COIN-OR::LEMON - Graph Library

source: lemon/lemon/capacity_scaling.h @ 1240:ee9bac10f58e

Last change on this file since 1240:ee9bac10f58e was 1240:ee9bac10f58e, checked in by Peter Kovacs <kpeter@…>, 12 years ago

Debug checking for capacity bounds in min cost flow algorithms (#454)

File size: 31.6 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_CAPACITY_SCALING_H
20#define LEMON_CAPACITY_SCALING_H
21
22/// \ingroup min_cost_flow_algs
23///
24/// \file
25/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
26
27#include <vector>
28#include <limits>
29#include <lemon/core.h>
30#include <lemon/bin_heap.h>
31
32namespace lemon {
33
34  /// \brief Default traits class of CapacityScaling algorithm.
35  ///
36  /// Default traits class of CapacityScaling algorithm.
37  /// \tparam GR Digraph type.
38  /// \tparam V The number type used for flow amounts, capacity bounds
39  /// and supply values. By default it is \c int.
40  /// \tparam C The number type used for costs and potentials.
41  /// By default it is the same as \c V.
42  template <typename GR, typename V = int, typename C = V>
43  struct CapacityScalingDefaultTraits
44  {
45    /// The type of the digraph
46    typedef GR Digraph;
47    /// The type of the flow amounts, capacity bounds and supply values
48    typedef V Value;
49    /// The type of the arc costs
50    typedef C Cost;
51
52    /// \brief The type of the heap used for internal Dijkstra computations.
53    ///
54    /// The type of the heap used for internal Dijkstra computations.
55    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56    /// its priority type must be \c Cost and its cross reference type
57    /// must be \ref RangeMap "RangeMap<int>".
58    typedef BinHeap<Cost, RangeMap<int> > Heap;
59  };
60
61  /// \addtogroup min_cost_flow_algs
62  /// @{
63
64  /// \brief Implementation of the Capacity Scaling algorithm for
65  /// finding a \ref min_cost_flow "minimum cost flow".
66  ///
67  /// \ref CapacityScaling implements the capacity scaling version
68  /// of the successive shortest path algorithm for finding a
69  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70  /// \ref edmondskarp72theoretical. It is an efficient dual
71  /// solution method.
72  ///
73  /// This algorithm is typically slower than \ref CostScaling and
74  /// \ref NetworkSimplex, but in special cases, it can be more
75  /// efficient than them.
76  /// (For more information, see \ref min_cost_flow_algs "the module page".)
77  ///
78  /// Most of the parameters of the problem (except for the digraph)
79  /// can be given using separate functions, and the algorithm can be
80  /// executed using the \ref run() function. If some parameters are not
81  /// specified, then default values will be used.
82  ///
83  /// \tparam GR The digraph type the algorithm runs on.
84  /// \tparam V The number type used for flow amounts, capacity bounds
85  /// and supply values in the algorithm. By default, it is \c int.
86  /// \tparam C The number type used for costs and potentials in the
87  /// algorithm. By default, it is the same as \c V.
88  /// \tparam TR The traits class that defines various types used by the
89  /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
90  /// "CapacityScalingDefaultTraits<GR, V, C>".
91  /// In most cases, this parameter should not be set directly,
92  /// consider to use the named template parameters instead.
93  ///
94  /// \warning Both \c V and \c C must be signed number types.
95  /// \warning Capacity bounds and supply values must be integer, but
96  /// arc costs can be arbitrary real numbers.
97  /// \warning This algorithm does not support negative costs for
98  /// arcs having infinite upper bound.
99#ifdef DOXYGEN
100  template <typename GR, typename V, typename C, typename TR>
101#else
102  template < typename GR, typename V = int, typename C = V,
103             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
104#endif
105  class CapacityScaling
106  {
107  public:
108
109    /// The type of the digraph
110    typedef typename TR::Digraph Digraph;
111    /// The type of the flow amounts, capacity bounds and supply values
112    typedef typename TR::Value Value;
113    /// The type of the arc costs
114    typedef typename TR::Cost Cost;
115
116    /// The type of the heap used for internal Dijkstra computations
117    typedef typename TR::Heap Heap;
118
119    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
120    typedef TR Traits;
121
122  public:
123
124    /// \brief Problem type constants for the \c run() function.
