/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BUCKET_HEAP_H #define LEMON_BUCKET_HEAP_H ///\ingroup auxdat ///\file ///\brief Bucket Heap implementation. #include #include #include namespace lemon { namespace _bucket_heap_bits { template struct DirectionTraits { static bool less(int left, int right) { return left < right; } static void increase(int& value) { ++value; } }; template <> struct DirectionTraits { static bool less(int left, int right) { return left > right; } static void increase(int& value) { --value; } }; } /// \ingroup auxdat /// /// \brief A Bucket Heap implementation. /// /// This class implements the \e bucket \e heap data structure. A \e heap /// is a data structure for storing items with specified values called \e /// priorities in such a way that finding the item with minimum priority is /// efficient. The bucket heap is very simple implementation, it can store /// only integer priorities and it stores for each priority in the /// \f$ [0..C) \f$ range a list of items. So it should be used only when /// the priorities are small. It is not intended to use as dijkstra heap. /// /// \param _ItemIntMap A read and writable Item int map, used internally /// to handle the cross references. /// \param minimize If the given parameter is true then the heap gives back /// the lowest priority. template class BucketHeap { public: /// \e typedef typename _ItemIntMap::Key Item; /// \e typedef int Prio; /// \e typedef std::pair Pair; /// \e typedef _ItemIntMap ItemIntMap; private: typedef _bucket_heap_bits::DirectionTraits Direction; public: /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The ItemIntMap \e should be initialized in such way that it maps /// PRE_HEAP (-1) to any element to be put in the heap... enum State { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; public: /// \brief The constructor. /// /// The constructor. /// \param _index should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {} /// The number of items stored in the heap. /// /// \brief Returns the number of items stored in the heap. int size() const { return data.size(); } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return data.empty(); } /// \brief Make empty this heap. /// /// Make empty this heap. It does not change the cross reference /// map. If you want to reuse a heap what is not surely empty you /// should first clear the heap and after that you should set the /// cross reference map for each item to \c PRE_HEAP. void clear() { data.clear(); first.clear(); minimal = 0; } private: void relocate_last(int idx) { if (idx + 1 < int(data.size())) { data[idx] = data.back(); if (data[idx].prev != -1) { data[data[idx].prev].next = idx; } else { first[data[idx].value] = idx; } if (data[idx].next != -1) { data[data[idx].next].prev = idx; } index[data[idx].item] = idx; } data.pop_back(); } void unlace(int idx) { if (data[idx].prev != -1) { data[data[idx].prev].next = data[idx].next; } else { first[data[idx].value] = data[idx].next; } if (data[idx].next != -1) { data[data[idx].next].prev = data[idx].prev; } } void lace(int idx) { if (int(first.size()) <= data[idx].value) { first.resize(data[idx].value + 1, -1); } data[idx].next = first[data[idx].value]; if (data[idx].next != -1) { data[data[idx].next].prev = idx; } first[data[idx].value] = idx; data[idx].prev = -1; } public: /// \brief Insert a pair of item and priority into the heap. /// /// Adds \c p.first to the heap with priority \c p.second. /// \param p The pair to insert. void push(const Pair& p) { push(p.first, p.second); } /// \brief Insert an item into the heap with the given priority. /// /// Adds \c i to the heap with priority \c p. /// \param i The item to insert. /// \param p The priority of the item. void push(const Item &i, const Prio &p) { int idx = data.size(); index[i] = idx; data.push_back(BucketItem(i, p)); lace(idx); if (Direction::less(p, minimal)) { minimal = p; } } /// \brief Returns the item with minimum priority. /// /// This method returns the item with minimum priority. /// \pre The heap must be nonempty. Item top() const { while (first[minimal] == -1) { Direction::increase(minimal); } return data[first[minimal]].item; } /// \brief Returns the minimum priority. /// /// It returns the minimum priority. /// \pre The heap must be nonempty. Prio prio() const { while (first[minimal] == -1) { Direction::increase(minimal); } return minimal; } /// \brief Deletes the item with minimum priority. /// /// This method deletes the item with minimum priority from the heap. /// \pre The heap must be non-empty. void pop() { while (first[minimal] == -1) { Direction::increase(minimal); } int idx = first[minimal]; index[data[idx].item] = -2; unlace(idx); relocate_last(idx); } /// \brief Deletes \c i from the heap. /// /// This method deletes item \c i from the heap, if \c i was /// already stored in the heap. /// \param i The item to erase. void erase(const Item &i) { int idx = index[i]; index[data[idx].item] = -2; unlace(idx); relocate_last(idx); } /// \brief Returns the priority of \c i. /// /// This function returns the priority of item \c i. /// \pre \c i must be in the heap. /// \param i The item. Prio operator[](const Item &i) const { int idx = index[i]; return data[idx].value; } /// \brief \c i gets to the heap with priority \c p independently /// if \c i was already there. /// /// This method calls \ref push(\c i, \c p) if \c i is not stored /// in the heap and sets the priority of \c i to \c p otherwise. /// \param i The item. /// \param p The priority. void set(const Item &i, const Prio &p) { int idx = index[i]; if (idx < 0) { push(i, p); } else if (Direction::less(p, data[idx].value)) { decrease(i, p); } else { increase(i, p); } } /// \brief Decreases the priority of \c i to \c p. /// /// This method decreases the priority of item \c i to \c p. /// \pre \c i must be stored in the heap with priority at least \c /// p relative to \c Compare. /// \param i The item. /// \param p The