | param cri 'inventory cost ratio' {prd} > 0; |
---|
107 | |
---|
108 | # Inventory cost per 1000 units is |
---|
109 | # cri times nominal production cost |
---|
110 | |
---|
111 | param crs 'shortage cost ratio' {prd} > 0; |
---|
112 | |
---|
113 | # Shortage cost per 1000 units is |
---|
114 | # crs times nominal production cost |
---|
115 | |
---|
116 | param iinv 'initial inventory' {prd} >= 0; |
---|
117 | |
---|
118 | # Inventory at start of first period; age unknown |
---|
119 | |
---|
120 | param iil 'initial inventory left' {p in prd, t in time} |
---|
121 | := iinv[p] less sum {v in first..t} dem[p,v]; |
---|
122 | |
---|
123 | # Initial inventory still available for allocation |
---|
124 | # at end of period t |
---|
125 | |
---|
126 | param minv 'minimum inventory' {p in prd, t in time} |
---|
127 | := dem[p,t+1] * (if pro[p,t+1] then pir else rir); |
---|
128 | |
---|
129 | # Lower limit on inventory at end of period t |
---|
130 | |
---|
131 | ### VARIABLES ### |
---|
132 | |
---|
133 | var Crews{first-1..last} >= 0; |
---|
134 | |
---|
135 | # Average number of crews employed in each period |
---|
136 | |
---|
137 | var Hire{time} >= 0; # Crews hired from previous to current period |
---|
138 | |
---|
139 | var Layoff{time} >= 0; # Crews laid off from previous to current period |
---|
140 | |
---|
141 | var Rprd 'regular production' {prd,time} >= 0; |
---|
142 | |
---|
143 | # Production using regular-time labor, in 1000s |
---|
144 | |
---|
145 | var Oprd 'overtime production' {prd,time} >= 0; |
---|
146 | |
---|
147 | # Production using overtime labor, in 1000s |
---|
148 | |
---|
149 | var Inv 'inventory' {prd,time,1..life} >= 0; |
---|
150 | |
---|
151 | # Inv[p,t,a] is the amount of product p that is |
---|
152 | # a periods old -- produced in period (t+1)-a -- |
---|
153 | # and still in storage at the end of period t |
---|
154 | |
---|
155 | var Short 'shortage' {prd,time} >= 0; |
---|
156 | |
---|
157 | # Accumulated unsatisfied demand at the end of period t |
---|
158 | |
---|
159 | ### OBJECTIVE ### |
---|
160 | |
---|
161 | minimize cost: |
---|
162 | |
---|
163 | sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] + |
---|
164 | sum {t in time} hc[t] * Hire[t] + |
---|
165 | sum {t in time} lc[t] * Layoff[t] + |
---|
166 | sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] + |
---|
167 | sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] + |
---|
168 | sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t]; |
---|
169 | |
---|
170 | # Full regular wages for all crews employed, plus |
---|
171 | # penalties for hiring and layoffs, plus |
---|
172 | # wages for any overtime worked, plus |
---|
173 | # inventory and shortage costs |
---|
174 | |
---|
175 | # (All other production costs are assumed |
---|
176 | # to depend on initial inventory and on demands, |
---|
177 | # and so are not included explicitly.) |
---|
178 | |
---|
179 | ### CONSTRAINTS ### |
---|
180 | |
---|
181 | rlim 'regular-time limit' {t in time}: |
---|
182 | |
---|
183 | sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t]; |
---|
184 | |
---|
185 | # Hours needed to accomplish all regular-time |
---|
186 | # production in a period must not exceed |
---|
187 | # hours available on all shifts |
---|
188 | |
---|
189 | olim 'overtime limit' {t in time}: |
---|
190 | |
---|
191 | sum {p in prd} pt[p] * Oprd[p,t] <= ol[t]; |
---|
192 | |
---|
193 | # Hours needed to accomplish all overtime |
---|
194 | # production in a period must not exceed |
---|
195 | # the specified overtime limit |
---|
196 | |
---|
197 | empl0 'initial crew level': Crews[first-1] = iw; |
---|
198 | |
---|
199 | # Use given initial workforce |
---|
200 | |
---|
201 | empl 'crew levels' {t in time}: Crews[t] = Crews[t-1] + Hire[t] - Layoff[t]; |
---|
202 | |
---|
203 | # Workforce changes by hiring or layoffs |
---|
204 | |
---|
205 | emplbnd 'crew limits' {t in time}: cmin[t] <= Crews[t] <= cmax[t]; |
---|
206 | |
---|
207 | # Workforce must remain within specified bounds |
---|
