1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2010 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | ///\file |
---|
20 | ///\brief Demo program that solves maximum flow problems using the LP interface |
---|
21 | /// |
---|
22 | /// This demo program shows how to solve the maximum flow problem using |
---|
23 | /// the LEMON LP solver interface. We would like to lay the emphasis on the |
---|
24 | /// simplicity of the way one can formulate LP constraints that arise in graph |
---|
25 | /// theory using LEMON. |
---|
26 | /// |
---|
27 | /// \include lp_maxflow_demo.cc |
---|
28 | |
---|
29 | #include <iostream> |
---|
30 | #include <lemon/smart_graph.h> |
---|
31 | #include <lemon/lgf_reader.h> |
---|
32 | #include <lemon/lp.h> |
---|
33 | |
---|
34 | using namespace lemon; |
---|
35 | |
---|
36 | template <typename GR, typename CAP> |
---|
37 | double maxFlow(const GR &g, const CAP &capacity, |
---|
38 | typename GR::Node source, typename GR::Node target) |
---|
39 | { |
---|
40 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
41 | |
---|
42 | // Create an instance of the default LP solver |
---|
43 | Lp lp; |
---|
44 | |
---|
45 | // Add a column to the problem for each arc |
---|
46 | typename GR::template ArcMap<Lp::Col> f(g); |
---|
47 | lp.addColSet(f); |
---|
48 | |
---|
49 | // Capacity constraints |
---|
50 | for (ArcIt a(g); a != INVALID; ++a) { |
---|
51 | lp.colLowerBound(f[a], 0); |
---|
52 | lp.colUpperBound(f[a], capacity[a]); |
---|
53 | } |
---|
54 | |
---|
55 | // Flow conservation constraints |
---|
56 | for (NodeIt n(g); n != INVALID; ++n) { |
---|
57 | if (n == source || n == target) continue; |
---|
58 | Lp::Expr e; |
---|
59 | for (OutArcIt a(g, n); a != INVALID; ++a) e += f[a]; |
---|
60 | for (InArcIt a(g, n); a != INVALID; ++a) e -= f[a]; |
---|
61 | lp.addRow(e == 0); |
---|
62 | } |
---|
63 | |
---|
64 | // Objective function |
---|
65 | Lp::Expr o; |
---|
66 | for (OutArcIt a(g, source); a != INVALID; ++a) o += f[a]; |
---|
67 | for (InArcIt a(g, source); a != INVALID; ++a) o -= f[a]; |
---|
68 | lp.max(); |
---|
69 | lp.obj(o); |
---|
70 | |
---|
71 | // Solve the LP problem |
---|
72 | lp.solve(); |
---|
73 | |
---|
74 | return lp.primal(); |
---|
75 | } |
---|
76 | |
---|
77 | |
---|
78 | int main(int argc, char *argv[]) |
---|
79 | { |
---|
80 | // Check the arguments |
---|
81 | if (argc < 2) { |
---|
82 | std::cerr << "Usage:" << std::endl; |
---|
83 | std::cerr << " lp_maxflow_demo <input_file>" << std::endl; |
---|
84 | std::cerr << "The given input file has to contain a maximum flow\n" |
---|
85 | << "problem in LGF format (like 'maxflow.lgf')." |
---|
86 | << std::endl; |
---|
87 | return 0; |
---|
88 | } |
---|
89 | |
---|
90 | // Read the input file |
---|
91 | SmartDigraph g; |
---|
92 | SmartDigraph::ArcMap<double> cap(g); |
---|
93 | SmartDigraph::Node s, t; |
---|
94 | |
---|
95 | digraphReader(g, argv[1]) |
---|
96 | .arcMap("capacity", cap) |
---|
97 | .node("source", s) |
---|
98 | .node("target", t) |
---|
99 | .run(); |
---|
100 | |
---|
101 | // Solve the problem and print the result |
---|
102 | std::cout << "Max flow value: " << maxFlow(g, cap, s, t) << std::endl; |
---|
103 | |
---|
104 | return 0; |
---|
105 | } |
---|