[21] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
| 5 | * Copyright (C) 2003-2009 |
---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | namespace lemon { |
---|
| 20 | /** |
---|
| 21 | [PAGE]basics[PAGE] Basic Concepts |
---|
| 22 | |
---|
| 23 | Throughout the document we are working with the \ref lemon namespace. |
---|
| 24 | To save a lot of typing we assume that a |
---|
| 25 | |
---|
| 26 | \code |
---|
| 27 | using namespace lemon; |
---|
| 28 | \endcode |
---|
| 29 | |
---|
| 30 | directive is added to the code at the beginning. |
---|
| 31 | |
---|
| 32 | [SEC]digraphs[SEC] Directed Graphs |
---|
| 33 | |
---|
| 34 | This section tells you how to work with a directed graph. We use ListDigraph, |
---|
| 35 | the most versatile graph structure. |
---|
| 36 | |
---|
| 37 | The nodes and the arcs of a graph are identified by two datatypes called |
---|
| 38 | ListDigraph::Node and ListDigraph::Arc. You can add new components the graph |
---|
| 39 | by the \ref ListDigraph::addNode() "addNode()" and the |
---|
| 40 | \ref ListDigraph::addArc() "addArc()" member functions, like this: |
---|
| 41 | |
---|
| 42 | \code |
---|
| 43 | ListDigraph g; |
---|
| 44 | ListDigraph::Node a = g.addNode(); |
---|
| 45 | ListDigraph::Node b = g.addNode(); |
---|
| 46 | ListDigraph::Node c = g.addNode(); |
---|
| 47 | ListDigraph::Node d = g.addNode(); |
---|
| 48 | |
---|
| 49 | g.addArc(a,b); |
---|
| 50 | g.addArc(b,c); |
---|
| 51 | g.addArc(c,d); |
---|
| 52 | g.addArc(d,a); |
---|
| 53 | \endcode |
---|
| 54 | |
---|
| 55 | Of course, \ref ListDigraph::addArc() "addArc()" also returns the created arc: |
---|
| 56 | |
---|
| 57 | \code |
---|
| 58 | ListDigraph::Arc diag = g.addArc(a,c); |
---|
| 59 | \endcode |
---|
| 60 | |
---|
| 61 | \note You can also remove nodes or arcs with the |
---|
| 62 | \ref ListDigraph::erase() "erase()", but this operation may not be available |
---|
| 63 | with all graph structures. |
---|
| 64 | |
---|
| 65 | Two other important member functions are |
---|
| 66 | \ref concepts::Digraph::source() "source()" |
---|
| 67 | and \ref concepts::Digraph::target() "target()". |
---|
| 68 | They gives back the to end nodes of and arc. |
---|
| 69 | |
---|
| 70 | \code |
---|
| 71 | if(g.source(e)==g.target(e)) |
---|
| 72 | std::cout << "This is a loop arc" << std::endl; |
---|
| 73 | \endcode |
---|
| 74 | |
---|
| 75 | [SEC]digraphs_it[SEC] Iterators |
---|
| 76 | |
---|
| 77 | Now assume you want to list the elements of the graph. For this purpose the |
---|
| 78 | the graphs provides several iterators. For example for following code will |
---|
| 79 | cound the number of nodes in a graph. |
---|
| 80 | |
---|
| 81 | \code |
---|
| 82 | int cnt = 0; |
---|
| 83 | for(ListDigraph::NodeIt n(g); n!=INVALID; ++n) |
---|
| 84 | cnt++; |
---|
| 85 | std::cout << "Number of nodes: " << cnt << std::endl; |
---|
| 86 | \endcode |
---|
| 87 | |
---|
| 88 | Here \ref concepts::Digraph::NodeIt "ListDigraph::NodeIt" |
---|
| 89 | is an iterator class that lists the |
---|
| 90 | nodes. You must give the graph to the constructor and it will be set |
---|
| 91 | to the first node. The next node is obtained by the prefix ++ |
---|
| 92 | operator. If there is no more nodes in the graph, the iterator will |
---|
| 93 | be set to \ref INVALID. |
---|
| 94 | |
---|
| 95 | \note \ref INVALID is a global constant in lemon and it converts to |
---|
| 96 | and compares with each and every iterators in LEMON. |
---|
| 97 | |
---|
| 98 | The iterators converts to the corresponding descriptor types. For example |
---|
| 99 | to following code will add a full graph to the existing nodes. |
---|
| 100 | |
---|
| 101 | \code |
---|
| 102 | for(ListDigraph::NodeIt u(g); u!=INVALID; ++u) |
---|
| 103 | for(ListDigraph::NodeIt v(g); v!=INVALID; ++v) |
---|
| 104 | if(u!=v) g.addArc(u,v); |
---|
| 105 | \endcode |
---|
| 106 | |
---|
| 107 | The items are also ordered by the 'less than' operator. For example this |
---|
| 108 | code will add only one of the opposite arcs. |
---|
| 109 | |
---|
| 110 | \code |
---|
| 111 | for(ListDigraph::NodeIt u(g); u!=INVALID; ++u) |
---|
| 112 | for(ListDigraph::NodeIt v(g); v!=INVALID; ++v) |
