[30] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
[32] | 5 | * Copyright (C) 2003-2010 |
---|
[30] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | namespace lemon { |
---|
| 20 | /** |
---|
| 21 | [PAGE]sec_lp[PAGE] Linear Programming Interface |
---|
| 22 | |
---|
| 23 | \todo Clarify this section. |
---|
| 24 | |
---|
| 25 | Linear programming (LP) is one of the most important |
---|
| 26 | general methods of operations research and LP solvers are widely used in |
---|
| 27 | optimization software. The interface provided in LEMON makes it possible to |
---|
| 28 | specify LP problems using a high-level syntax. |
---|
| 29 | |
---|
| 30 | \code |
---|
| 31 | Lp lp; |
---|
| 32 | |
---|
| 33 | Lp::Col x1 = lp.addCol(); |
---|
| 34 | Lp::Col x2 = lp.addCol(); |
---|
| 35 | |
---|
| 36 | lp.addRow(0 <= x1 + x2 <= 100); |
---|
| 37 | lp.addRow(2 * x1 <= x2 + 32); |
---|
| 38 | |
---|
| 39 | lp.colLowerBound(x1, 0); |
---|
| 40 | lp.colUpperBound(x2, 100); |
---|
| 41 | |
---|
| 42 | lp.max(); |
---|
| 43 | lp.obj(10 * x1 + 6 * x2); |
---|
| 44 | lp.solve(); |
---|
| 45 | |
---|
| 46 | cout << "Objective function value: " << lp.primal() << endl; |
---|
| 47 | cout << "x1 = " << lp.primal(x1) << endl; |
---|
| 48 | cout << "x2 = " << lp.primal(x2) << endl; |
---|
| 49 | \endcode |
---|
| 50 | |
---|
| 51 | \ref LpBase::Col "Lp::Col" type represents the variables in the LP problems, |
---|
| 52 | while \ref LpBase::Row "Lp::Row" represents the constraints. The numerical |
---|
| 53 | operators can be used to form expressions from columns and dual |
---|
| 54 | expressions from rows. Due to the suitable operator overloads, |
---|
| 55 | a problem can be described in C++ conveniently, directly as it is |
---|
| 56 | expressed in mathematics. |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | The following example solves a maximum flow problem with linear |
---|
| 60 | programming. Several other graph optimization problems can also be |
---|
| 61 | expressed as linear programs and this interface helps to solve them easily |
---|
| 62 | (though usually not so efficiently as by a direct combinatorial method). |
---|
| 63 | |
---|
| 64 | \code |
---|
| 65 | Lp lp; |
---|
| 66 | Digraph::ArcMap<Lp::Col> f(g); |
---|
| 67 | lp.addColSet(f); |
---|
| 68 | |
---|
| 69 | // Capacity constraints |
---|
| 70 | for (Digraph::ArcIt a(g); a != INVALID; ++a) { |
---|
| 71 | lp.colLowerBound(f[a], 0); |
---|
| 72 | lp.colUpperBound(f[a], capacity[a]); |
---|
| 73 | } |
---|
| 74 | |
---|
| 75 | // Flow conservation constraints |
---|
| 76 | for (Digraph::NodeIt n(g); n != INVALID; ++n) { |
---|
| 77 | if (n == src || n == trg) continue; |
---|
| 78 | Lp::Expr e; |
---|
| 79 | for (Digraph::OutArcIt a(g,n); a != INVALID; ++a) e += f[a]; |
---|
| 80 | for (Digraph::InArcIt a(g,n); a != INVALID; ++a) e -= f[a]; |
---|
| 81 | lp.addRow(e == 0); |
---|
| 82 | } |
---|
| 83 | |
---|
| 84 | // Objective function |
---|
| 85 | Lp::Expr o; |
---|
| 86 | for (Digraph::OutArcIt a(g,src); a != INVALID; ++a) o += f[a]; |
---|
| 87 | for (Digraph::InArcIt a(g,src); a != INVALID; ++a) o -= f[a]; |
---|
| 88 | |
---|
| 89 | lp.max(); |
---|
| 90 | lp.obj(o); |
---|
| 91 | lp.solve(); |
---|
| 92 | \endcode |
---|
| 93 | |
---|
| 94 | Note that LEMON does not implement an LP solver, it just wraps various |
---|
| 95 | libraries with a uniform high-level interface. |
---|
| 96 | Currently, the following linear and mixed integer programming packages are |
---|
| 97 | supported: GLPK, Clp, Cbc, ILOG CPLEX and SoPlex. |
---|
| 98 | However, additional wrapper classes for new solvers can also be implemented |
---|
| 99 | quite easily. |
---|
| 100 | |
---|
| 101 | [TRAILER] |
---|
| 102 | */ |
---|
[32] | 103 | } |
---|