125    ///
126    /// Enum type containing the problem type constants that can be
127    /// returned by the \ref run() function of the algorithm.
128    enum ProblemType {
129      /// The problem has no feasible solution (flow).
130      INFEASIBLE,
131      /// The problem has optimal solution (i.e. it is feasible and
132      /// bounded), and the algorithm has found optimal flow and node
133      /// potentials (primal and dual solutions).
134      OPTIMAL,
135      /// The digraph contains an arc of negative cost and infinite
136      /// upper bound. It means that the objective function is unbounded
137      /// on that arc, however, note that it could actually be bounded
138      /// over the feasible flows, but this algroithm cannot handle
139      /// these cases.
140      UNBOUNDED
141    };
142
143  private:
144
145    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
146
147    typedef std::vector<int> IntVector;
148    typedef std::vector<Value> ValueVector;
149    typedef std::vector<Cost> CostVector;
150    typedef std::vector<char> BoolVector;
151    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
152
153  private:
154
155    // Data related to the underlying digraph
156    const GR &_graph;
157    int _node_num;
158    int _arc_num;
159    int _res_arc_num;
160    int _root;
161
162    // Parameters of the problem
163    bool _have_lower;
164    Value _sum_supply;
165
166    // Data structures for storing the digraph
167    IntNodeMap _node_id;
168    IntArcMap _arc_idf;
169    IntArcMap _arc_idb;
170    IntVector _first_out;
171    BoolVector _forward;
172    IntVector _source;
173    IntVector _target;
174    IntVector _reverse;
175
176    // Node and arc data
177    ValueVector _lower;
178    ValueVector _upper;
179    CostVector _cost;
180    ValueVector _supply;
181
182    ValueVector _res_cap;
183    CostVector _pi;
184    ValueVector _excess;
185    IntVector _excess_nodes;
186    IntVector _deficit_nodes;
187
188    Value _delta;
189    int _factor;
190    IntVector _pred;
191
192  public:
193
194    /// \brief Constant for infinite upper bounds (capacities).
195    ///
196    /// Constant for infinite upper bounds (capacities).
197    /// It is \c std::numeric_limits<Value>::infinity() if available,
198    /// \c std::numeric_limits<Value>::max() otherwise.
199    const Value INF;
200
201  private:
202
203    // Special implementation of the Dijkstra algorithm for finding
204    // shortest paths in the residual network of the digraph with
205    // respect to the reduced arc costs and modifying the node
206    // potentials according to the found distance labels.
207    class ResidualDijkstra
208    {
209    private:
210
211      int _node_num;
212      bool _geq;
213      const IntVector &_first_out;
214      const IntVector &_target;
215      const CostVector &_cost;
216      const ValueVector &_res_cap;
217      const ValueVector &_excess;
218      CostVector &_pi;
219      IntVector &_pred;
220
221      IntVector _proc_nodes;
222      CostVector _dist;
223
224    public:
225
226      ResidualDijkstra(CapacityScaling& cs) :
227        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
228        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
229        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
230        _pred(cs._pred), _dist(cs._node_num)
231      {}
232
233      int run(int s, Value delta = 1) {
234        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
235        Heap heap(heap_cross_ref);
236        heap.push(s, 0);
237        _pred[s] = -1;
238        _proc_nodes.clear();
239
240        // Process nodes
241        while (!heap.empty() && _excess[heap.top()] > -delta) {
242          int u = heap.top(), v;
243          Cost d = heap.prio() + _pi[u], dn;
244          _dist[u] = heap.prio();
245          _proc_nodes.push_back(u);
246          heap.pop();
247
248          // Traverse outgoing residual arcs
249          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
250          for (int a = _first_out[u]; a != last_out; ++a) {
251            if (_res_cap[a] < delta) continue;
252            v = _target[a];
253            switch (heap.state(v)) {
254              case Heap::PRE_HEAP:
255                heap.push(v, d + _cost[a] - _pi[v]);
256                _pred[v] = a;
257                break;
258              case Heap::IN_HEAP:
259                dn = d + _cost[a] - _pi[v];
260                if (dn < heap[v]) {
261                  heap.decrease(v, dn);
262                  _pred[v] = a;
263                }
264                break;
265              case Heap::POST_HEAP:
266                break;
267            }
268          }
269        }
270        if (heap.empty()) return -1;
271
272        // Update potentials of processed nodes
273        int t = heap.top();
274        Cost dt = heap.prio();
275        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
276          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
277        }
278
279        return t;
280      }
281
282    }; //class ResidualDijkstra
283
284  public:
285
286    /// \name Named Template Parameters
287    /// @{
288
289    template <typename T>
290    struct SetHeapTraits : public Traits {
291      typedef T Heap;
292    };
293
294    /// \brief \ref named-templ-param "Named parameter" for setting
295    /// \c Heap type.
