| 1 | /* -*- C++ -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2008 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_CAPACITY_SCALING_H |
|---|
| 20 | #define LEMON_CAPACITY_SCALING_H |
|---|
| 21 | |
|---|
| 22 | /// \ingroup min_cost_flow_algs |
|---|
| 23 | /// |
|---|
| 24 | /// \file |
|---|
| 25 | /// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
|---|
| 26 | |
|---|
| 27 | #include <vector> |
|---|
| 28 | #include <limits> |
|---|
| 29 | #include <lemon/core.h> |
|---|
| 30 | #include <lemon/maps.h> |
|---|
| 31 | #include <lemon/bin_heap.h> |
|---|
| 32 | |
|---|
| 33 | namespace lemon { |
|---|
| 34 | |
|---|
| 35 | /// \brief Default traits class of CapacityScaling algorithm. |
|---|
| 36 | /// |
|---|
| 37 | /// Default traits class of CapacityScaling algorithm. |
|---|
| 38 | /// \tparam GR Digraph type. |
|---|
| 39 | /// \tparam V The number type used for flow amounts, capacity bounds |
|---|
| 40 | /// and supply values. By default it is \c int. |
|---|
| 41 | /// \tparam C The number type used for costs and potentials. |
|---|
| 42 | /// By default it is the same as \c V. |
|---|
| 43 | template <typename GR, typename V = int, typename C = V> |
|---|
| 44 | struct CapacityScalingDefaultTraits |
|---|
| 45 | { |
|---|
| 46 | /// The type of the digraph |
|---|
| 47 | typedef GR Digraph; |
|---|
| 48 | /// The type of the flow amounts, capacity bounds and supply values |
|---|
| 49 | typedef V Value; |
|---|
| 50 | /// The type of the arc costs |
|---|
| 51 | typedef C Cost; |
|---|
| 52 | |
|---|
| 53 | /// \brief The type of the heap used for internal Dijkstra computations. |
|---|
| 54 | /// |
|---|
| 55 | /// The type of the heap used for internal Dijkstra computations. |
|---|
| 56 | /// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|---|
| 57 | /// its priority type must be \c Cost and its cross reference type |
|---|
| 58 | /// must be \ref RangeMap "RangeMap<int>". |
|---|
| 59 | typedef BinHeap<Cost, RangeMap<int> > Heap; |
|---|
| 60 | }; |
|---|
| 61 | |
|---|
| 62 | /// \addtogroup min_cost_flow_algs |
|---|
| 63 | /// @{ |
|---|
| 64 | |
|---|
| 65 | /// \brief Implementation of the Capacity Scaling algorithm for |
|---|
| 66 | /// finding a \ref min_cost_flow "minimum cost flow". |
|---|
| 67 | /// |
|---|
| 68 | /// \ref CapacityScaling implements the capacity scaling version |
|---|
| 69 | /// of the successive shortest path algorithm for finding a |
|---|
| 70 | /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
|---|
| 71 | /// \ref edmondskarp72theoretical. It is an efficient dual |
|---|
| 72 | /// solution method. |
|---|
| 73 | /// |
|---|
| 74 | /// Most of the parameters of the problem (except for the digraph) |
|---|
| 75 | /// can be given using separate functions, and the algorithm can be |
|---|
| 76 | /// executed using the \ref run() function. If some parameters are not |
|---|
| 77 | /// specified, then default values will be used. |
|---|
| 78 | /// |
|---|
| 79 | /// \tparam GR The digraph type the algorithm runs on. |
|---|
| 80 | /// \tparam V The number type used for flow amounts, capacity bounds |
|---|
| 81 | /// and supply values in the algorithm. By default it is \c int. |
|---|
| 82 | /// \tparam C The number type used for costs and potentials in the |
|---|
| 83 | /// algorithm. By default it is the same as \c V. |
|---|
| 84 | /// |
|---|
| 85 | /// \warning Both number types must be signed and all input data must |
|---|
| 86 | /// be integer. |
|---|
| 87 | /// \warning This algorithm does not support negative costs for such |
|---|
| 88 | /// arcs that have infinite upper bound. |
|---|
| 89 | #ifdef DOXYGEN |
|---|
| 90 | template <typename GR, typename V, typename C, typename TR> |
|---|
| 91 | #else |
|---|
| 92 | template < typename GR, typename V = int, typename C = V, |
|---|
| 93 | typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
|---|
| 94 | #endif |
|---|
| 95 | class CapacityScaling |
|---|
| 96 | { |
|---|
| 97 | public: |
|---|
| 98 | |
|---|
| 99 | /// The type of the digraph |
|---|
| 100 | typedef typename TR::Digraph Digraph; |
|---|
| 101 | /// The type of the flow amounts, capacity bounds and supply values |
|---|
| 102 | typedef typename TR::Value Value; |
|---|
| 103 | /// The type of the arc costs |
|---|
| 104 | typedef typename TR::Cost Cost; |
|---|
| 105 | |
|---|
| 106 | /// The type of the heap used for internal Dijkstra computations |
|---|
| 107 | typedef typename TR::Heap Heap; |
|---|
| 108 | |
|---|
| 109 | /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
|---|
| 110 | typedef TR Traits; |
|---|
| 111 | |
|---|
| 112 | public: |
|---|
| 113 | |
|---|
