1 | /* glpini02.c */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpapi.h" |
---|
26 | |
---|
27 | struct var |
---|
28 | { /* structural variable */ |
---|
29 | int j; |
---|
30 | /* ordinal number */ |
---|
31 | double q; |
---|
32 | /* penalty value */ |
---|
33 | }; |
---|
34 | |
---|
35 | static int fcmp(const void *ptr1, const void *ptr2) |
---|
36 | { /* this routine is passed to the qsort() function */ |
---|
37 | struct var *col1 = (void *)ptr1, *col2 = (void *)ptr2; |
---|
38 | if (col1->q < col2->q) return -1; |
---|
39 | if (col1->q > col2->q) return +1; |
---|
40 | return 0; |
---|
41 | } |
---|
42 | |
---|
43 | static int get_column(glp_prob *lp, int j, int ind[], double val[]) |
---|
44 | { /* Bixby's algorithm assumes that the constraint matrix is scaled |
---|
45 | such that the maximum absolute value in every non-zero row and |
---|
46 | column is 1 */ |
---|
47 | int k, len; |
---|
48 | double big; |
---|
49 | len = glp_get_mat_col(lp, j, ind, val); |
---|
50 | big = 0.0; |
---|
51 | for (k = 1; k <= len; k++) |
---|
52 | if (big < fabs(val[k])) big = fabs(val[k]); |
---|
53 | if (big == 0.0) big = 1.0; |
---|
54 | for (k = 1; k <= len; k++) val[k] /= big; |
---|
55 | return len; |
---|
56 | } |
---|
57 | |
---|
58 | static void cpx_basis(glp_prob *lp) |
---|
59 | { /* main routine */ |
---|
60 | struct var *C, *C2, *C3, *C4; |
---|
61 | int m, n, i, j, jk, k, l, ll, t, n2, n3, n4, type, len, *I, *r, |
---|
62 | *ind; |
---|
63 | double alpha, gamma, cmax, temp, *v, *val; |
---|
64 | xprintf("Constructing initial basis...\n"); |
---|
65 | /* determine the number of rows and columns */ |
---|
66 | m = glp_get_num_rows(lp); |
---|
67 | n = glp_get_num_cols(lp); |
---|
68 | /* allocate working arrays */ |
---|
69 | C = xcalloc(1+n, sizeof(struct var)); |
---|
70 | I = xcalloc(1+m, sizeof(int)); |
---|
71 | r = xcalloc(1+m, sizeof(int)); |
---|
72 | v = xcalloc(1+m, sizeof(double)); |
---|
73 | ind = xcalloc(1+m, sizeof(int)); |
---|
74 | val = xcalloc(1+m, sizeof(double)); |
---|
75 | /* make all auxiliary variables non-basic */ |
---|
76 | for (i = 1; i <= m; i++) |
---|
77 | { if (glp_get_row_type(lp, i) != GLP_DB) |
---|
78 | glp_set_row_stat(lp, i, GLP_NS); |
---|
79 | else if (fabs(glp_get_row_lb(lp, i)) <= |
---|
80 | fabs(glp_get_row_ub(lp, i))) |
---|
81 | glp_set_row_stat(lp, i, GLP_NL); |
---|
82 | else |
---|
83 | glp_set_row_stat(lp, i, GLP_NU); |
---|
84 | } |
---|
85 | /* make all structural variables non-basic */ |
---|
86 | for (j = 1; j <= n; j++) |
---|
87 | { if (glp_get_col_type(lp, j) != GLP_DB) |
---|
88 | glp_set_col_stat(lp, j, GLP_NS); |
---|
89 | else if (fabs(glp_get_col_lb(lp, j)) <= |
---|
90 | fabs(glp_get_col_ub(lp, j))) |
---|
91 | glp_set_col_stat(lp, j, GLP_NL); |
---|
92 | else |
---|
93 | glp_set_col_stat(lp, j, GLP_NU); |
---|
94 | } |
---|
95 | /* C2 is a set of free structural variables */ |
---|
96 | n2 = 0, C2 = C + 0; |
---|
97 | for (j = 1; j <= n; j++) |
---|
98 | { type = glp_get_col_type(lp, j); |
---|
99 | if (type == GLP_FR) |
---|
100 | { n2++; |
---|
101 | C2[n2].j = j; |
---|
