[21] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
[32] | 5 | * Copyright (C) 2003-2010 |
---|
[21] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | namespace lemon { |
---|
| 20 | /** |
---|
[26] | 21 | [PAGE]sec_basics[PAGE] Basic Concepts |
---|
[21] | 22 | |
---|
[27] | 23 | Throughout the tutorial we are working with the \ref lemon namespace. |
---|
| 24 | To save a lot of typing, we assume that a |
---|
[21] | 25 | |
---|
| 26 | \code |
---|
| 27 | using namespace lemon; |
---|
| 28 | \endcode |
---|
| 29 | |
---|
| 30 | directive is added to the code at the beginning. |
---|
| 31 | |
---|
[26] | 32 | [SEC]sec_digraphs[SEC] Directed Graphs |
---|
[21] | 33 | |
---|
[37] | 34 | The core features of LEMON are the data structures, algorithms and auxiliary |
---|
| 35 | tools that make it possible to represent graphs and working with them easily |
---|
| 36 | and efficiently. |
---|
[27] | 37 | This section tells you how to work with a directed graph (\e digraph, |
---|
[28] | 38 | for short) in LEMON. Here we use \ref ListDigraph, the most versatile |
---|
| 39 | digraph structure. (The library also provides other digraph types, |
---|
| 40 | see \ref sec_graph_structures "later".) |
---|
[21] | 41 | |
---|
[37] | 42 | For using \ref ListDigraph, you must include the header file |
---|
| 43 | \ref list_graph.h like this: |
---|
| 44 | |
---|
| 45 | \code |
---|
| 46 | #include <lemon/list_graph.h> |
---|
| 47 | \endcode |
---|
| 48 | |
---|
| 49 | The default constructor of the class creates an empty digraph. |
---|
| 50 | |
---|
| 51 | \code |
---|
| 52 | ListDigraph g; |
---|
| 53 | \endcode |
---|
| 54 | |
---|
[27] | 55 | The nodes and the arcs of a graph are identified by two data types called |
---|
| 56 | \ref concepts::Digraph::Node "ListDigraph::Node" and \ref concepts::Digraph::Arc |
---|
| 57 | "ListDigraph::Arc". You can add new items to the graph using the member |
---|
| 58 | functions \ref ListDigraph::addNode() "addNode()" and |
---|
| 59 | \ref ListDigraph::addArc() "addArc()", like this: |
---|
[21] | 60 | |
---|
| 61 | \code |
---|
[37] | 62 | ListDigraph::Node x = g.addNode(); |
---|
| 63 | ListDigraph::Node y = g.addNode(); |
---|
| 64 | ListDigraph::Node z = g.addNode(); |
---|
[21] | 65 | |
---|
[37] | 66 | g.addArc(x,y); |
---|
| 67 | g.addArc(y,z); |
---|
| 68 | g.addArc(z,x); |
---|
[21] | 69 | \endcode |
---|
| 70 | |
---|
| 71 | Of course, \ref ListDigraph::addArc() "addArc()" also returns the created arc: |
---|
| 72 | |
---|
| 73 | \code |
---|
[37] | 74 | ListDigraph::Arc arc = g.addArc(x,z); |
---|
| 75 | \endcode |
---|
| 76 | |
---|
| 77 | Parallel and loop arcs are also supported. |
---|
| 78 | |
---|
| 79 | \code |
---|
| 80 | ListDigraph::Arc parallel = g.addArc(x,y); |
---|
| 81 | ListDigraph::Arc loop = g.addArc(x,x); |
---|
[21] | 82 | \endcode |
---|
| 83 | |
---|
[27] | 84 | \note Using ListDigraph, you can also remove nodes or arcs with the |
---|
[28] | 85 | \ref ListDigraph::erase() "erase()" function. Moreover, this class provides |
---|
| 86 | several other operations, see its \ref ListDigraph "documentation" for more |
---|
| 87 | information. |
---|
[27] | 88 | However, not all graph structures support the addition and deletion |
---|
[28] | 89 | of graph items (see \ref sec_graph_concepts). |
---|
[21] | 90 | |
---|
[27] | 91 | Two important member functions of the directed graphs are |
---|
[21] | 92 | \ref concepts::Digraph::source() "source()" |
---|
| 93 | and \ref concepts::Digraph::target() "target()". |
---|
[37] | 94 | They give back the two end nodes of an arc (as \c Node objects). |
---|
[21] | 95 | |
---|
| 96 | \code |
---|
[37] | 97 | if (g.source(loop) == g.target(loop)) |
---|
[21] | 98 | std::cout << "This is a loop arc" << std::endl; |
---|