| 114 | /// \brief Problem type constants for the \c run() function. |
|---|
| 115 | /// |
|---|
| 116 | /// Enum type containing the problem type constants that can be |
|---|
| 117 | /// returned by the \ref run() function of the algorithm. |
|---|
| 118 | enum ProblemType { |
|---|
| 119 | /// The problem has no feasible solution (flow). |
|---|
| 120 | INFEASIBLE, |
|---|
| 121 | /// The problem has optimal solution (i.e. it is feasible and |
|---|
| 122 | /// bounded), and the algorithm has found optimal flow and node |
|---|
| 123 | /// potentials (primal and dual solutions). |
|---|
| 124 | OPTIMAL, |
|---|
| 125 | /// The digraph contains an arc of negative cost and infinite |
|---|
| 126 | /// upper bound. It means that the objective function is unbounded |
|---|
| 127 | /// on that arc, however, note that it could actually be bounded |
|---|
| 128 | /// over the feasible flows, but this algroithm cannot handle |
|---|
| 129 | /// these cases. |
|---|
| 130 | UNBOUNDED |
|---|
| 131 | }; |
|---|
| 132 | |
|---|
| 133 | private: |
|---|
| 134 | |
|---|
| 135 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|---|
| 136 | |
|---|
| 137 | typedef std::vector<int> IntVector; |
|---|
| 138 | typedef std::vector<char> BoolVector; |
|---|
| 139 | typedef std::vector<Value> ValueVector; |
|---|
| 140 | typedef std::vector<Cost> CostVector; |
|---|
| 141 | |
|---|
| 142 | private: |
|---|
| 143 | |
|---|
| 144 | // Data related to the underlying digraph |
|---|
| 145 | const GR &_graph; |
|---|
| 146 | int _node_num; |
|---|
| 147 | int _arc_num; |
|---|
| 148 | int _res_arc_num; |
|---|
| 149 | int _root; |
|---|
| 150 | |
|---|
| 151 | // Parameters of the problem |
|---|
| 152 | bool _have_lower; |
|---|
| 153 | Value _sum_supply; |
|---|
| 154 | |
|---|
| 155 | // Data structures for storing the digraph |
|---|
| 156 | IntNodeMap _node_id; |
|---|
| 157 | IntArcMap _arc_idf; |
|---|
| 158 | IntArcMap _arc_idb; |
|---|
| 159 | IntVector _first_out; |
|---|
| 160 | BoolVector _forward; |
|---|
| 161 | IntVector _source; |
|---|
| 162 | IntVector _target; |
|---|
| 163 | IntVector _reverse; |
|---|
| 164 | |
|---|
| 165 | // Node and arc data |
|---|
| 166 | ValueVector _lower; |
|---|
| 167 | ValueVector _upper; |
|---|
| 168 | CostVector _cost; |
|---|
| 169 | ValueVector _supply; |
|---|
| 170 | |
|---|
| 171 | ValueVector _res_cap; |
|---|
| 172 | CostVector _pi; |
|---|
| 173 | ValueVector _excess; |
|---|
| 174 | IntVector _excess_nodes; |
|---|
| 175 | IntVector _deficit_nodes; |
|---|
| 176 | |
|---|
| 177 | Value _delta; |
|---|
| 178 | int _factor; |
|---|
| 179 | IntVector _pred; |
|---|
| 180 | |
|---|
| 181 | public: |
|---|
| 182 | |
|---|
| 183 | /// \brief Constant for infinite upper bounds (capacities). |
|---|
| 184 | /// |
|---|
| 185 | /// Constant for infinite upper bounds (capacities). |
|---|
| 186 | /// It is \c std::numeric_limits<Value>::infinity() if available, |
|---|
| 187 | /// \c std::numeric_limits<Value>::max() otherwise. |
|---|
| 188 | const Value INF; |
|---|
| 189 | |
|---|
| 190 | private: |
|---|
| 191 | |
|---|
| 192 | // Special implementation of the Dijkstra algorithm for finding |
|---|
| 193 | // shortest paths in the residual network of the digraph with |
|---|
| 194 | // respect to the reduced arc costs and modifying the node |
|---|
| 195 | // potentials according to the found distance labels. |
|---|
| 196 | class ResidualDijkstra |
|---|
| 197 | { |
|---|
| 198 | private: |
|---|
| 199 | |
|---|
| 200 | int _node_num; |
|---|
| 201 | bool _geq; |
|---|
| 202 | const IntVector &_first_out; |
|---|
| 203 | const IntVector &_target; |
|---|
| 204 | const CostVector &_cost; |
|---|
| 205 | const ValueVector &_res_cap; |
|---|
| 206 | const ValueVector &_excess; |
|---|
| 207 | CostVector &_pi; |
|---|
| 208 | IntVector &_pred; |
|---|
| 209 | |
|---|
| 210 | IntVector _proc_nodes; |
|---|
| 211 | CostVector _dist; |
|---|
| 212 | |
|---|
| 213 | public: |
|---|
| 214 | |
|---|
| 215 | ResidualDijkstra(CapacityScaling& cs) : |
|---|
| 216 | _node_num(cs._node_num), _geq(cs._sum_supply < 0), |
|---|
| 217 | _first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
|---|
| 218 | _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
|---|
| 219 | _pred(cs._pred), _dist(cs._node_num) |
|---|
| 220 | {} |
|---|
| 221 | |
|---|
| 222 | int run(int s, Value delta = 1) { |
|---|
| 223 | RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
|---|
| 224 | Heap heap(heap_cross_ref); |
|---|
| 225 | heap.push(s, 0); |
|---|
| 226 | _pred[s] = -1; |
|---|
| 227 | _proc_nodes.clear(); |
|---|
| 228 | |
|---|
| 229 | // Process nodes |
|---|
| 230 | while (!heap.empty() && _excess[heap.top()] > -delta) { |
