/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BINOM_HEAP_H #define LEMON_BINOM_HEAP_H ///\file ///\ingroup auxdat ///\brief Binomial Heap implementation. #include #include #include #include namespace lemon { /// \ingroup auxdat /// ///\brief Binomial Heap. /// ///This class implements the \e Binomial \e heap data structure. A \e heap ///is a data structure for storing items with specified values called \e ///priorities in such a way that finding the item with minimum priority is ///efficient. \c Compare specifies the ordering of the priorities. In a heap ///one can change the priority of an item, add or erase an item, etc. /// ///The methods \ref increase and \ref erase are not efficient in a Binomial ///heap. In case of many calls to these operations, it is better to use a ///\ref BinHeap "binary heap". /// ///\param _Prio Type of the priority of the items. ///\param _ItemIntMap A read and writable Item int map, used internally ///to handle the cross references. ///\param _Compare A class for the ordering of the priorities. The ///default is \c std::less<_Prio>. /// ///\sa BinHeap ///\sa Dijkstra ///\author Dorian Batha #ifdef DOXYGEN template #else template > #endif class BinomHeap { public: typedef _ItemIntMap ItemIntMap; typedef _Prio Prio; typedef typename ItemIntMap::Key Item; typedef std::pair Pair; typedef _Compare Compare; private: class store; std::vector container; int minimum, head; ItemIntMap &iimap; Compare comp; int num_items; public: ///Status of the nodes enum State { ///The node is in the heap IN_HEAP = 0, ///The node has never been in the heap PRE_HEAP = -1, ///The node was in the heap but it got out of it POST_HEAP = -2 }; /// \brief The constructor /// /// \c _iimap should be given to the constructor, since it is /// used internally to handle the cross references. explicit BinomHeap(ItemIntMap &_iimap) : minimum(0), head(-1), iimap(_iimap), num_items() {} /// \brief The constructor /// /// \c _iimap should be given to the constructor, since it is used /// internally to handle the cross references. \c _comp is an /// object for ordering of the priorities. BinomHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), head(-1), iimap(_iimap), comp(_comp), num_items() {} /// \brief The number of items stored in the heap. /// /// Returns the number of items stored in the heap. int size() const { return num_items; } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return num_items==0; } /// \brief Make empty this heap. /// /// Make empty this heap. It does not change the cross reference /// map. If you want to reuse a heap what is not surely empty you /// should first clear the heap and after that you should set the /// cross reference map for each item to \c PRE_HEAP. void clear() { container.clear(); minimum=0; num_items=0; head=-1; } /// \brief \c item gets to the heap with priority \c value independently /// if \c item was already there. /// /// This method calls \ref push(\c item, \c value) if \c item is not /// stored in the heap and it calls \ref decrease(\c item, \c value) or /// \ref increase(\c item, \c value) otherwise. void set (const Item& item, const Prio& value) { int i=iimap[item]; if ( i >= 0 && container[i].in ) { if ( comp(value, container[i].prio) ) decrease(item, value); if ( comp(container[i].prio, value) ) increase(item, value); } else push(item, value); } /// \brief Adds \c item to the heap with priority \c value. /// /// Adds \c item to the heap with priority \c value. /// \pre \c item must not be stored in the heap. void push (const Item& item, const Prio& value) { int i=iimap[item]; if ( i<0 ) { int s=container.size(); iimap.set( item,s ); store st; st.name=item; container.push_back(st); i=s; } else { container[i].parent=container[i].right_neighbor=container[i].child=-1; container[i].degree=0; container[i].in=true; } container[i].prio=value; if( 0==num_items ) { head=i; minimum=i; } else { merge(i); } minimum = find_min(); ++num_items; } /// \brief Returns the item with minimum priority relative to \c Compare. /// /// This method returns the item with minimum priority relative to \c /// Compare. /// \pre The heap must be nonempty. Item top() const { return container[minimum].name; } /// \brief Returns the minimum priority relative to \c Compare. /// /// It returns the minimum priority relative to \c Compare. /// \pre The heap must be nonempty. const Prio& prio() const { return container[minimum].prio; } /// \brief Returns the priority of \c item. /// /// It returns the priority of \c item. /// \pre \c item must be in the heap. const Prio& operator[](const Item& item) const { return container[iimap[item]].prio; } /// \brief Deletes the item with minimum priority relative to \c Compare. /// /// This method deletes the item with minimum priority relative to \c /// Compare from the heap. /// \pre The heap must be non-empty. void pop() { container[minimum].in=false; int head_child=-1; if ( container[minimum].child!