296    ///
297    /// \ref named-templ-param "Named parameter" for setting \c Heap
298    /// type, which is used for internal Dijkstra computations.
299    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
300    /// its priority type must be \c Cost and its cross reference type
301    /// must be \ref RangeMap "RangeMap<int>".
302    template <typename T>
303    struct SetHeap
304      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
305      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
306    };
307
308    /// @}
309
310  protected:
311
312    CapacityScaling() {}
313
314  public:
315
316    /// \brief Constructor.
317    ///
318    /// The constructor of the class.
319    ///
320    /// \param graph The digraph the algorithm runs on.
321    CapacityScaling(const GR& graph) :
322      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
323      INF(std::numeric_limits<Value>::has_infinity ?
324          std::numeric_limits<Value>::infinity() :
325          std::numeric_limits<Value>::max())
326    {
327      // Check the number types
328      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
329        "The flow type of CapacityScaling must be signed");
330      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
331        "The cost type of CapacityScaling must be signed");
332
333      // Reset data structures
334      reset();
335    }
336
337    /// \name Parameters
338    /// The parameters of the algorithm can be specified using these
339    /// functions.
340
341    /// @{
342
343    /// \brief Set the lower bounds on the arcs.
344    ///
345    /// This function sets the lower bounds on the arcs.
346    /// If it is not used before calling \ref run(), the lower bounds
347    /// will be set to zero on all arcs.
348    ///
349    /// \param map An arc map storing the lower bounds.
350    /// Its \c Value type must be convertible to the \c Value type
351    /// of the algorithm.
352    ///
353    /// \return <tt>(*this)</tt>
354    template <typename LowerMap>
355    CapacityScaling& lowerMap(const LowerMap& map) {
356      _have_lower = true;
357      for (ArcIt a(_graph); a != INVALID; ++a) {
358        _lower[_arc_idf[a]] = map[a];
359        _lower[_arc_idb[a]] = map[a];
360      }
361      return *this;
362    }
363
364    /// \brief Set the upper bounds (capacities) on the arcs.
365    ///
366    /// This function sets the upper bounds (capacities) on the arcs.
367    /// If it is not used before calling \ref run(), the upper bounds
368    /// will be set to \ref INF on all arcs (i.e. the flow value will be
369    /// unbounded from above).
370    ///
371    /// \param map An arc map storing the upper bounds.
372    /// Its \c Value type must be convertible to the \c Value type
373    /// of the algorithm.
374    ///
375    /// \return <tt>(*this)</tt>
376    template<typename UpperMap>
377    CapacityScaling& upperMap(const UpperMap& map) {
378      for (ArcIt a(_graph); a != INVALID; ++a) {
379        _upper[_arc_idf[a]] = map[a];
380      }
381      return *this;
382    }
383
384    /// \brief Set the costs of the arcs.
385    ///
386    /// This function sets the costs of the arcs.
387    /// If it is not used before calling \ref run(), the costs
388    /// will be set to \c 1 on all arcs.
389    ///
390    /// \param map An arc map storing the costs.
391    /// Its \c Value type must be convertible to the \c Cost type
392    /// of the algorithm.