|---|
| 231 | int u = heap.top(), v; |
|---|
| 232 | Cost d = heap.prio() + _pi[u], dn; |
|---|
| 233 | _dist[u] = heap.prio(); |
|---|
| 234 | _proc_nodes.push_back(u); |
|---|
| 235 | heap.pop(); |
|---|
| 236 | |
|---|
| 237 | // Traverse outgoing residual arcs |
|---|
| 238 | int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
|---|
| 239 | for (int a = _first_out[u]; a != last_out; ++a) { |
|---|
| 240 | if (_res_cap[a] < delta) continue; |
|---|
| 241 | v = _target[a]; |
|---|
| 242 | switch (heap.state(v)) { |
|---|
| 243 | case Heap::PRE_HEAP: |
|---|
| 244 | heap.push(v, d + _cost[a] - _pi[v]); |
|---|
| 245 | _pred[v] = a; |
|---|
| 246 | break; |
|---|
| 247 | case Heap::IN_HEAP: |
|---|
| 248 | dn = d + _cost[a] - _pi[v]; |
|---|
| 249 | if (dn < heap[v]) { |
|---|
| 250 | heap.decrease(v, dn); |
|---|
| 251 | _pred[v] = a; |
|---|
| 252 | } |
|---|
| 253 | break; |
|---|
| 254 | case Heap::POST_HEAP: |
|---|
| 255 | break; |
|---|
| 256 | } |
|---|
| 257 | } |
|---|
| 258 | } |
|---|
| 259 | if (heap.empty()) return -1; |
|---|
| 260 | |
|---|
| 261 | // Update potentials of processed nodes |
|---|
| 262 | int t = heap.top(); |
|---|
| 263 | Cost dt = heap.prio(); |
|---|
| 264 | for (int i = 0; i < int(_proc_nodes.size()); ++i) { |
|---|
| 265 | _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
|---|
| 266 | } |
|---|
| 267 | |
|---|
| 268 | return t; |
|---|
| 269 | } |
|---|
| 270 | |
|---|
| 271 | }; //class ResidualDijkstra |
|---|
| 272 | |
|---|
| 273 | public: |
|---|
| 274 | |
|---|
| 275 | /// \name Named Template Parameters |
|---|
| 276 | /// @{ |
|---|
| 277 | |
|---|
| 278 | template <typename T> |
|---|
| 279 | struct SetHeapTraits : public Traits { |
|---|
| 280 | typedef T Heap; |
|---|
| 281 | }; |
|---|
| 282 | |
|---|
| 283 | /// \brief \ref named-templ-param "Named parameter" for setting |
|---|
| 284 | /// \c Heap type. |
|---|
| 285 | /// |
|---|
| 286 | /// \ref named-templ-param "Named parameter" for setting \c Heap |
|---|
| 287 | /// type, which is used for internal Dijkstra computations. |
|---|
| 288 | /// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|---|
| 289 | /// its priority type must be \c Cost and its cross reference type |
|---|
| 290 | /// must be \ref RangeMap "RangeMap<int>". |
|---|
| 291 | template <typename T> |
|---|
| 292 | struct SetHeap |
|---|
| 293 | : public CapacityScaling<GR, V, C, SetHeapTraits<T> > { |
|---|
| 294 | typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
|---|
| 295 | }; |
|---|
| 296 | |
|---|
| 297 | /// @} |
|---|
| 298 | |
|---|
| 299 | public: |
|---|
| 300 | |
|---|
| 301 | /// \brief Constructor. |
|---|
| 302 | /// |
|---|
| 303 | /// The constructor of the class. |
|---|
| 304 | /// |
|---|
| 305 | /// \param graph The digraph the algorithm runs on. |
|---|
| 306 | CapacityScaling(const GR& graph) : |
|---|
| 307 | _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|---|
| 308 | INF(std::numeric_limits<Value>::has_infinity ? |
|---|
| 309 | std::numeric_limits<Value>::infinity() : |
|---|
| 310 | std::numeric_limits<Value>::max()) |
|---|
| 311 | { |
|---|
| 312 | // Check the number types |
|---|
| 313 | LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|---|
| 314 | "The flow type of CapacityScaling must be signed"); |
|---|
| 315 | LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|---|
| 316 | "The cost type of CapacityScaling must be signed"); |
|---|
| 317 | |
|---|
| 318 | // Resize vectors |
|---|
| 319 | _node_num = countNodes(_graph); |
|---|
| 320 | _arc_num = countArcs(_graph); |
|---|
| 321 | _res_arc_num = 2 * (_arc_num + _node_num); |
|---|
| 322 | _root = _node_num; |
|---|
| 323 | ++_node_num; |
|---|
| 324 | |
|---|
| 325 | _first_out.resize(_node_num + 1); |
|---|
| 326 | _forward.resize(_res_arc_num); |
|---|
| 327 | _source.resize(_res_arc_num); |
|---|
| 328 | _target.resize(_res_arc_num); |
|---|
| 329 | _reverse.resize(_res_arc_num); |
|---|
| 330 | |
|---|
| 331 | _lower.resize(_res_arc_num); |
|---|
| 332 | _upper.resize(_res_arc_num); |
|---|
| 333 | _cost.resize(_res_arc_num); |
|---|
| 334 | _supply.resize(_node_num); |
|---|
| 335 | |
|---|
| 336 | _res_cap.resize(_res_arc_num); |
|---|
| 337 | _pi.resize(_node_num); |
|---|
| 338 | _excess.resize(_node_num); |
|---|
| 339 | _pred.resize(_node_num); |
|---|
| 340 | |
|---|
| 341 | // Copy the graph |
|---|
| 342 | int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
|---|
| 343 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|---|
| 344 | _node_id[n] = i; |
|---|
| 345 | } |
|---|
| 346 | i = 0; |
|---|
| 347 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|---|
| 348 | _first_out[i] = j; |