102 | C2[n2].q = 0.0; |
---|
103 | } |
---|
104 | } |
---|
105 | /* C3 is a set of structural variables having excatly one (lower |
---|
106 | or upper) bound */ |
---|
107 | n3 = 0, C3 = C2 + n2; |
---|
108 | for (j = 1; j <= n; j++) |
---|
109 | { type = glp_get_col_type(lp, j); |
---|
110 | if (type == GLP_LO) |
---|
111 | { n3++; |
---|
112 | C3[n3].j = j; |
---|
113 | C3[n3].q = + glp_get_col_lb(lp, j); |
---|
114 | } |
---|
115 | else if (type == GLP_UP) |
---|
116 | { n3++; |
---|
117 | C3[n3].j = j; |
---|
118 | C3[n3].q = - glp_get_col_ub(lp, j); |
---|
119 | } |
---|
120 | } |
---|
121 | /* C4 is a set of structural variables having both (lower and |
---|
122 | upper) bounds */ |
---|
123 | n4 = 0, C4 = C3 + n3; |
---|
124 | for (j = 1; j <= n; j++) |
---|
125 | { type = glp_get_col_type(lp, j); |
---|
126 | if (type == GLP_DB) |
---|
127 | { n4++; |
---|
128 | C4[n4].j = j; |
---|
129 | C4[n4].q = glp_get_col_lb(lp, j) - glp_get_col_ub(lp, j); |
---|
130 | } |
---|
131 | } |
---|
132 | /* compute gamma = max{|c[j]|: 1 <= j <= n} */ |
---|
133 | gamma = 0.0; |
---|
134 | for (j = 1; j <= n; j++) |
---|
135 | { temp = fabs(glp_get_obj_coef(lp, j)); |
---|
136 | if (gamma < temp) gamma = temp; |
---|
137 | } |
---|
138 | /* compute cmax */ |
---|
139 | cmax = (gamma == 0.0 ? 1.0 : 1000.0 * gamma); |
---|
140 | /* compute final penalty for all structural variables within sets |
---|
141 | C2, C3, and C4 */ |
---|
142 | switch (glp_get_obj_dir(lp)) |
---|
143 | { case GLP_MIN: temp = +1.0; break; |
---|
144 | case GLP_MAX: temp = -1.0; break; |
---|
145 | default: xassert(lp != lp); |
---|
146 | } |
---|
147 | for (k = 1; k <= n2+n3+n4; k++) |
---|
148 | { j = C[k].j; |
---|
149 | C[k].q += (temp * glp_get_obj_coef(lp, j)) / cmax; |
---|
150 | } |
---|
151 | /* sort structural variables within C2, C3, and C4 in ascending |
---|
152 | order of penalty value */ |
---|
153 | qsort(C2+1, n2, sizeof(struct var), fcmp); |
---|
154 | for (k = 1; k < n2; k++) xassert(C2[k].q <= C2[k+1].q); |
---|
155 | qsort(C3+1, n3, sizeof(struct var), fcmp); |
---|
156 | for (k = 1; k < n3; k++) xassert(C3[k].q <= C3[k+1].q); |
---|
157 | qsort(C4+1, n4, sizeof(struct var), fcmp); |
---|
158 | for (k = 1; k < n4; k++) xassert(C4[k].q <= C4[k+1].q); |
---|
159 | /*** STEP 1 ***/ |
---|
160 | for (i = 1; i <= m; i++) |
---|
161 | { type = glp_get_row_type(lp, i); |
---|
162 | if (type != GLP_FX) |
---|
163 | { /* row i is either free or inequality constraint */ |
---|
164 | glp_set_row_stat(lp, i, GLP_BS); |
---|
165 | I[i] = 1; |
---|
166 | r[i] = 1; |
---|
167 | } |
---|
168 | else |
---|
169 | { /* row i is equality constraint */ |
---|
170 | I[i] = 0; |
---|
171 | r[i] = 0; |
---|
172 | } |
---|
173 | v[i] = +DBL_MAX; |
---|
174 | } |
---|
175 | /*** STEP 2 ***/ |
---|
176 | for (k = 1; k <= n2+n3+n4; k++) |
---|
177 | { jk = C[k].j; |
---|
178 | len = get_column(lp, jk, ind, val); |
---|
179 | /* let alpha = max{|A[l,jk]|: r[l] = 0} and let l' be such |
---|
180 | that alpha = |A[l',jk]| */ |
---|
181 | alpha = 0.0, ll = 0; |
---|
182 | for (t = 1; t <= len; t++) |
---|