| 99 | \endcode |
---|
| 100 | |
---|
[37] | 101 | Each graph item has a non-negative integer identifier, which can be obtained |
---|
| 102 | using the \ref concepts::Digraph::id() "id()" function of the graph structure. |
---|
| 103 | These identifiers are unique with respect to a certain item type in a graph, |
---|
| 104 | but a node and an arc may have the same id. |
---|
[27] | 105 | |
---|
| 106 | \code |
---|
| 107 | std::cout << "Arc " << g.id(arc) << " goes from node " |
---|
| 108 | << g.id(g.source(arc)) << " to node " << g.id(g.target(arc)) << std::endl; |
---|
| 109 | \endcode |
---|
| 110 | |
---|
| 111 | \note In fact, the \c Node and \c Arc types are typically simple wrapper |
---|
| 112 | classes for a single \c int value, which is the identifier of the item. |
---|
| 113 | |
---|
[26] | 114 | |
---|
| 115 | [SEC]sec_digraph_it[SEC] Iterators |
---|
[21] | 116 | |
---|
[27] | 117 | Let us assume you want to list the elements of the graph. For this purpose, |
---|
[37] | 118 | the graph structures provide several \e iterators. For example, the following |
---|
[27] | 119 | code will count the number of nodes in a graph. |
---|
[21] | 120 | |
---|
| 121 | \code |
---|
| 122 | int cnt = 0; |
---|
[27] | 123 | for (ListDigraph::NodeIt n(g); n != INVALID; ++n) |
---|
[21] | 124 | cnt++; |
---|
| 125 | std::cout << "Number of nodes: " << cnt << std::endl; |
---|
| 126 | \endcode |
---|
| 127 | |
---|
[37] | 128 | \ref concepts::Digraph::NodeIt "ListDigraph::NodeIt" |
---|
| 129 | is an iterator class that lists the nodes. |
---|
| 130 | The name of an iterator type starts with a name that refers to |
---|
| 131 | the iterated objects and ends with 'It'. |
---|
| 132 | |
---|
| 133 | Using \ref concepts::Digraph::NodeIt "NodeIt", you must give |
---|
| 134 | the graph object to the constructor and the iterator will be set |
---|
[21] | 135 | to the first node. The next node is obtained by the prefix ++ |
---|
[27] | 136 | operator. If there are no more nodes in the graph, the iterator will |
---|
[37] | 137 | be set to \ref INVALID, which is exploited in the stop condition of |
---|
| 138 | the loop. |
---|
[21] | 139 | |
---|
[37] | 140 | \note \ref INVALID is a constant in the \ref lemon namespace, which converts to |
---|
| 141 | and compares with each and every iterator and graph item type. |
---|
| 142 | Thus, you can even assign \ref INVALID to a \c Node or \c Arc object. |
---|
[21] | 143 | |
---|
[37] | 144 | The iterators convert to the corresponding item types. |
---|
| 145 | For example, the identifiers of the nodes can be printed like this. |
---|
| 146 | |
---|
| 147 | \code |
---|
| 148 | for (ListDigraph::NodeIt n(g); n != INVALID; ++n) |
---|
| 149 | std::cout << g.id(n) << std::endl; |
---|
| 150 | \endcode |
---|
| 151 | |
---|
| 152 | As an other example, the following code adds a full graph to the |
---|
| 153 | existing nodes. |
---|
[21] | 154 | |
---|
| 155 | \code |
---|
[27] | 156 | for (ListDigraph::NodeIt u(g); u != INVALID; ++u) |
---|
| 157 | for (ListDigraph::NodeIt v(g); v != INVALID; ++v) |
---|
| 158 | if (u != v) g.addArc(u, v); |
---|
[21] | 159 | \endcode |
---|
| 160 | |
---|
[27] | 161 | \note Contrary to the iterators in the C++ Standard Template Library (STL), |
---|
| 162 | LEMON iterators are convertible to the corresponding |
---|
[32] | 163 | item types without having to use \c %operator*(). This is not confusing, |
---|
| 164 | since the program context always indicates whether we refer to the iterator |
---|
| 165 | or to the graph item (they do not have conflicting functionalities). |
---|
[27] | 166 | |
---|
| 167 | The graph items are also ordered by the 'less than' operator (with respect to |
---|
| 168 | their integer identifiers). For example, this code will add only one of the |