|---|
| 349 | for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|---|
| 350 | _arc_idf[a] = j; |
|---|
| 351 | _forward[j] = true; |
|---|
| 352 | _source[j] = i; |
|---|
| 353 | _target[j] = _node_id[_graph.runningNode(a)]; |
|---|
| 354 | } |
|---|
| 355 | for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|---|
| 356 | _arc_idb[a] = j; |
|---|
| 357 | _forward[j] = false; |
|---|
| 358 | _source[j] = i; |
|---|
| 359 | _target[j] = _node_id[_graph.runningNode(a)]; |
|---|
| 360 | } |
|---|
| 361 | _forward[j] = false; |
|---|
| 362 | _source[j] = i; |
|---|
| 363 | _target[j] = _root; |
|---|
| 364 | _reverse[j] = k; |
|---|
| 365 | _forward[k] = true; |
|---|
| 366 | _source[k] = _root; |
|---|
| 367 | _target[k] = i; |
|---|
| 368 | _reverse[k] = j; |
|---|
| 369 | ++j; ++k; |
|---|
| 370 | } |
|---|
| 371 | _first_out[i] = j; |
|---|
| 372 | _first_out[_node_num] = k; |
|---|
| 373 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 374 | int fi = _arc_idf[a]; |
|---|
| 375 | int bi = _arc_idb[a]; |
|---|
| 376 | _reverse[fi] = bi; |
|---|
| 377 | _reverse[bi] = fi; |
|---|
| 378 | } |
|---|
| 379 | |
|---|
| 380 | // Reset parameters |
|---|
| 381 | reset(); |
|---|
| 382 | } |
|---|
| 383 | |
|---|
| 384 | /// \name Parameters |
|---|
| 385 | /// The parameters of the algorithm can be specified using these |
|---|
| 386 | /// functions. |
|---|
| 387 | |
|---|
| 388 | /// @{ |
|---|
| 389 | |
|---|
| 390 | /// \brief Set the lower bounds on the arcs. |
|---|
| 391 | /// |
|---|
| 392 | /// This function sets the lower bounds on the arcs. |
|---|
| 393 | /// If it is not used before calling \ref run(), the lower bounds |
|---|
| 394 | /// will be set to zero on all arcs. |
|---|
| 395 | /// |
|---|
| 396 | /// \param map An arc map storing the lower bounds. |
|---|
| 397 | /// Its \c Value type must be convertible to the \c Value type |
|---|
| 398 | /// of the algorithm. |
|---|
| 399 | /// |
|---|
| 400 | /// \return <tt>(*this)</tt> |
|---|
| 401 | template <typename LowerMap> |
|---|
| 402 | CapacityScaling& lowerMap(const LowerMap& map) { |
|---|
| 403 | _have_lower = true; |
|---|
| 404 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 405 | _lower[_arc_idf[a]] = map[a]; |
|---|
| 406 | _lower[_arc_idb[a]] = map[a]; |
|---|
| 407 | } |
|---|
| 408 | return *this; |
|---|
| 409 | } |
|---|
| 410 | |
|---|
| 411 | /// \brief Set the upper bounds (capacities) on the arcs. |
|---|
| 412 | /// |
|---|
| 413 | /// This function sets the upper bounds (capacities) on the arcs. |
|---|
| 414 | /// If it is not used before calling \ref run(), the upper bounds |
|---|
| 415 | /// will be set to \ref INF on all arcs (i.e. the flow value will be |
|---|
| 416 | /// unbounded from above). |
|---|
| 417 | /// |
|---|
| 418 | /// \param map An arc map storing the upper bounds. |
|---|
| 419 | /// Its \c Value type must be convertible to the \c Value type |
|---|
| 420 | /// of the algorithm. |
|---|
| 421 | /// |
|---|
| 422 | /// \return <tt>(*this)</tt> |
|---|
| 423 | template<typename UpperMap> |
|---|
| 424 | CapacityScaling& upperMap(const UpperMap& map) { |
|---|
| 425 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 426 | _upper[_arc_idf[a]] = map[a]; |
|---|
| 427 | } |
|---|
| 428 | return *this; |
|---|
| 429 | } |
|---|
| 430 | |
|---|
| 431 | /// \brief Set the costs of the arcs. |
|---|
| 432 | /// |
|---|
| 433 | /// This function sets the costs of the arcs. |
|---|
| 434 | /// If it is not used before calling \ref run(), the costs |
|---|
| 435 | /// will be set to \c 1 on all arcs. |
|---|
| 436 | /// |
|---|
| 437 | /// \param map An arc map storing the costs. |
|---|
| 438 | /// Its \c Value type must be convertible to the \c Cost type |
|---|
| 439 | /// of the algorithm. |
|---|
| 440 | /// |
|---|
| 441 | /// \return <tt>(*this)</tt> |
|---|
| 442 | template<typename CostMap> |
|---|
| 443 | CapacityScaling& costMap(const CostMap& map) { |
|---|
| 444 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 445 | _cost[_arc_idf[a]] = map[a]; |
|---|
| 446 | _cost[_arc_idb[a]] = -map[a]; |
|---|
| 447 | } |
|---|
| 448 | return *this; |
|---|
| 449 | } |
|---|
| 450 | |
|---|
| 451 | /// \brief Set the supply values of the nodes. |
|---|
| 452 | /// |
|---|
| 453 | /// This function sets the supply values of the nodes. |
|---|
| 454 | /// If neither this function nor \ref stSupply() is used before |
|---|
| 455 | /// calling \ref run(), the supply of each node will be set to zero. |
|---|
| 456 | /// |
|---|
| 457 | /// \param map A node map storing the supply values. |
|---|
| 458 | /// Its \c Value type must be convertible to the \c Value type |
|---|