priority. void decrease(const Item &i, const Prio &p) { int idx = index[i]; unlace(idx); data[idx].value = p; if (Direction::less(p, minimal)) { minimal = p; } lace(idx); } /// \brief Increases the priority of \c i to \c p. /// /// This method sets the priority of item \c i to \c p. /// \pre \c i must be stored in the heap with priority at most \c /// p relative to \c Compare. /// \param i The item. /// \param p The priority. void increase(const Item &i, const Prio &p) { int idx = index[i]; unlace(idx); data[idx].value = p; lace(idx); } /// \brief Returns if \c item is in, has already been in, or has /// never been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. /// \param i The item. State state(const Item &i) const { int idx = index[i]; if (idx >= 0) idx = 0; return State(idx); } /// \brief Sets the state of the \c item in the heap. /// /// Sets the state of the \c item in the heap. It can be used to /// manually clear the heap when it is important to achive the /// better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } index[i] = st; break; case IN_HEAP: break; } } private: struct BucketItem { BucketItem(const Item& _item, int _value) : item(_item), value(_value) {} Item item; int value; int prev, next; }; ItemIntMap& index; std::vector first; std::vector data; mutable int minimal; }; // class BucketHeap /// \ingroup auxdat /// /// \brief A Simplified Bucket Heap implementation. /// /// This class implements a simplified \e bucket \e heap data /// structure. It does not provide some functionality but it faster /// and simplier data structure than the BucketHeap. The main /// difference is that the BucketHeap stores for every key a double /// linked list while this class stores just simple lists. In the /// other way it does not support erasing each elements just the /// minimal and it does not supports key increasing, decreasing. /// /// \param _ItemIntMap A read and writable Item int map, used internally /// to handle the cross references. /// \param minimize If the given parameter is true then the heap gives back /// the lowest priority. /// /// \sa BucketHeap template class SimpleBucketHeap { public: typedef typename _ItemIntMap::Key Item; typedef int Prio; typedef std::pair Pair; typedef _ItemIntMap ItemIntMap; private: typedef _bucket_heap_bits::DirectionTraits Direction; public: /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The ItemIntMap \e should be initialized in such way that it maps /// PRE_HEAP (-1) to any element to be put in the heap... enum State { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; public: /// \brief The constructor. /// /// The constructor. /// \param _index should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. explicit SimpleBucketHeap(ItemIntMap &_index) : index(_index), free(-1), num(0), minimal(0) {} /// \brief Returns the number of items stored in the heap. /// /// The number of items stored in the heap. int size() const { return num; } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return num == 0; } /// \brief Make empty this heap. /// /// Make empty this heap. It does not change the cross reference /// map. If you want to reuse a heap what is not surely empty you /// should first clear the heap and after that you should set the /// cross reference map for each item to \c PRE_HEAP. void clear() { data.clear(); first.clear(); free = -1; num = 0; minimal = 0; } /// \brief Insert a pair of item and priority into the heap. /// /// Adds \c p.first to the heap with priority \c p.second. /// \param p The pair to insert. void push(const Pair& p) { push(p.first, p.second); } /// \brief Insert an item into the heap with the given priority. /// /// Adds \c i to the heap with priority \c p. /// \param i The item to insert. /// \param p The priority of the item. void push(const Item &i, const Prio &p) { int idx; if (free == -1) { idx = data.size(); data.push_back(BucketItem(i)); } else { idx = free; free = data[idx].next; data[idx].item = i; } index[i] = idx; if (p >= int(first.size())) first.resize(p + 1, -1); data[idx].next = first[p]; first[p] = idx; if (Direction::less(p, minimal)) { minimal = p; } ++num; } /// \brief Returns the item with minimum priority. /// /// This method returns the item with minimum priority. /// \pre The heap must be nonempty. Item top() const { while (first[minimal] == -1) { Direction::increase(minimal); } return data[first[minimal]].item; } /// \brief Returns the minimum priority. /// /// It returns the minimum priority. /// \pre The heap must be nonempty. Prio prio() const { while (first[minimal] == -1) { Direction::increase(minimal); } return minimal; } /// \brief Deletes the item with minimum priority. /// /// This method deletes the item with minimum priority from the heap. /// \pre The heap must be non-empty. void pop() { while (first[minimal] == -1) { Direction::increase(minimal); } int idx = first[minimal]; index[data[idx].item] = -2; first[minimal] = data[idx].next; data[idx].next = free; free = idx; --num; } /// \brief Returns the priority of \c i. /// /// This function returns the priority of item \c i. /// \warning This operator is not a constant time function /// because it scans the whole data structure to find the proper /// value. /// \pre \c i must be in the heap. /// \param i The item. Prio operator[](const Item &i) const { for (int k = 0; k < first.size(); ++k) { int idx = first[k]; while (idx != -1) { if (data[idx].item == i) { return k; } idx = data[idx].next; } } return -1; } /// \brief Returns if \c item is in, has already been in, or has /// never been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. /// \param i The item. State state(const Item &i) const { int idx = index[i]; if (idx >= 0) idx = 0; return State(idx); } private: struct BucketItem { BucketItem(const Item& _item) : item(_item) {} Item item; int next; }; ItemIntMap& index; std::vector first; std::vector data; int free, num; mutable int minimal; }; // class SimpleBucketHeap } #endif