393    ///
394    /// \return <tt>(*this)</tt>
395    template<typename CostMap>
396    CapacityScaling& costMap(const CostMap& map) {
397      for (ArcIt a(_graph); a != INVALID; ++a) {
398        _cost[_arc_idf[a]] =  map[a];
399        _cost[_arc_idb[a]] = -map[a];
400      }
401      return *this;
402    }
403
404    /// \brief Set the supply values of the nodes.
405    ///
406    /// This function sets the supply values of the nodes.
407    /// If neither this function nor \ref stSupply() is used before
408    /// calling \ref run(), the supply of each node will be set to zero.
409    ///
410    /// \param map A node map storing the supply values.
411    /// Its \c Value type must be convertible to the \c Value type
412    /// of the algorithm.
413    ///
414    /// \return <tt>(*this)</tt>
415    template<typename SupplyMap>
416    CapacityScaling& supplyMap(const SupplyMap& map) {
417      for (NodeIt n(_graph); n != INVALID; ++n) {
418        _supply[_node_id[n]] = map[n];
419      }
420      return *this;
421    }
422
423    /// \brief Set single source and target nodes and a supply value.
424    ///
425    /// This function sets a single source node and a single target node
426    /// and the required flow value.
427    /// If neither this function nor \ref supplyMap() is used before
428    /// calling \ref run(), the supply of each node will be set to zero.
429    ///
430    /// Using this function has the same effect as using \ref supplyMap()
431    /// with a map in which \c k is assigned to \c s, \c -k is
432    /// assigned to \c t and all other nodes have zero supply value.
433    ///
434    /// \param s The source node.
435    /// \param t The target node.
436    /// \param k The required amount of flow from node \c s to node \c t
437    /// (i.e. the supply of \c s and the demand of \c t).
438    ///
439    /// \return <tt>(*this)</tt>
440    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
441      for (int i = 0; i != _node_num; ++i) {
442        _supply[i] = 0;
443      }
444      _supply[_node_id[s]] =  k;
445      _supply[_node_id[t]] = -k;
446      return *this;
447    }
448
449    /// @}
450
451    /// \name Execution control
452    /// The algorithm can be executed using \ref run().
453
454    /// @{
455
456    /// \brief Run the algorithm.
457    ///
458    /// This function runs the algorithm.
459    /// The paramters can be specified using functions \ref lowerMap(),
460    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
461    /// For example,
462    /// \code
463    ///   CapacityScaling<ListDigraph> cs(graph);
464    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
465    ///     .supplyMap(sup).run();
466    /// \endcode
467    ///
468    /// This function can be called more than once. All the given parameters
469    /// are kept for the next call, unless \ref resetParams() or \ref reset()
470    /// is used, thus only the modified parameters have to be set again.
471    /// If the underlying digraph was also modified after the construction
472    /// of the class (or the last \ref reset() call), then the \ref reset()
473    /// function must be called.
474    ///
475    /// \param factor The capacity scaling factor. It must be larger than
476    /// one to use scaling. If it is less or equal to one, then scaling
477    /// will be disabled.
478    ///
479    /// \return \c INFEASIBLE if no feasible flow exists,
480    /// \n \c OPTIMAL if the problem has optimal solution
481    /// (i.e. it is feasible and bounded), and the algorithm has found
482    /// optimal flow and node potentials (primal and dual solutions),
483    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
484    /// and infinite upper bound. It means that the objective function
485    /// is unbounded on that arc, however, note that it could actually be
486    /// bounded over the feasible flows, but this algroithm cannot handle
487    /// these cases.
488    ///
489    /// \see ProblemType
490    /// \see resetParams(), reset()
491    ProblemType run(int factor = 4) {
492      _factor = factor;
493      ProblemType pt = init();
494      if (pt != OPTIMAL) return pt;
495      return start();
496    }
497
498    /// \brief Reset all the parameters that have been given before.