| 459 | /// of the algorithm. |
|---|
| 460 | /// |
|---|
| 461 | /// \return <tt>(*this)</tt> |
|---|
| 462 | template<typename SupplyMap> |
|---|
| 463 | CapacityScaling& supplyMap(const SupplyMap& map) { |
|---|
| 464 | for (NodeIt n(_graph); n != INVALID; ++n) { |
|---|
| 465 | _supply[_node_id[n]] = map[n]; |
|---|
| 466 | } |
|---|
| 467 | return *this; |
|---|
| 468 | } |
|---|
| 469 | |
|---|
| 470 | /// \brief Set single source and target nodes and a supply value. |
|---|
| 471 | /// |
|---|
| 472 | /// This function sets a single source node and a single target node |
|---|
| 473 | /// and the required flow value. |
|---|
| 474 | /// If neither this function nor \ref supplyMap() is used before |
|---|
| 475 | /// calling \ref run(), the supply of each node will be set to zero. |
|---|
| 476 | /// |
|---|
| 477 | /// Using this function has the same effect as using \ref supplyMap() |
|---|
| 478 | /// with such a map in which \c k is assigned to \c s, \c -k is |
|---|
| 479 | /// assigned to \c t and all other nodes have zero supply value. |
|---|
| 480 | /// |
|---|
| 481 | /// \param s The source node. |
|---|
| 482 | /// \param t The target node. |
|---|
| 483 | /// \param k The required amount of flow from node \c s to node \c t |
|---|
| 484 | /// (i.e. the supply of \c s and the demand of \c t). |
|---|
| 485 | /// |
|---|
| 486 | /// \return <tt>(*this)</tt> |
|---|
| 487 | CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
|---|
| 488 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 489 | _supply[i] = 0; |
|---|
| 490 | } |
|---|
| 491 | _supply[_node_id[s]] = k; |
|---|
| 492 | _supply[_node_id[t]] = -k; |
|---|
| 493 | return *this; |
|---|
| 494 | } |
|---|
| 495 | |
|---|
| 496 | /// @} |
|---|
| 497 | |
|---|
| 498 | /// \name Execution control |
|---|
| 499 | /// The algorithm can be executed using \ref run(). |
|---|
| 500 | |
|---|
| 501 | /// @{ |
|---|
| 502 | |
|---|
| 503 | /// \brief Run the algorithm. |
|---|
| 504 | /// |
|---|
| 505 | /// This function runs the algorithm. |
|---|
| 506 | /// The paramters can be specified using functions \ref lowerMap(), |
|---|
| 507 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|---|
| 508 | /// For example, |
|---|
| 509 | /// \code |
|---|
| 510 | /// CapacityScaling<ListDigraph> cs(graph); |
|---|
| 511 | /// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|---|
| 512 | /// .supplyMap(sup).run(); |
|---|
| 513 | /// \endcode |
|---|
| 514 | /// |
|---|
| 515 | /// This function can be called more than once. All the parameters |
|---|
| 516 | /// that have been given are kept for the next call, unless |
|---|
| 517 | /// \ref reset() is called, thus only the modified parameters |
|---|
| 518 | /// have to be set again. See \ref reset() for examples. |
|---|
| 519 | /// However, the underlying digraph must not be modified after this |
|---|
| 520 | /// class have been constructed, since it copies and extends the graph. |
|---|
| 521 | /// |
|---|
| 522 | /// \param factor The capacity scaling factor. It must be larger than |
|---|
| 523 | /// one to use scaling. If it is less or equal to one, then scaling |
|---|
| 524 | /// will be disabled. |
|---|
| 525 | /// |
|---|
| 526 | /// \return \c INFEASIBLE if no feasible flow exists, |
|---|
| 527 | /// \n \c OPTIMAL if the problem has optimal solution |
|---|
| 528 | /// (i.e. it is feasible and bounded), and the algorithm has found |
|---|
| 529 | /// optimal flow and node potentials (primal and dual solutions), |
|---|
| 530 | /// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|---|
| 531 | /// and infinite upper bound. It means that the objective function |
|---|
| 532 | /// is unbounded on that arc, however, note that it could actually be |
|---|
| 533 | /// bounded over the feasible flows, but this algroithm cannot handle |
|---|
| 534 | /// these cases. |
|---|
| 535 | /// |
|---|
| 536 | /// \see ProblemType |
|---|
| 537 | ProblemType run(int factor = 4) { |
|---|
| 538 | _factor = factor; |
|---|
| 539 | ProblemType pt = init(); |
|---|
| 540 | if (pt != OPTIMAL) return pt; |
|---|
| 541 | return start(); |
|---|
| 542 | } |
|---|
| 543 | |
|---|
| 544 | /// \brief Reset all the parameters that have been given before. |
|---|
| 545 | /// |
|---|
| 546 | /// This function resets all the paramaters that have been given |
|---|
| 547 | /// before using functions \ref lowerMap(), \ref upperMap(), |
|---|
| 548 | /// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|---|
| 549 | /// |
|---|
| 550 | /// It is useful for multiple run() calls. If this function is not |
|---|
| 551 | /// used, all the parameters given before are kept for the next |
|---|