=-1 ) { int child=container[minimum].child; int neighb; int prev=-1; while( child!=-1 ) { neighb=container[child].right_neighbor; container[child].parent=-1; container[child].right_neighbor=prev; head_child=child; prev=child; child=neighb; } } // The first case is that there are only one root. if ( -1==container[head].right_neighbor ) { head=head_child; } // The case where there are more roots. else { if( head!=minimum ) { unlace(minimum); } else { head=container[head].right_neighbor; } merge(head_child); } minimum=find_min(); --num_items; } /// \brief Deletes \c item from the heap. /// /// This method deletes \c item from the heap, if \c item was already /// stored in the heap. It is quite inefficient in Binomial heaps. void erase (const Item& item) { int i=iimap[item]; if ( i >= 0 && container[i].in ) { decrease( item, container[minimum].prio-1 ); pop(); } } /// \brief Decreases the priority of \c item to \c value. /// /// This method decreases the priority of \c item to \c value. /// \pre \c item must be stored in the heap with priority at least \c /// value relative to \c Compare. void decrease (Item item, const Prio& value) { int i=iimap[item]; if( comp( value,container[i].prio ) ) { container[i].prio=value; int p_loc=container[i].parent, loc=i; int parent, child, neighb; while( -1!=p_loc && comp(container[loc].prio,container[p_loc].prio) ) { // parent set for other loc_child child=container[loc].child; while( -1!=child ) { container[child].parent=p_loc; child=container[child].right_neighbor; } // parent set for other p_loc_child child=container[p_loc].child; while( -1!=child ) { container[child].parent=loc; child=container[child].right_neighbor; } child=container[p_loc].child; container[p_loc].child=container[loc].child; if( child==loc ) child=p_loc; container[loc].child=child; // left_neighb set for p_loc if( container[loc].child!=p_loc ) { while( container[child].right_neighbor!=loc ) child=container[child].right_neighbor; container[child].right_neighbor=p_loc; } // left_neighb set for loc parent=container[p_loc].parent; if( -1!=parent ) child=container[parent].child; else child=head; if( child!=p_loc ) { while( container[child].right_neighbor!=p_loc ) child=container[child].right_neighbor; container[child].right_neighbor=loc; } neighb=container[p_loc].right_neighbor; container[p_loc].right_neighbor=container[loc].right_neighbor; container[loc].right_neighbor=neighb; container[p_loc].parent=loc; container[loc].parent=parent; if( -1!=parent && container[parent].child==p_loc ) container[parent].child=loc; /*if new parent will be the first root*/ if( head==p_loc ) head=loc; p_loc=container[loc].parent; } } if( comp(value,container[minimum].prio) ) { minimum=i; } } /// \brief Increases the priority of \c item to \c value. /// /// This method sets the priority of \c item to \c value. Though /// there is no precondition on the priority of \c item, this /// method should be used only if it is indeed necessary to increase /// (relative to \c Compare) the priority of \c item, because this /// method is inefficient. void increase (Item item, const Prio& value) { erase(item); push(item, value); } /// \brief Returns if \c item is in, has already been in, or has never /// been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. State state(const Item &item) const { int i=iimap[item]; if( i>=0 ) { if ( container[i].in ) i=0; else i=-2; } return State(i); } /// \brief Sets the state of the \c item in the heap. /// /// Sets the state of the \c item in the heap. It can be used to /// manually clear the heap when it is important to achive the /// better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } iimap[i] = st; break; case IN_HEAP: break; } } private: int find_min() { int min_loc=-1, min_val; int x=head; if( x!=-1 ) { min_val=container[x].prio; min_loc=x; x=container[x].right_neighbor; while( x!=-1 ) { if( comp( container[x].prio,min_val ) ) { min_val=container[x].prio; min_loc=x; } x=container[x].right_neighbor; } } return min_loc; } void merge(int a) { interleave(a); int x=head; if( -1!=x ) { int x_prev=-1, x_next=container[x].right_neighbor; while( -1!=x_next ) { if( container[x].degree!=container[x_next].degree || ( -1!=container[x_next].right_neighbor && container[container[x_next].right_neighbor].degree==container[x].degree ) ) { x_prev=x; x=x_next; } else { if( comp(container[x].prio,container[x_next].prio) ) { container[x].right_neighbor=container[x_next].right_neighbor; fuse(x_next,x); } else { if( -1==x_prev ) { head=x_next; } else { container[x_prev].right_neighbor=x_next; } fuse(x,x_next); x=x_next; } } x_next=container[x].right_neighbor; } } } void interleave(int a) { int other=-1, head_other=-1; while( -1!=a || -1!=head ) { if( -1==a ) { if( -1==head_other ) { head_other=head; } else { container[other].right_neighbor=head; } head=-1; } else if( -1==head ) { if( -1==head_other ) { head_other=a; } else { container[other].right_neighbor=a; } a=-1; } else { if( container[a].degree