499    ///
500    /// This function resets all the paramaters that have been given
501    /// before using functions \ref lowerMap(), \ref upperMap(),
502    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
503    ///
504    /// It is useful for multiple \ref run() calls. Basically, all the given
505    /// parameters are kept for the next \ref run() call, unless
506    /// \ref resetParams() or \ref reset() is used.
507    /// If the underlying digraph was also modified after the construction
508    /// of the class or the last \ref reset() call, then the \ref reset()
509    /// function must be used, otherwise \ref resetParams() is sufficient.
510    ///
511    /// For example,
512    /// \code
513    ///   CapacityScaling<ListDigraph> cs(graph);
514    ///
515    ///   // First run
516    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
517    ///     .supplyMap(sup).run();
518    ///
519    ///   // Run again with modified cost map (resetParams() is not called,
520    ///   // so only the cost map have to be set again)
521    ///   cost[e] += 100;
522    ///   cs.costMap(cost).run();
523    ///
524    ///   // Run again from scratch using resetParams()
525    ///   // (the lower bounds will be set to zero on all arcs)
526    ///   cs.resetParams();
527    ///   cs.upperMap(capacity).costMap(cost)
528    ///     .supplyMap(sup).run();
529    /// \endcode
530    ///
531    /// \return <tt>(*this)</tt>
532    ///
533    /// \see reset(), run()
534    CapacityScaling& resetParams() {
535      for (int i = 0; i != _node_num; ++i) {
536        _supply[i] = 0;
537      }
538      for (int j = 0; j != _res_arc_num; ++j) {
539        _lower[j] = 0;
540        _upper[j] = INF;
541        _cost[j] = _forward[j] ? 1 : -1;
542      }
543      _have_lower = false;
544      return *this;
545    }
546
547    /// \brief Reset the internal data structures and all the parameters
548    /// that have been given before.
549    ///
550    /// This function resets the internal data structures and all the
551    /// paramaters that have been given before using functions \ref lowerMap(),
552    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
553    ///
554    /// It is useful for multiple \ref run() calls. Basically, all the given
555    /// parameters are kept for the next \ref run() call, unless
556    /// \ref resetParams() or \ref reset() is used.
557    /// If the underlying digraph was also modified after the construction
558    /// of the class or the last \ref reset() call, then the \ref reset()
559    /// function must be used, otherwise \ref resetParams() is sufficient.
560    ///
561    /// See \ref resetParams() for examples.
562    ///
563    /// \return <tt>(*this)</tt>
564    ///
565    /// \see resetParams(), run()
566    CapacityScaling& reset() {
567      // Resize vectors
568      _node_num = countNodes(_graph);
569      _arc_num = countArcs(_graph);
570      _res_arc_num = 2 * (_arc_num + _node_num);
571      _root = _node_num;
572      ++_node_num;
573
574      _first_out.resize(_node_num + 1);
575      _forward.resize(_res_arc_num);
576      _source.resize(_res_arc_num);
577      _target.resize(_res_arc_num);
578      _reverse.resize(_res_arc_num);
579
580      _lower.resize(_res_arc_num);
581      _upper.resize(_res_arc_num);
582      _cost.resize(_res_arc_num);
583      _supply.resize(_node_num);
584
585      _res_cap.resize(_res_arc_num);
586      _pi.resize(_node_num);
587      _excess.resize(_node_num);
588      _pred.resize(_node_num);
589
590      // Copy the graph
591      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
592      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
593        _node_id[n] = i;
594      }
595      i = 0;
596      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
597        _first_out[i] = j;
598        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
599          _arc_idf[a] = j;
600          _forward[j] = true;
601          _source[j] = i;
602          _target[j] = _node_id[_graph.runningNode(a)];
603        }
604        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
605          _arc_idb[a] = j;
606          _forward[j] = false;
607          _source[j] = i;
608          _target[j] = _node_id[_graph.runningNode(a)];
609        }
610        _forward[j] = false;
611        _source[j] = i;
612        _target[j] = _root;
613        _reverse[j] = k;
614        _forward[k] = true;
615        _source[k] = _root;
616        _target[k] = i;
617        _reverse[k] = j;
618        ++j; ++k;
619      }
620      _first_out[i] = j;
621      _first_out[_node_num] = k;
622      for (ArcIt a(_graph); a != INVALID; ++a) {
623        int fi = _arc_idf[a];
624        int bi = _arc_idb[a];
625        _reverse[fi] = bi;
626        _reverse[bi] = fi;
627      }
628
629      // Reset parameters
630      resetParams();
631      return *this;
632    }
633
634    /// @}
635
636    /// \name Query Functions
637    /// The results of the algorithm can be obtained using these
638    /// functions.\n
639    /// The \ref run() function must be called before using them.