| 552 | /// \ref run() call. |
|---|
| 553 | /// However, the underlying digraph must not be modified after this |
|---|
| 554 | /// class have been constructed, since it copies and extends the graph. |
|---|
| 555 | /// |
|---|
| 556 | /// For example, |
|---|
| 557 | /// \code |
|---|
| 558 | /// CapacityScaling<ListDigraph> cs(graph); |
|---|
| 559 | /// |
|---|
| 560 | /// // First run |
|---|
| 561 | /// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|---|
| 562 | /// .supplyMap(sup).run(); |
|---|
| 563 | /// |
|---|
| 564 | /// // Run again with modified cost map (reset() is not called, |
|---|
| 565 | /// // so only the cost map have to be set again) |
|---|
| 566 | /// cost[e] += 100; |
|---|
| 567 | /// cs.costMap(cost).run(); |
|---|
| 568 | /// |
|---|
| 569 | /// // Run again from scratch using reset() |
|---|
| 570 | /// // (the lower bounds will be set to zero on all arcs) |
|---|
| 571 | /// cs.reset(); |
|---|
| 572 | /// cs.upperMap(capacity).costMap(cost) |
|---|
| 573 | /// .supplyMap(sup).run(); |
|---|
| 574 | /// \endcode |
|---|
| 575 | /// |
|---|
| 576 | /// \return <tt>(*this)</tt> |
|---|
| 577 | CapacityScaling& reset() { |
|---|
| 578 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 579 | _supply[i] = 0; |
|---|
| 580 | } |
|---|
| 581 | for (int j = 0; j != _res_arc_num; ++j) { |
|---|
| 582 | _lower[j] = 0; |
|---|
| 583 | _upper[j] = INF; |
|---|
| 584 | _cost[j] = _forward[j] ? 1 : -1; |
|---|
| 585 | } |
|---|
| 586 | _have_lower = false; |
|---|
| 587 | return *this; |
|---|
| 588 | } |
|---|
| 589 | |
|---|
| 590 | /// @} |
|---|
| 591 | |
|---|
| 592 | /// \name Query Functions |
|---|
| 593 | /// The results of the algorithm can be obtained using these |
|---|
| 594 | /// functions.\n |
|---|
| 595 | /// The \ref run() function must be called before using them. |
|---|
| 596 | |
|---|
| 597 | /// @{ |
|---|
| 598 | |
|---|
| 599 | /// \brief Return the total cost of the found flow. |
|---|
| 600 | /// |
|---|
| 601 | /// This function returns the total cost of the found flow. |
|---|
| 602 | /// Its complexity is O(e). |
|---|
| 603 | /// |
|---|
| 604 | /// \note The return type of the function can be specified as a |
|---|
| 605 | /// template parameter. For example, |
|---|
| 606 | /// \code |
|---|
| 607 | /// cs.totalCost<double>(); |
|---|
| 608 | /// \endcode |
|---|
| 609 | /// It is useful if the total cost cannot be stored in the \c Cost |
|---|
| 610 | /// type of the algorithm, which is the default return type of the |
|---|
| 611 | /// function. |
|---|
| 612 | /// |
|---|
| 613 | /// \pre \ref run() must be called before using this function. |
|---|
| 614 | template <typename Number> |
|---|
| 615 | Number totalCost() const { |
|---|
| 616 | Number c = 0; |
|---|
| 617 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 618 | int i = _arc_idb[a]; |
|---|
| 619 | c += static_cast<Number>(_res_cap[i]) * |
|---|
| 620 | (-static_cast<Number>(_cost[i])); |
|---|
| 621 | } |
|---|
| 622 | return c; |
|---|
| 623 | } |
|---|
| 624 | |
|---|
| 625 | #ifndef DOXYGEN |
|---|
| 626 | Cost totalCost() const { |
|---|
| 627 | return totalCost<Cost>(); |
|---|
| 628 | } |
|---|
| 629 | #endif |
|---|
| 630 | |
|---|
| 631 | /// \brief Return the flow on the given arc. |
|---|
| 632 | /// |
|---|
| 633 | /// This function returns the flow on the given arc. |
|---|
| 634 | /// |
|---|
| 635 | /// \pre \ref run() must be called before using this function. |
|---|
| 636 | Value flow(const Arc& a) const { |
|---|
| 637 | return _res_cap[_arc_idb[a]]; |
|---|
| 638 | } |
|---|
| 639 | |
|---|
| 640 | /// \brief Return the flow map (the primal solution). |
|---|
| 641 | /// |
|---|
| 642 | /// This function copies the flow value on each arc into the given |
|---|
| 643 | /// map. The \c Value type of the algorithm must be convertible to |
|---|
| 644 | /// the \c Value type of the map. |
|---|
| 645 | /// |
|---|
| 646 | /// \pre \ref run() must be called before using this function. |
|---|
| 647 | template <typename FlowMap> |
|---|
| 648 | void flowMap(FlowMap &map) const { |
|---|
| 649 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 650 | map.set(a, _res_cap[_arc_idb[a]]); |
|---|
| 651 | } |
|---|
| 652 | } |
|---|
| 653 | |
|---|
| 654 | /// \brief Return the potential (dual value) of the given node. |
|---|
| 655 | /// |
|---|
| 656 | /// This function returns the potential (dual value) of the |
|---|
| 657 | /// given node. |
|---|
| 658 | /// |
|---|
| 659 | /// \pre \ref run() must be called before using this function. |
|---|
| 660 | Cost potential(const Node& n) const { |
|---|
| 661 | return _pi[_node_id[n]]; |
|---|
| 662 | } |
|---|
| 663 | |
|---|