---|
| 169 | opposite arcs. |
---|
[21] | 170 | |
---|
| 171 | \code |
---|
[27] | 172 | for (ListDigraph::NodeIt u(g); u != INVALID; ++u) |
---|
| 173 | for (ListDigraph::NodeIt v(g); v != INVALID; ++v) |
---|
| 174 | if (u < v) g.addArc(u, v); |
---|
[21] | 175 | \endcode |
---|
| 176 | |
---|
[27] | 177 | \warning The order in which the iterators visit the items is |
---|
[21] | 178 | undefined. The only thing you may assume that they will list the items |
---|
| 179 | in the same order until the graph is not changed. |
---|
| 180 | |
---|
| 181 | Similarly, \ref concepts::Digraph::ArcIt "ListDigraph::ArcIt" |
---|
| 182 | lists the arcs. Its usage is the same as of |
---|
| 183 | \ref concepts::Digraph::NodeIt "ListDigraph::NodeIt". |
---|
| 184 | |
---|
| 185 | \code |
---|
| 186 | int cnt = 0; |
---|
[27] | 187 | for (ListDigraph::ArcIt a(g); a != INVALID; ++a) |
---|
[21] | 188 | cnt++; |
---|
| 189 | std::cout << "Number of arcs: " << cnt << std::endl; |
---|
| 190 | \endcode |
---|
| 191 | |
---|
| 192 | Finally, you can also list the arcs starting from or arriving at a |
---|
[32] | 193 | certain node with |
---|
[21] | 194 | \ref concepts::Digraph::OutArcIt "ListDigraph::OutArcIt" |
---|
| 195 | and |
---|
| 196 | \ref concepts::Digraph::InArcIt "ListDigraph::InArcIt". |
---|
[27] | 197 | Their usage is the same, but you must also give the node to the constructor. |
---|
[21] | 198 | |
---|
| 199 | \code |
---|
| 200 | int cnt = 0; |
---|
[37] | 201 | for (ListDigraph::OutArcIt a(g, x); a != INVALID; ++a) |
---|
[21] | 202 | cnt++; |
---|
[37] | 203 | std::cout << "Number of arcs leaving the node 'x': " << cnt << std::endl; |
---|
[21] | 204 | \endcode |
---|
| 205 | |
---|
[37] | 206 | \note LEMON provides functions for counting the nodes and arcs of a digraph: |
---|
| 207 | \ref countNodes(), \ref countArcs(), \ref countInArcs(), \ref countOutArcs(). |
---|
| 208 | Using them is not just simpler than the above loops, but they could be much |
---|
| 209 | faster, since several graph types support constant time item counting. |
---|
| 210 | |
---|
[26] | 211 | |
---|
| 212 | [SEC]sec_digraph_maps[SEC] Maps |
---|
[21] | 213 | |
---|
[27] | 214 | The concept of "maps" is another fundamental part of LEMON. They allow assigning |
---|
| 215 | values of any type to the nodes or arcs of a graph. The standard maps |
---|
[21] | 216 | provided by the graph structures have a couple of nice properties. |
---|
| 217 | |
---|
[27] | 218 | - \e Fast. Accessing (reading/writing) the values is as fast as a |
---|
| 219 | simple vector reading/writing. |
---|
[21] | 220 | - \e Dynamic. Whenever you need, you |
---|
| 221 | can allocate new maps in your code, just as a local variable. So when you |
---|
| 222 | leave its scope, it will be de-allocated automatically. |
---|
| 223 | - \e Automatic. If you add new nodes or arcs to the graph, the storage of the |
---|
| 224 | existing maps will automatically expanded and the new slots will be |
---|
| 225 | initialized. On the removal of an item, the corresponding values in the maps |
---|
| 226 | are properly destructed. |
---|
[37] | 227 | |
---|
| 228 | By principle, the graph classes represent only the pure structure of |
---|
| 229 | the graph (i.e. the nodes and arcs and their connections). |
---|
| 230 | All data that are assigned to the items of the graph (e.g. node labels, |
---|
| 231 | arc costs or capacities) must be stored separately using maps. |
---|
[21] | 232 | |
---|
[27] | 233 | \note These maps must not be confused with \c std::map, since they provide |
---|
[37] | 234 | O(1) time access to the elements instead of O(log n). |
---|
[27] | 235 | |
---|
[21] | 236 | So, if you want to assign \c int values to each node, you have to allocate a |
---|