640
641    /// @{
642
643    /// \brief Return the total cost of the found flow.
644    ///
645    /// This function returns the total cost of the found flow.
646    /// Its complexity is O(e).
647    ///
648    /// \note The return type of the function can be specified as a
649    /// template parameter. For example,
650    /// \code
651    ///   cs.totalCost<double>();
652    /// \endcode
653    /// It is useful if the total cost cannot be stored in the \c Cost
654    /// type of the algorithm, which is the default return type of the
655    /// function.
656    ///
657    /// \pre \ref run() must be called before using this function.
658    template <typename Number>
659    Number totalCost() const {
660      Number c = 0;
661      for (ArcIt a(_graph); a != INVALID; ++a) {
662        int i = _arc_idb[a];
663        c += static_cast<Number>(_res_cap[i]) *
664             (-static_cast<Number>(_cost[i]));
665      }
666      return c;
667    }
668
669#ifndef DOXYGEN
670    Cost totalCost() const {
671      return totalCost<Cost>();
672    }
673#endif
674
675    /// \brief Return the flow on the given arc.
676    ///
677    /// This function returns the flow on the given arc.
678    ///
679    /// \pre \ref run() must be called before using this function.
680    Value flow(const Arc& a) const {
681      return _res_cap[_arc_idb[a]];
682    }
683
684    /// \brief Copy the flow values (the primal solution) into the
685    /// given map.
686    ///
687    /// This function copies the flow value on each arc into the given
688    /// map. The \c Value type of the algorithm must be convertible to
689    /// the \c Value type of the map.
690    ///
691    /// \pre \ref run() must be called before using this function.
692    template <typename FlowMap>
693    void flowMap(FlowMap &map) const {
694      for (ArcIt a(_graph); a != INVALID; ++a) {
695        map.set(a, _res_cap[_arc_idb[a]]);
696      }
697    }
698
699    /// \brief Return the potential (dual value) of the given node.
700    ///
701    /// This function returns the potential (dual value) of the
702    /// given node.
703    ///
704    /// \pre \ref run() must be called before using this function.
705    Cost potential(const Node& n) const {
706      return _pi[_node_id[n]];
707    }
708
709    /// \brief Copy the potential values (the dual solution) into the
710    /// given map.
711    ///
712    /// This function copies the potential (dual value) of each node
713    /// into the given map.
714    /// The \c Cost type of the algorithm must be convertible to the
715    /// \c Value type of the map.
716    ///
717    /// \pre \ref run() must be called before using this function.