| 664 | /// \brief Return the potential map (the dual solution). |
|---|
| 665 | /// |
|---|
| 666 | /// This function copies the potential (dual value) of each node |
|---|
| 667 | /// into the given map. |
|---|
| 668 | /// The \c Cost type of the algorithm must be convertible to the |
|---|
| 669 | /// \c Value type of the map. |
|---|
| 670 | /// |
|---|
| 671 | /// \pre \ref run() must be called before using this function. |
|---|
| 672 | template <typename PotentialMap> |
|---|
| 673 | void potentialMap(PotentialMap &map) const { |
|---|
| 674 | for (NodeIt n(_graph); n != INVALID; ++n) { |
|---|
| 675 | map.set(n, _pi[_node_id[n]]); |
|---|
| 676 | } |
|---|
| 677 | } |
|---|
| 678 | |
|---|
| 679 | /// @} |
|---|
| 680 | |
|---|
| 681 | private: |
|---|
| 682 | |
|---|
| 683 | // Initialize the algorithm |
|---|
| 684 | ProblemType init() { |
|---|
| 685 | if (_node_num <= 1) return INFEASIBLE; |
|---|
| 686 | |
|---|
| 687 | // Check the sum of supply values |
|---|
| 688 | _sum_supply = 0; |
|---|
| 689 | for (int i = 0; i != _root; ++i) { |
|---|
| 690 | _sum_supply += _supply[i]; |
|---|
| 691 | } |
|---|
| 692 | if (_sum_supply > 0) return INFEASIBLE; |
|---|
| 693 | |
|---|
| 694 | // Initialize vectors |
|---|
| 695 | for (int i = 0; i != _root; ++i) { |
|---|
| 696 | _pi[i] = 0; |
|---|
| 697 | _excess[i] = _supply[i]; |
|---|
| 698 | } |
|---|
| 699 | |
|---|
| 700 | // Remove non-zero lower bounds |
|---|
| 701 | const Value MAX = std::numeric_limits<Value>::max(); |
|---|
| 702 | int last_out; |
|---|
| 703 | if (_have_lower) { |
|---|
| 704 | for (int i = 0; i != _root; ++i) { |
|---|
| 705 | last_out = _first_out[i+1]; |
|---|
| 706 | for (int j = _first_out[i]; j != last_out; ++j) { |
|---|
| 707 | if (_forward[j]) { |
|---|
| 708 | Value c = _lower[j]; |
|---|
| 709 | if (c >= 0) { |
|---|
| 710 | _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
|---|
| 711 | } else { |
|---|
| 712 | _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
|---|
| 713 | } |
|---|
| 714 | _excess[i] -= c; |
|---|
| 715 | _excess[_target[j]] += c; |
|---|
| 716 | } else { |
|---|
| 717 | _res_cap[j] = 0; |
|---|
| 718 | } |
|---|
| 719 | } |
|---|
| 720 | } |
|---|
| 721 | } else { |
|---|
| 722 | for (int j = 0; j != _res_arc_num; ++j) { |
|---|
| 723 | _res_cap[j] = _forward[j] ? _upper[j] : 0; |
|---|
| 724 | } |
|---|
| 725 | } |
|---|
| 726 | |
|---|
| 727 | // Handle negative costs |
|---|
| 728 | for (int i = 0; i != _root; ++i) { |
|---|
| 729 | last_out = _first_out[i+1] - 1; |
|---|
| 730 | for (int j = _first_out[i]; j != last_out; ++j) { |
|---|
| 731 | Value rc = _res_cap[j]; |
|---|
| 732 | if (_cost[j] < 0 && rc > 0) { |
|---|
| 733 | if (rc >= MAX) return UNBOUNDED; |
|---|
| 734 | _excess[i] -= rc; |
|---|
| 735 | _excess[_target[j]] += rc; |
|---|
| 736 | _res_cap[j] = 0; |
|---|
| 737 | _res_cap[_reverse[j]] += rc; |
|---|
| 738 | } |
|---|
| 739 | } |
|---|
| 740 | } |
|---|
| 741 | |
|---|
| 742 | // Handle GEQ supply type |
|---|
| 743 | if (_sum_supply < 0) { |
|---|
| 744 | _pi[_root] = 0; |
|---|
| 745 | _excess[_root] = -_sum_supply; |
|---|
| 746 | for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
|---|
| 747 | int ra = _reverse[a]; |
|---|
| 748 | _res_cap[a] = -_sum_supply + 1; |
|---|
| 749 | _res_cap[ra] = 0; |
|---|
| 750 | _cost[a] = 0; |
|---|
| 751 | _cost[ra] = 0; |
|---|
| 752 | } |
|---|
| 753 | } else { |
|---|
| 754 | _pi[_root] = 0; |
|---|
| 755 | _excess[_root] = 0; |
|---|
| 756 | for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
|---|
| 757 | int ra = _reverse[a]; |
|---|
| 758 | _res_cap[a] = 1; |
|---|
| 759 | _res_cap[ra] = 0; |
|---|
| 760 | _cost[a] = 0; |
|---|
| 761 | _cost[ra] = 0; |
|---|
| 762 | } |
|---|
| 763 | } |
|---|
| 764 | |
|---|
| 765 | // Initialize delta value |
|---|
| 766 | if (_factor > 1) { |
|---|
| 767 | // With scaling |
|---|
| 768 | Value max_sup = 0, max_dem = 0; |
|---|
| 769 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 770 | Value ex = _excess[i]; |
|---|
| 771 | if ( ex > max_sup) max_sup = ex; |
|---|
| 772 | if (-ex > max_dem) max_dem = -ex; |
|---|
| 773 | } |
|---|
| 774 | Value max_cap = 0; |
|---|
| 775 | for (int j = 0; j != _res_arc_num; ++j) { |
|---|
| 776 | if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|---|
| 777 | } |
|---|
| 778 | max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
|---|
| 779 | for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
|---|
| 780 | } else { |
|---|
| 781 | // Without scaling |
|---|
| 782 | _delta = 1; |
|---|
| 783 | } |
|---|
| 784 | |
|---|
| 785 | return OPTIMAL; |
|---|
| 786 | } |
|---|
| 787 | |
|---|
| 788 | ProblemType start() { |