---|
| 113 | if(u<v) g.addArc(u,v); |
---|
| 114 | \endcode |
---|
| 115 | |
---|
| 116 | \warning There order in which the iterator visits the items is |
---|
| 117 | undefined. The only thing you may assume that they will list the items |
---|
| 118 | in the same order until the graph is not changed. |
---|
| 119 | |
---|
| 120 | Similarly, \ref concepts::Digraph::ArcIt "ListDigraph::ArcIt" |
---|
| 121 | lists the arcs. Its usage is the same as of |
---|
| 122 | \ref concepts::Digraph::NodeIt "ListDigraph::NodeIt". |
---|
| 123 | |
---|
| 124 | \code |
---|
| 125 | int cnt = 0; |
---|
| 126 | for(ListDigraph::ArcIt a(g); a!=INVALID; ++a) |
---|
| 127 | cnt++; |
---|
| 128 | std::cout << "Number of arcs: " << cnt << std::endl; |
---|
| 129 | \endcode |
---|
| 130 | |
---|
| 131 | Finally, you can also list the arcs starting from or arriving at a |
---|
| 132 | certain node with |
---|
| 133 | \ref concepts::Digraph::OutArcIt "ListDigraph::OutArcIt" |
---|
| 134 | and |
---|
| 135 | \ref concepts::Digraph::InArcIt "ListDigraph::InArcIt". |
---|
| 136 | Their usage are the same, but you must also give the node to the constructor. |
---|
| 137 | |
---|
| 138 | \code |
---|
| 139 | int cnt = 0; |
---|
| 140 | for(ListDigraph::OutArcIt a(g,start); a!=INVALID; ++a) |
---|
| 141 | cnt++; |
---|
| 142 | std::cout << "Number of arcs leaving the node 'start': " << cnt << std::endl; |
---|
| 143 | \endcode |
---|
| 144 | |
---|
| 145 | [SEC]maps[SEC] Maps |
---|
| 146 | |
---|
| 147 | The concept of "Maps" is another fundamental part of LEMON. They allow assigning |
---|
| 148 | values of any type to the nodes or arcs of a graph. The default maps |
---|
| 149 | provided by the graph structures have a couple of nice properties. |
---|
| 150 | |
---|
| 151 | - \e Fast. Accessing (reading/writing) the values are as fast as a |
---|
| 152 | simple vector reading/writing |
---|
| 153 | - \e Dynamic. Whenever you need, you |
---|
| 154 | can allocate new maps in your code, just as a local variable. So when you |
---|
| 155 | leave its scope, it will be de-allocated automatically. |
---|
| 156 | - \e Automatic. If you add new nodes or arcs to the graph, the storage of the |
---|
| 157 | existing maps will automatically expanded and the new slots will be |
---|
| 158 | initialized. On the removal of an item, the corresponding values in the maps |
---|
| 159 | are properly destructed. |
---|
| 160 | |
---|
| 161 | So, if you want to assign \c int values to each node, you have to allocate a |
---|
| 162 | \ref concepts::Digraph::Node Map "NodeMap<int>". |
---|
| 163 | |
---|
| 164 | \code |
---|
| 165 | ListDigraph::NodeMap<int> map(g); |
---|
| 166 | \endcode |
---|
| 167 | |
---|
| 168 | As you see, the graph you want to assign a map is given to the |
---|
| 169 | constructor. Then you can access its element as if it were a vector. |
---|
| 170 | |
---|
| 171 | \code |
---|
| 172 | map[a]=2; |
---|
| 173 | map[b]=3; |
---|
| 174 | map[c]=map[a]+map[b]; |
---|
| 175 | \endcode |
---|
| 176 | |
---|
| 177 | As a more complex example, let's create a map that assigns a unique |
---|
| 178 | integer number to each node. |
---|
| 179 | |
---|
| 180 | \code |
---|
| 181 | ListDigraph::NodeMap<int> id(g); |
---|
| 182 | int cnt=0; |
---|
| 183 | for(ListDigraph::NodeIt n(g); n!=INVALID; ++n, ++cnt) |
---|
| 184 | id[n]=cnt; |
---|
| 185 | \endcode |
---|
| 186 | |
---|
| 187 | You can also give an initial value of the elements as a second parameter. |
---|
| 188 | |
---|
| 189 | For example the following code puts the number of outgoing edges in a map. |
---|
| 190 | |
---|
| 191 | \code |
---|
| 192 | ListDigraph::NodeMap<int> out_deg(g,0); |
---|
| 193 | |
---|
| 194 | for(ListDigraph::ArcIt a(g); a!=INVALID; ++a) |
---|
| 195 | out_deg[g.source(a)]++; |
---|
| 196 | \endcode |
---|
| 197 | |
---|
| 198 | \warning The initial value will apply to the existing items only. If |
---|
| 199 | you add new nodes/arcs to the graph, then the corresponding values in the |
---|
| 200 | map will be initialized with the default constructor of the |
---|
| 201 | type. |
---|
| 202 | |
---|
| 203 | [TRAILER] |
---|
| 204 | */ |
---|
| 205 | } |
---|