718    template <typename PotentialMap>
719    void potentialMap(PotentialMap &map) const {
720      for (NodeIt n(_graph); n != INVALID; ++n) {
721        map.set(n, _pi[_node_id[n]]);
722      }
723    }
724
725    /// @}
726
727  private:
728
729    // Initialize the algorithm
730    ProblemType init() {
731      if (_node_num <= 1) return INFEASIBLE;
732
733      // Check the sum of supply values
734      _sum_supply = 0;
735      for (int i = 0; i != _root; ++i) {
736        _sum_supply += _supply[i];
737      }
738      if (_sum_supply > 0) return INFEASIBLE;
739
740      // Check lower and upper bounds
741      LEMON_DEBUG(checkBoundMaps(),
742          "Upper bounds must be greater or equal to the lower bounds");
743
744
745      // Initialize vectors
746      for (int i = 0; i != _root; ++i) {
747        _pi[i] = 0;
748        _excess[i] = _supply[i];
749      }
750
751      // Remove non-zero lower bounds
752      const Value MAX = std::numeric_limits<Value>::max();
753      int last_out;
754      if (_have_lower) {
755        for (int i = 0; i != _root; ++i) {
756          last_out = _first_out[i+1];
757          for (int j = _first_out[i]; j != last_out; ++j) {
758            if (_forward[j]) {
759              Value c = _lower[j];
760              if (c >= 0) {
761                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
762              } else {
763                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
764              }
765              _excess[i] -= c;
766              _excess[_target[j]] += c;
767            } else {
768              _res_cap[j] = 0;
769            }
770          }
771        }
772      } else {
773        for (int j = 0; j != _res_arc_num; ++j) {
774          _res_cap[j] = _forward[j] ? _upper[j] : 0;
775        }
776      }
777
778      // Handle negative costs
779      for (int i = 0; i != _root; ++i) {
780        last_out = _first_out[i+1] - 1;
781        for (int j = _first_out[i]; j != last_out; ++j) {
782          Value rc = _res_cap[j];
783          if (_cost[j] < 0 && rc > 0) {
784            if (rc >= MAX) return UNBOUNDED;
785            _excess[i] -= rc;
786            _excess[_target[j]] += rc;
787            _res_cap[j] = 0;
788            _res_cap[_reverse[j]] += rc;
789          }
790        }
791      }
792
793      // Handle GEQ supply type
794      if (_sum_supply < 0) {
795        _pi[_root] = 0;
796        _excess[_root] = -_sum_supply;
797        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
798          int ra = _reverse[a];
799          _res_cap[a] = -_sum_supply + 1;
800          _res_cap[ra] = 0;
801          _cost[a] = 0;
802          _cost[ra] = 0;
803        }
804      } else {
805        _pi[_root] = 0;
806        _excess[_root] = 0;
807        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
808          int ra = _reverse[a];
809          _res_cap[a] = 1;
810          _res_cap[ra] = 0;
811          _cost[a] = 0;
812          _cost[ra] = 0;
813        }
814      }
815
816      // Initialize delta value
817      if (_factor > 1) {
818        // With scaling
819        Value max_sup = 0, max_dem = 0, max_cap = 0;
820        for (int i = 0; i != _root; ++i) {
821          Value ex = _excess[i];
822          if ( ex > max_sup) max_sup =  ex;
823          if (-ex > max_dem) max_dem = -ex;
824          int last_out = _first_out[i+1] - 1;
825          for (int j = _first_out[i]; j != last_out; ++j) {
826            if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
827          }
828        }
829        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
830        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
831      } else {
832        // Without scaling
833        _delta = 1;
834      }
835
836      return OPTIMAL;
837    }
838   
839    // Check if the upper bound is greater or equal to the lower bound
840    // on each arc.
841    bool checkBoundMaps() {
842      for (int j = 0; j != _res_arc_num; ++j) {
843        if (_upper[j] < _lower[j]) return false;
844      }
845      return true;
846    }
847
848    ProblemType start() {
849      // Execute the algorithm
850      ProblemType pt;
851      if (_delta > 1)
852        pt = startWithScaling();
853      else
854        pt = startWithoutScaling();
855
856      // Handle non-zero lower bounds
857      if (_have_lower) {
858        int limit = _first_out[_root];
859        for (int j = 0; j != limit; ++j) {
860          if (!_forward[j]) _res_cap[j] += _lower[j];
861        }
862      }
863
864      // Shift potentials if necessary
865      Cost pr = _pi[_root];
866      if (_sum_supply < 0 || pr > 0) {
867        for (int i = 0; i != _node_num; ++i) {
868          _pi[i] -= pr;
869        }
870      }
871
872      return pt;
873    }
874
875    // Execute the capacity scaling algorithm
876    ProblemType startWithScaling() {
877      // Perform capacity scaling phases
878      int s, t;
879      ResidualDijkstra _dijkstra(*this);
880      while (true) {
881        // Saturate all arcs not satisfying the optimality condition
882        int last_out;
883        for (int u = 0; u != _node_num; ++u) {
884          last_out = _sum_supply < 0 ?
