/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BINOM_HEAP_H #define LEMON_BINOM_HEAP_H ///\file ///\ingroup heaps ///\brief Binomial Heap implementation. #include #include #include #include #include namespace lemon { /// \ingroup heaps /// ///\brief Binomial heap data structure. /// /// This class implements the \e binomial \e heap data structure. /// It fully conforms to the \ref concepts::Heap "heap concept". /// /// The methods \ref increase() and \ref erase() are not efficient /// in a binomial heap. In case of many calls of these operations, /// it is better to use other heap structure, e.g. \ref BinHeap /// "binary heap". /// /// \tparam PR Type of the priorities of the items. /// \tparam IM A read-writable item map with \c int values, used /// internally to handle the cross references. /// \tparam CMP A functor class for comparing the priorities. /// The default is \c std::less. #ifdef DOXYGEN template #else template > #endif class BinomHeap { public: /// Type of the item-int map. typedef IM ItemIntMap; /// Type of the priorities. typedef PR Prio; /// Type of the items stored in the heap. typedef typename ItemIntMap::Key Item; /// Functor type for comparing the priorities. typedef CMP Compare; /// \brief Type to represent the states of the items. /// /// Each item has a state associated to it. It can be "in heap", /// "pre-heap" or "post-heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; private: class store; std::vector _data; int _min, _head; ItemIntMap &_iim; Compare _comp; int _num_items; public: /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. explicit BinomHeap(ItemIntMap &map) : _min(0), _head(-1), _iim(map), _num_items(0) {} /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. /// \param comp The function object used for comparing the priorities. BinomHeap(ItemIntMap &map, const Compare &comp) : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} /// \brief The number of items stored in the heap. /// /// This function returns the number of items stored in the heap. int size() const { return _num_items; } /// \brief Check if the heap is empty. /// /// This function returns \c true if the heap is empty. bool empty() const { return _num_items==0; } /// \brief Make the heap empty. /// /// This functon makes the heap empty. /// It does not change the cross reference map. If you want to reuse /// a heap that is not surely empty, you should first clear it and /// then you should set the cross reference map to \c PRE_HEAP /// for each item. void clear() { _data.clear(); _min=0; _num_items=0; _head=-1; } /// \brief Set the priority of an item or insert it, if it is /// not stored in the heap. /// /// This method sets the priority of the given item if it is /// already stored in the heap. Otherwise it inserts the given /// item into the heap with the given priority. /// \param item The item. /// \param value The priority. void set (const Item& item, const Prio& value) { int i=_iim[item]; if ( i >= 0 && _data[i].in ) { if ( _comp(value, _data[i].prio) ) decrease(item, value); if ( _comp(_data[i].prio, value) ) increase(item, value); } else push(item, value); } /// \brief Insert an item into the heap with the given priority. /// /// This function inserts the given item into the heap with the /// given priority. /// \param item The item to insert. /// \param value The priority of the item. /// \pre \e item must not be stored in the heap. void push (const Item& item, const Prio& value) { int i=_iim[item]; if ( i<0 ) { int s=_data.size(); _iim.set( item,s ); store st; st.name=item; _data.push_back(st); i=s; } else { _data[i].parent=_data[i].right_neighbor=_data[i].child=-1; _data[i].degree=0; _data[i].in=true; } _data[i].prio=value; if( 0==_num_items ) { _head=i; _min=i; } else { merge(i); } _min = findMin(); ++_num_items; } /// \brief Return the item having minimum priority. /// /// This function returns the item having minimum priority. /// \pre The heap must be non-empty. Item top() const { return _data[_min].name; } /// \brief The minimum priority. /// /// This function returns the minimum priority. /// \pre The heap must be non-empty. Prio prio() const { return _data[_min].prio; } /// \brief The priority of the given item. /// /// This function returns the priority of the given item. /// \param item The item. /// \pre \e item must be in the heap. const Prio& operator[](const Item& item) const { return _data[_iim[item]].prio; } /// \brief Remove the item having minimum priority. /// /// This function removes the item having minimum priority. /// \pre The heap must be non-empty. void pop() { _data[_min].in=false; int head_child=-1; if ( _data[_min].child!=-1 ) { int child=_data[_min].child; int neighb; int prev=-1; while( child!=-1 ) { neighb=_data[child].right_neighbor; _data[child].parent=-1; _data[child].right_neighbor=prev; head_child=child; prev=child; child=neighb; } } // The first case is that there are only one root. if ( -1==_data[_head].right_neighbor ) { _head=head_child; } // The case where there are more roots. else { if( _head!