1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2010 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_BITS_SOLVER_BITS_H |
---|
20 | #define LEMON_BITS_SOLVER_BITS_H |
---|
21 | |
---|
22 | #include <vector> |
---|
23 | |
---|
24 | namespace lemon { |
---|
25 | |
---|
26 | namespace _solver_bits { |
---|
27 | |
---|
28 | class VarIndex { |
---|
29 | private: |
---|
30 | struct ItemT { |
---|
31 | int prev, next; |
---|
32 | int index; |
---|
33 | }; |
---|
34 | std::vector<ItemT> items; |
---|
35 | int first_item, last_item, first_free_item; |
---|
36 | |
---|
37 | std::vector<int> cross; |
---|
38 | |
---|
39 | public: |
---|
40 | |
---|
41 | VarIndex() |
---|
42 | : first_item(-1), last_item(-1), first_free_item(-1) { |
---|
43 | } |
---|
44 | |
---|
45 | void clear() { |
---|
46 | first_item = -1; |
---|
47 | first_free_item = -1; |
---|
48 | items.clear(); |
---|
49 | cross.clear(); |
---|
50 | } |
---|
51 | |
---|
52 | int addIndex(int idx) { |
---|
53 | int n; |
---|
54 | if (first_free_item == -1) { |
---|
55 | n = items.size(); |
---|
56 | items.push_back(ItemT()); |
---|
57 | } else { |
---|
58 | n = first_free_item; |
---|
59 | first_free_item = items[n].next; |
---|
60 | if (first_free_item != -1) { |
---|
61 | items[first_free_item].prev = -1; |
---|
62 | } |
---|
63 | } |
---|
64 | items[n].index = idx; |
---|
65 | if (static_cast<int>(cross.size()) <= idx) { |
---|
66 | cross.resize(idx + 1, -1); |
---|
67 | } |
---|
68 | cross[idx] = n; |
---|
69 | |
---|
70 | items[n].prev = last_item; |
---|
71 | items[n].next = -1; |
---|
72 | if (last_item != -1) { |
---|
73 | items[last_item].next = n; |
---|
74 | } else { |
---|
75 | first_item = n; |
---|
76 | } |
---|
77 | last_item = n; |
---|
78 | |
---|
79 | return n; |
---|
80 | } |
---|
81 | |
---|
82 | int addIndex(int idx, int n) { |
---|
83 | while (n >= static_cast<int>(items.size())) { |
---|
84 | items.push_back(ItemT()); |
---|
85 | items.back().prev = -1; |
---|
86 | items.back().next = first_free_item; |
---|
87 | if (first_free_item != -1) { |
---|
88 | items[first_free_item].prev = items.size() - 1; |
---|
89 | } |
---|
90 | first_free_item = items.size() - 1; |
---|
91 | } |
---|
92 | if (items[n].next != -1) { |
---|
93 | items[items[n].next].prev = items[n].prev; |
---|
94 | } |
---|
95 | if (items[n].prev != -1) { |
---|
96 | items[items[n].prev].next = items[n].next; |
---|
97 | } else { |
---|
98 | first_free_item = items[n].next; |
---|
99 | } |
---|
100 | |
---|
101 | items[n].index = idx; |
---|
102 | if (static_cast<int>(cross.size()) <= idx) { |
---|
103 | cross.resize(idx + 1, -1); |
---|
104 | } |
---|
105 | cross[idx] = n; |
---|
106 | |
---|
107 | items[n].prev = last_item; |
---|
108 | items[n].next = -1; |
---|
109 | if (last_item != -1) { |
---|
110 | items[last_item].next = n; |
---|
111 | } else { |
---|
112 | first_item = n; |
---|
113 | } |
---|
114 | last_item = n; |
---|
115 | |
---|
116 | return n; |
---|
117 | } |
---|
118 | |
---|
119 | void eraseIndex(int idx) { |
---|
120 | int n = cross[idx]; |
---|
121 | |
---|
122 | if (items[n].prev != -1) { |
---|
123 | items[items[n].prev].next = items[n].next; |
---|
124 | } else { |
---|
125 | first_item = items[n].next; |
---|
126 | } |
---|
127 | if (items[n].next != -1) { |
---|
128 | items[items[n].next].prev = items[n].prev; |
---|
129 | } else { |
---|
130 | last_item = items[n].prev; |
---|
131 | } |
---|
132 | |
---|
133 | if (first_free_item != -1) { |
---|
134 | items[first_free_item].prev = n; |
---|
135 | } |
---|
136 | items[n].next = first_free_item; |
---|
137 | items[n].prev = -1; |
---|
138 | first_free_item = n; |
---|
139 | |
---|
140 | while (!cross.empty() && cross.back() == -1) { |
---|
141 | cross.pop_back(); |
---|
142 | } |
---|
143 | } |
---|
144 | |
---|
145 | int maxIndex() const { |
---|
146 | return cross.size() - 1; |
---|
147 | } |
---|
148 | |
---|
149 | void shiftIndices(int idx) { |
---|
150 | for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) { |
---|
151 | cross[i - 1] = cross[i]; |
---|
152 | if (cross[i] != -1) { |
---|
153 | --items[cross[i]].index; |
---|
154 | } |
---|
155 | } |
---|
156 | cross.back() = -1; |
---|
157 | cross.pop_back(); |
---|
158 | while (!cross.empty() && cross.back() == -1) { |
---|
159 | cross.pop_back(); |
---|
160 | } |
---|
161 | } |
---|
162 | |
---|
163 | void relocateIndex(int idx, int jdx) { |
---|
164 | cross[idx] = cross[jdx]; |
---|
165 | items[cross[jdx]].index = idx; |
---|
166 | cross[jdx] = -1; |
---|
167 | |
---|
168 | while (!cross.empty() && cross.back() == -1) { |
---|
169 | cross.pop_back(); |
---|
170 | } |
---|
171 | } |
---|
172 | |
---|
173 | int operator[](int idx) const { |
---|
174 | return cross[idx]; |
---|
175 | } |
---|
176 | |
---|
177 | int operator()(int fdx) const { |
---|
178 | return items[fdx].index; |
---|
179 | } |
---|
180 | |
---|
181 | void firstItem(int& fdx) const { |
---|
182 | fdx = first_item; |
---|
183 | } |
---|
184 | |
---|
185 | void nextItem(int& fdx) const { |
---|
186 | fdx = items[fdx].next; |
---|
187 | } |
---|
188 | |
---|
189 | }; |
---|
190 | } |
---|
191 | } |
---|
192 | |
---|
193 | #endif |
---|