885            _first_out[u+1] : _first_out[u+1] - 1;
886          for (int a = _first_out[u]; a != last_out; ++a) {
887            int v = _target[a];
888            Cost c = _cost[a] + _pi[u] - _pi[v];
889            Value rc = _res_cap[a];
890            if (c < 0 && rc >= _delta) {
891              _excess[u] -= rc;
892              _excess[v] += rc;
893              _res_cap[a] = 0;
894              _res_cap[_reverse[a]] += rc;
895            }
896          }
897        }
898
899        // Find excess nodes and deficit nodes
900        _excess_nodes.clear();
901        _deficit_nodes.clear();
902        for (int u = 0; u != _node_num; ++u) {
903          Value ex = _excess[u];
904          if (ex >=  _delta) _excess_nodes.push_back(u);
905          if (ex <= -_delta) _deficit_nodes.push_back(u);
906        }
907        int next_node = 0, next_def_node = 0;
908
909        // Find augmenting shortest paths
910        while (next_node < int(_excess_nodes.size())) {
911          // Check deficit nodes
912          if (_delta > 1) {
913            bool delta_deficit = false;
914            for ( ; next_def_node < int(_deficit_nodes.size());
915                    ++next_def_node ) {
916              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
917                delta_deficit = true;
918                break;
919              }
920            }
921            if (!delta_deficit) break;
922          }
923
924          // Run Dijkstra in the residual network
925          s = _excess_nodes[next_node];
926          if ((t = _dijkstra.run(s, _delta)) == -1) {
927            if (_delta > 1) {
928              ++next_node;
929              continue;
930            }
931            return INFEASIBLE;
932          }
933
934          // Augment along a shortest path from s to t
935          Value d = std::min(_excess[s], -_excess[t]);
936          int u = t;
937          int a;
938          if (d > _delta) {
939            while ((a = _pred[u]) != -1) {
940              if (_res_cap[a] < d) d = _res_cap[a];
941              u = _source[a];
942            }
943          }
944          u = t;
945          while ((a = _pred[u]) != -1) {
946            _res_cap[a] -= d;
947            _res_cap[_reverse[a]] += d;
948            u = _source[a];
949          }
950          _excess[s] -= d;
951          _excess[t] += d;
952
953          if (_excess[s] < _delta) ++next_node;
954        }
955
956        if (_delta == 1) break;
957        _delta = _delta <= _factor ? 1 : _delta / _factor;
958      }
959
960      return OPTIMAL;
961    }
962
963    // Execute the successive shortest path algorithm
964    ProblemType startWithoutScaling() {
965      // Find excess nodes
966      _excess_nodes.clear();
967      for (int i = 0; i != _node_num; ++i) {
968        if (_excess[i] > 0) _excess_nodes.push_back(i);
969      }
970      if (_excess_nodes.size() == 0) return OPTIMAL;
971      int next_node = 0;
972
973      // Find shortest paths
974      int s, t;
975      ResidualDijkstra _dijkstra(*this);
976      while ( _excess[_excess_nodes[next_node]] > 0 ||
977              ++next_node < int(_excess_nodes.size()) )
978      {
979        // Run Dijkstra in the residual network
980        s = _excess_nodes[next_node];
981        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
982
983        // Augment along a shortest path from s to t
984        Value d = std::min(_excess[s], -_excess[t]);
985        int u = t;
986        int a;
987        if (d > 1) {
988          while ((a = _pred[u]) != -1) {
989            if (_res_cap[a] < d) d = _res_cap[a];
990            u = _source[a];
991          }
992        }
993        u = t;
994        while ((a = _pred[u]) != -1) {
995          _res_cap[a] -= d;
996          _res_cap[_reverse[a]] += d;
997          u = _source[a];
998        }
999        _excess[s] -= d;
1000        _excess[t] += d;
1001      }
1002
1003      return OPTIMAL;
1004    }
1005
1006  }; //class CapacityScaling
1007
1008  ///@}
1009
1010} //namespace lemon
1011
1012#endif //LEMON_CAPACITY_SCALING_H
Note: See TracBrowser for help on using the repository browser.