183 | { l = ind[t]; |
---|
184 | if (r[l] == 0 && alpha < fabs(val[t])) |
---|
185 | alpha = fabs(val[t]), ll = l; |
---|
186 | } |
---|
187 | if (alpha >= 0.99) |
---|
188 | { /* B := B union {jk} */ |
---|
189 | glp_set_col_stat(lp, jk, GLP_BS); |
---|
190 | I[ll] = 1; |
---|
191 | v[ll] = alpha; |
---|
192 | /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */ |
---|
193 | for (t = 1; t <= len; t++) |
---|
194 | { l = ind[t]; |
---|
195 | if (val[t] != 0.0) r[l]++; |
---|
196 | } |
---|
197 | /* continue to the next k */ |
---|
198 | continue; |
---|
199 | } |
---|
200 | /* if |A[l,jk]| > 0.01 * v[l] for some l, continue to the |
---|
201 | next k */ |
---|
202 | for (t = 1; t <= len; t++) |
---|
203 | { l = ind[t]; |
---|
204 | if (fabs(val[t]) > 0.01 * v[l]) break; |
---|
205 | } |
---|
206 | if (t <= len) continue; |
---|
207 | /* otherwise, let alpha = max{|A[l,jk]|: I[l] = 0} and let l' |
---|
208 | be such that alpha = |A[l',jk]| */ |
---|
209 | alpha = 0.0, ll = 0; |
---|
210 | for (t = 1; t <= len; t++) |
---|
211 | { l = ind[t]; |
---|
212 | if (I[l] == 0 && alpha < fabs(val[t])) |
---|
213 | alpha = fabs(val[t]), ll = l; |
---|
214 | } |
---|
215 | /* if alpha = 0, continue to the next k */ |
---|
216 | if (alpha == 0.0) continue; |
---|
217 | /* B := B union {jk} */ |
---|
218 | glp_set_col_stat(lp, jk, GLP_BS); |
---|
219 | I[ll] = 1; |
---|
220 | v[ll] = alpha; |
---|
221 | /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */ |
---|
222 | for (t = 1; t <= len; t++) |
---|
223 | { l = ind[t]; |
---|
224 | if (val[t] != 0.0) r[l]++; |
---|
225 | } |
---|
226 | } |
---|
227 | /*** STEP 3 ***/ |
---|
228 | /* add an artificial variable (auxiliary variable for equality |
---|
229 | constraint) to cover each remaining uncovered row */ |
---|
230 | for (i = 1; i <= m; i++) |
---|
231 | if (I[i] == 0) glp_set_row_stat(lp, i, GLP_BS); |
---|
232 | /* free working arrays */ |
---|
233 | xfree(C); |
---|
234 | xfree(I); |
---|
235 | xfree(r); |
---|
236 | xfree(v); |
---|
237 | xfree(ind); |
---|
238 | xfree(val); |
---|
239 | return; |
---|
240 | } |
---|
241 | |
---|
242 | /*********************************************************************** |
---|
243 | * NAME |
---|
244 | * |
---|
245 | * glp_cpx_basis - construct Bixby's initial LP basis |
---|
246 | * |
---|
247 | * SYNOPSIS |
---|
248 | * |
---|
249 | * void glp_cpx_basis(glp_prob *lp); |
---|
250 | * |
---|
251 | * DESCRIPTION |
---|
252 | * |
---|
253 | * The routine glp_cpx_basis constructs an advanced initial basis for |
---|
254 | * the specified problem object. |
---|
255 | * |
---|
256 | * The routine is based on Bixby's algorithm described in the paper: |
---|
257 | * |
---|
258 | * Robert E. Bixby. Implementing the Simplex Method: The Initial Basis. |
---|
259 | * ORSA Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84. */ |
---|
260 | |
---|
261 | void glp_cpx_basis(glp_prob *lp) |
---|
262 | { if (lp->m == 0 || lp->n == 0) |
---|
263 | glp_std_basis(lp); |
---|
264 | else |
---|
265 | cpx_basis(lp); |
---|
266 | return; |
---|
267 | } |
---|
268 | |
---|
269 | /* eof */ |
---|