208 | |
---|
209 | dreq1 'first demand requirement' {p in prd}: |
---|
210 | |
---|
211 | Rprd[p,first] + Oprd[p,first] + Short[p,first] |
---|
212 | - Inv[p,first,1] = dem[p,first] less iinv[p]; |
---|
213 | |
---|
214 | dreq 'demand requirements' {p in prd, t in first+1..last}: |
---|
215 | |
---|
216 | Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1] |
---|
217 | + sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a]) |
---|
218 | = dem[p,t] less iil[p,t-1]; |
---|
219 | |
---|
220 | # Production plus increase in shortage plus |
---|
221 | # decrease in inventory must equal demand |
---|
222 | |
---|
223 | ireq 'inventory requirements' {p in prd, t in time}: |
---|
224 | |
---|
225 | sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t]; |
---|
226 | |
---|
227 | # Inventory in storage at end of period t |
---|
228 | # must meet specified minimum |
---|
229 | |
---|
230 | izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}: |
---|
231 | |
---|
232 | Inv[p,first+v-1,a] = 0; |
---|
233 | |
---|
234 | # In the vth period (starting from first) |
---|
235 | # no inventory may be more than v periods old |
---|
236 | # (initial inventories are handled separately) |
---|
237 | |
---|
238 | ilim1 'new-inventory limits' {p in prd, t in time}: |
---|
239 | |
---|
240 | Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t]; |
---|
241 | |
---|
242 | # New inventory cannot exceed |
---|
243 | # production in the most recent period |
---|
244 | |
---|
245 | ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}: |
---|
246 | |
---|
247 | Inv[p,t,a] <= Inv[p,t-1,a-1]; |
---|
248 | |
---|
249 | # Inventory left from period (t+1)-p |
---|
250 | # can only decrease as time goes on |
---|
251 | |
---|
252 | ### DATA ### |
---|
253 | |
---|
254 | data; |
---|
255 | |
---|
256 | set prd := 18REG 24REG 24PRO ; |
---|
257 | |
---|
258 | param first := 1 ; |
---|
259 | param last := 13 ; |
---|
260 | param life := 2 ; |
---|
261 | |
---|
262 | param cs := 18 ; |
---|
263 | param sl := 8 ; |
---|
264 | param iw := 8 ; |
---|
265 | |
---|
266 | param rtr := 16.00 ; |
---|
267 | param otr := 43.85 ; |
---|
268 | param rir := 0.75 ; |
---|
269 | param pir := 0.80 ; |
---|
270 | |
---|
271 | param : pt pc cri crs iinv := |
---|
272 | |
---|
273 | 18REG 1.194 2304. 0.015 1.100 82.0 |
---|
274 | 24REG 1.509 2920. 0.015 1.100 792.2 |
---|
275 | 24PRO 1.509 2910. 0.015 1.100 0.0 ; |
---|
276 | |
---|
277 | param : dpp ol cmin cmax hc lc := |
---|
278 | |
---|
279 | 1 19.5 96.0 0.0 8.0 7500 7500 |
---|
280 | 2 19.0 96.0 0.0 8.0 7500 7500 |
---|
281 | 3 20.0 96.0 0.0 8.0 7500 7500 |
---|
282 | 4 19.0 96.0 0.0 8.0 7500 7500 |
---|
283 | 5 19.5 96.0 0.0 8.0 15000 15000 |
---|
284 | 6 19.0 96.0 0.0 8.0 15000 15000 |
---|
285 | 7 19.0 96.0 0.0 8.0 15000 15000 |
---|
286 | 8 20.0 96.0 0.0 8.0 15000 15000 |
---|
287 | 9 19.0 96.0 0.0 8.0 15000 15000 |
---|
288 | 10 20.0 96.0 0.0 8.0 15000 15000 |
---|
289 | 11 20.0 96.0 0.0 8.0 7500 7500 |
---|
290 | 12 18.0 96.0 0.0 8.0 7500 7500 |
---|
291 | 13 18.0 96.0 0.0 8.0 7500 7500 ; |
---|
292 | |
---|
293 | param dem (tr) : |
---|
294 | |
---|
295 | 18REG 24REG 24PRO := |
---|
296 | |
---|
297 | 1 63.8 1212.0 0.0 |
---|
298 | 2 76.0 306.2 0.0 |
---|
299 | 3 88.4 319.0 0.0 |
---|
300 | 4 913.8 208.4 0.0 |
---|
301 | 5 115.0 298.0 0.0 |
---|
302 | 6 133.8 328.2 0.0 |
---|
303 | 7 79.6 959.6 0.0 |
---|
304 | 8 111.0 257.6 0.0 |
---|
305 | 9 121.6 335.6 0.0 |
---|
306 | 10 470.0 118.0 1102.0 |
---|
307 | 11 78.4 284.8 0.0 |
---|
308 | 12 99.4 970.0 0.0 |
---|
309 | 13 140.4 343.8 0.0 |
---|
310 | 14 63.8 1212.0 0.0 ; |
---|
311 | |
---|
312 | param pro (tr) : |
---|
313 | |
---|
314 | 18REG 24REG 24PRO := |
---|
315 | |
---|
316 | 1 0 1 0 |
---|
317 | 2 0 0 0 |
---|
318 | 3 0 0 0 |
---|
319 | 4 1 0 0 |
---|
320 | 5 0 0 0 |
---|
321 | 6 0 0 0 |
---|
322 | 7 0 1 0 |
---|
323 | 8 0 0 0 |
---|
324 | 9 0 0 0 |
---|
325 | 10 1 0 1 |
---|
326 | 11 0 0 0 |
---|
327 | 12 0 0 0 |
---|
328 | 13 0 1 0 |
---|
329 | 14 0 1 0 ; |
---|
330 | |
---|
331 | end; |
---|