=_min ) { unlace(_min); } else { _head=_data[_head].right_neighbor; } merge(head_child); } _min=findMin(); --_num_items; } /// \brief Remove the given item from the heap. /// /// This function removes the given item from the heap if it is /// already stored. /// \param item The item to delete. /// \pre \e item must be in the heap. void erase (const Item& item) { int i=_iim[item]; if ( i >= 0 && _data[i].in ) { decrease( item, _data[_min].prio-1 ); pop(); } } /// \brief Decrease the priority of an item to the given value. /// /// This function decreases the priority of an item to the given value. /// \param item The item. /// \param value The priority. /// \pre \e item must be stored in the heap with priority at least \e value. void decrease (Item item, const Prio& value) { int i=_iim[item]; if( _comp( value,_data[i].prio ) ) { _data[i].prio=value; int p_loc=_data[i].parent, loc=i; int parent, child, neighb; while( -1!=p_loc && _comp(_data[loc].prio,_data[p_loc].prio) ) { // parent set for other loc_child child=_data[loc].child; while( -1!=child ) { _data[child].parent=p_loc; child=_data[child].right_neighbor; } // parent set for other p_loc_child child=_data[p_loc].child; while( -1!=child ) { _data[child].parent=loc; child=_data[child].right_neighbor; } child=_data[p_loc].child; _data[p_loc].child=_data[loc].child; if( child==loc ) child=p_loc; _data[loc].child=child; // left_neighb set for p_loc if( _data[loc].child!=p_loc ) { while( _data[child].right_neighbor!=loc ) child=_data[child].right_neighbor; _data[child].right_neighbor=p_loc; } // left_neighb set for loc parent=_data[p_loc].parent; if( -1!=parent ) child=_data[parent].child; else child=_head; if( child!=p_loc ) { while( _data[child].right_neighbor!=p_loc ) child=_data[child].right_neighbor; _data[child].right_neighbor=loc; } neighb=_data[p_loc].right_neighbor; _data[p_loc].right_neighbor=_data[loc].right_neighbor; _data[loc].right_neighbor=neighb; _data[p_loc].parent=loc; _data[loc].parent=parent; if( -1!=parent && _data[parent].child==p_loc ) _data[parent].child=loc; /*if new parent will be the first root*/ if( _head==p_loc ) _head=loc; p_loc=_data[loc].parent; } } if( _comp(value,_data[_min].prio) ) { _min=i; } } /// \brief Increase the priority of an item to the given value. /// /// This function increases the priority of an item to the given value. /// \param item The item. /// \param value The priority. /// \pre \e item must be stored in the heap with priority at most \e value. void increase (Item item, const Prio& value) { erase(item); push(item, value); } /// \brief Return the state of an item. /// /// This method returns \c PRE_HEAP if the given item has never /// been in the heap, \c IN_HEAP if it is in the heap at the moment, /// and \c POST_HEAP otherwise. /// In the latter case it is possible that the item will get back /// to the heap again. /// \param item The item. State state(const Item &item) const { int i=_iim[item]; if( i>=0 ) { if ( _data[i].in ) i=0; else i=-2; } return State(i); } /// \brief Set the state of an item in the heap. /// /// This function sets the state of the given item in the heap. /// It can be used to manually clear the heap when it is important /// to achive better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } _iim[i] = st; break; case IN_HEAP: break; } } private: int findMin() { int min_loc=-1, min_val; int x=_head; if( x!=-1 ) { min_val=_data[x].prio; min_loc=x; x=_data[x].right_neighbor; while( x!=-1 ) { if( _comp( _data[x].prio,min_val ) ) { min_val=_data[x].prio; min_loc=x; } x=_data[x].right_neighbor; } } return min_loc; } void merge(int a) { interleave(a); int x=_head; if( -1!=x ) { int x_prev=-1, x_next=_data[x].right_neighbor; while( -1!=x_next ) { if( _data[x].degree!=_data[x_next].degree || ( -1!=_data[x_next].right_neighbor && _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { x_prev=x; x=x_next; } else { if( _comp(_data[x].prio,_data[x_next].prio) ) { _data[x].right_neighbor=_data[x_next].right_neighbor; fuse(x_next,x); } else { if( -1==x_prev ) { _head=x_next; } else { _data[x_prev].right_neighbor=x_next; } fuse(x,x_next); x=x_next; } } x_next=_data[x].right_neighbor; } } } void interleave(int a) { int other=-1, head_other=-1; while( -1!=a || -1!=_head ) { if( -1==a ) { if( -1==head_other ) { head_other=_head; } else { _data[other].right_neighbor=_head; } _head=-1; } else if( -1==_head ) { if( -1==head_other ) { head_other=a; } else { _data[other].right_neighbor=a; } a=-1; } else { if( _data[a].degree<_data[_head].degree ) { if( -1==head_other ) { head_other=a; } else { _data[other].right_neighbor=a; } other=a; a=_data[a].right_neighbor; } else { if( -1==head_other ) { head_other=_head; } else { _data[other].right_neighbor=_head; } other=_head; _head=_data[_head].right_neighbor; } } } _head=head_other; } // Lacing a under b void fuse(int a, int b) { _data[a].parent=b; _data[a].right_neighbor=_data[b].child; _data[b].child=a; ++_data[b].degree; } // It is invoked only if a has siblings. void unlace(int a) { int neighb=_data[a].right_neighbor; int other=_head; while( _data[other].right_neighbor!=a ) other=_data[other].right_neighbor; _data[other].right_neighbor=neighb; } private: class store { friend class BinomHeap; Item name; int parent; int right_neighbor; int child; int degree; bool in; Prio prio; store() : parent(-1), right_neighbor(-1), child(-1), degree(0), in(true) {} }; }; } //namespace lemon #endif //LEMON_BINOM_HEAP_H