[27] | 237 | \ref concepts::Digraph::NodeMap "NodeMap<int>". |
---|
[21] | 238 | |
---|
| 239 | \code |
---|
| 240 | ListDigraph::NodeMap<int> map(g); |
---|
| 241 | \endcode |
---|
| 242 | |
---|
| 243 | As you see, the graph you want to assign a map is given to the |
---|
| 244 | constructor. Then you can access its element as if it were a vector. |
---|
| 245 | |
---|
| 246 | \code |
---|
[37] | 247 | map[x] = 2; |
---|
| 248 | map[y] = 3; |
---|
| 249 | map[z] = map[x] + map[y]; |
---|
[21] | 250 | \endcode |
---|
| 251 | |
---|
[37] | 252 | Any kind of data can be assigned to the graph items (assuming that the type |
---|
| 253 | has a default constructor). |
---|
[27] | 254 | |
---|
| 255 | \code |
---|
[37] | 256 | ListDigraph::NodeMap<std::string> name(g); |
---|
| 257 | name[x] = "Node A"; |
---|
| 258 | name[y] = "Node B"; |
---|
[27] | 259 | \endcode |
---|
| 260 | |
---|
[37] | 261 | As a more complex example, let us create a map that assigns \c char labels |
---|
| 262 | to the nodes. |
---|
[21] | 263 | |
---|
| 264 | \code |
---|
[37] | 265 | ListDigraph::NodeMap<char> label(g); |
---|
| 266 | char ch = 'A'; |
---|
[27] | 267 | for (ListDigraph::NodeIt n(g); n != INVALID; ++n) |
---|
[37] | 268 | label[n] = ch++; |
---|
[21] | 269 | \endcode |
---|
| 270 | |
---|
[27] | 271 | When you create a map, you can also give an initial value of the elements |
---|
| 272 | as a second parameter. For example, the following code puts the number |
---|
| 273 | of outgoing arcs for each node in a map. |
---|
[21] | 274 | |
---|
| 275 | \code |
---|
[27] | 276 | ListDigraph::NodeMap<int> out_deg(g, 0); |
---|
| 277 | for (ListDigraph::ArcIt a(g); a != INVALID; ++a) |
---|
[21] | 278 | out_deg[g.source(a)]++; |
---|
| 279 | \endcode |
---|
| 280 | |
---|
[27] | 281 | \warning The initial value will apply to the currently existing items only. If |
---|
[21] | 282 | you add new nodes/arcs to the graph, then the corresponding values in the |
---|
| 283 | map will be initialized with the default constructor of the |
---|
| 284 | type. |
---|
| 285 | |
---|
[37] | 286 | |
---|
| 287 | [SEC]sec_naming_conv[SEC] Naming Conventions |
---|
| 288 | |
---|
| 289 | In LEMON, there are some naming conventions you might already notice |
---|
| 290 | in the above examples. |
---|
| 291 | |
---|
| 292 | The name of a source file is written lowercase and the words are separated with |
---|
| 293 | underscores (e.g. \ref list_graph.h). All header files are located in the |
---|
| 294 | \c %lemon subdirectory, so you can include them like this. |
---|
| 295 | |
---|
| 296 | \code |
---|
| 297 | #include <lemon/header_file.h> |
---|
| 298 | \endcode |
---|
| 299 | |
---|
| 300 | The name of a class or any type looks like the following |
---|
| 301 | (e.g. \ref ListDigraph, \ref concepts::Digraph::Node "Node", |
---|
| 302 | \ref concepts::Digraph::NodeIt "NodeIt" etc.). |
---|
| 303 | |
---|
| 304 | \code |
---|
| 305 | AllWordsCapitalizedWithoutUnderscores |
---|
| 306 | \endcode |
---|
| 307 | |
---|
| 308 | The name of a function looks like the following |
---|
| 309 | (e.g. \ref concepts::Digraph::source() "source()", |
---|
| 310 | \ref concepts::Digraph::source() "target()", |
---|
| 311 | \ref countNodes(), \ref countArcs() etc.). |
---|
| 312 | |
---|
| 313 | \code |
---|
| 314 | firstWordLowerCaseRestCapitalizedWithoutUnderscores |
---|
| 315 | \endcode |
---|
| 316 | |
---|
| 317 | The names of constants and macros look like the following |
---|
| 318 | (e.g. \ref INVALID). |
---|
| 319 | |
---|
| 320 | \code |
---|
| 321 | ALL_UPPER_CASE_WITH_UNDERSCORES |
---|
| 322 | \endcode |
---|
| 323 | |
---|
| 324 | For more details, see \ref coding_style. |
---|
| 325 | |
---|
[21] | 326 | [TRAILER] |
---|
| 327 | */ |
---|
| 328 | } |
---|