|---|
| 789 | // Execute the algorithm |
|---|
| 790 | ProblemType pt; |
|---|
| 791 | if (_delta > 1) |
|---|
| 792 | pt = startWithScaling(); |
|---|
| 793 | else |
|---|
| 794 | pt = startWithoutScaling(); |
|---|
| 795 | |
|---|
| 796 | // Handle non-zero lower bounds |
|---|
| 797 | if (_have_lower) { |
|---|
| 798 | int limit = _first_out[_root]; |
|---|
| 799 | for (int j = 0; j != limit; ++j) { |
|---|
| 800 | if (!_forward[j]) _res_cap[j] += _lower[j]; |
|---|
| 801 | } |
|---|
| 802 | } |
|---|
| 803 | |
|---|
| 804 | // Shift potentials if necessary |
|---|
| 805 | Cost pr = _pi[_root]; |
|---|
| 806 | if (_sum_supply < 0 || pr > 0) { |
|---|
| 807 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 808 | _pi[i] -= pr; |
|---|
| 809 | } |
|---|
| 810 | } |
|---|
| 811 | |
|---|
| 812 | return pt; |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | // Execute the capacity scaling algorithm |
|---|
| 816 | ProblemType startWithScaling() { |
|---|
| 817 | // Perform capacity scaling phases |
|---|
| 818 | int s, t; |
|---|
| 819 | ResidualDijkstra _dijkstra(*this); |
|---|
| 820 | while (true) { |
|---|
| 821 | // Saturate all arcs not satisfying the optimality condition |
|---|
| 822 | int last_out; |
|---|
| 823 | for (int u = 0; u != _node_num; ++u) { |
|---|
| 824 | last_out = _sum_supply < 0 ? |
|---|
| 825 | _first_out[u+1] : _first_out[u+1] - 1; |
|---|
| 826 | for (int a = _first_out[u]; a != last_out; ++a) { |
|---|
| 827 | int v = _target[a]; |
|---|
| 828 | Cost c = _cost[a] + _pi[u] - _pi[v]; |
|---|
| 829 | Value rc = _res_cap[a]; |
|---|
| 830 | if (c < 0 && rc >= _delta) { |
|---|
| 831 | _excess[u] -= rc; |
|---|
| 832 | _excess[v] += rc; |
|---|
| 833 | _res_cap[a] = 0; |
|---|
| 834 | _res_cap[_reverse[a]] += rc; |
|---|
| 835 | } |
|---|
| 836 | } |
|---|
| 837 | } |
|---|
| 838 | |
|---|
| 839 | // Find excess nodes and deficit nodes |
|---|
| 840 | _excess_nodes.clear(); |
|---|
| 841 | _deficit_nodes.clear(); |
|---|
| 842 | for (int u = 0; u != _node_num; ++u) { |
|---|
| 843 | Value ex = _excess[u]; |
|---|
| 844 | if (ex >= _delta) _excess_nodes.push_back(u); |
|---|
| 845 | if (ex <= -_delta) _deficit_nodes.push_back(u); |
|---|
| 846 | } |
|---|
| 847 | int next_node = 0, next_def_node = 0; |
|---|
| 848 | |
|---|
| 849 | // Find augmenting shortest paths |
|---|
| 850 | while (next_node < int(_excess_nodes.size())) { |
|---|
| 851 | // Check deficit nodes |
|---|
| 852 | if (_delta > 1) { |
|---|
| 853 | bool delta_deficit = false; |
|---|
| 854 | for ( ; next_def_node < int(_deficit_nodes.size()); |
|---|
| 855 | ++next_def_node ) { |
|---|
| 856 | if (_excess[_deficit_nodes[next_def_node]] <= -_delta) { |
|---|
| 857 | delta_deficit = true; |
|---|
| 858 | break; |
|---|
| 859 | } |
|---|
| 860 | } |
|---|
| 861 | if (!delta_deficit) break; |
|---|
| 862 | } |
|---|
| 863 | |
|---|
| 864 | // Run Dijkstra in the residual network |
|---|
| 865 | s = _excess_nodes[next_node]; |
|---|
| 866 | if ((t = _dijkstra.run(s, _delta)) == -1) { |
|---|
| 867 | if (_delta > 1) { |
|---|
| 868 | ++next_node; |
|---|
| 869 | continue; |
|---|
| 870 | } |
|---|
| 871 | return INFEASIBLE; |
|---|
| 872 | } |
|---|
| 873 | |
|---|
| 874 | // Augment along a shortest path from s to t |
|---|
| 875 | Value d = std::min(_excess[s], -_excess[t]); |
|---|
| 876 | int u = t; |
|---|
| 877 | int a; |
|---|
| 878 | if (d > _delta) { |
|---|
| 879 | while ((a = _pred[u]) != -1) { |
|---|
| 880 | if (_res_cap[a] < d) d = _res_cap[a]; |
|---|
| 881 | u = _source[a]; |
|---|
| 882 | } |
|---|
| 883 | } |
|---|
| 884 | u = t; |
|---|
| 885 | while ((a = _pred[u]) != -1) { |
|---|
| 886 | _res_cap[a] -= d; |
|---|
| 887 | _res_cap[_reverse[a]] += d; |
|---|
| 888 | u = _source[a]; |
|---|
| 889 | } |
|---|
| 890 | _excess[s] -= d; |
|---|
| 891 | _excess[t] += d; |
|---|
| 892 | |
|---|
| 893 | if (_excess[s] < _delta) ++next_node; |
|---|
| 894 | } |
|---|
| 895 | |
|---|
| 896 | if (_delta == 1) break; |
|---|
| 897 | _delta = _delta <= _factor ? 1 : _delta / _factor; |
|---|
| 898 | } |
|---|
| 899 | |
|---|
| 900 | return OPTIMAL; |
|---|
| 901 | } |
|---|
| 902 | |
|---|
| 903 | // Execute the successive shortest path algorithm |
|---|
| 904 | ProblemType startWithoutScaling() { |
|---|
| 905 | // Find excess nodes |
|---|
| 906 | _excess_nodes.clear(); |
|---|
| 907 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 908 | if (_excess[i] > 0) _excess_nodes.push_back(i); |
|---|
| 909 | } |
|---|
| 910 | if (_excess_nodes.size() == 0) return OPTIMAL; |
|---|
| 911 | int next_node = 0; |
|---|
| 912 | |
|---|
| 913 | // Find shortest paths |
|---|
| 914 | int s, t; |
|---|
| 915 | ResidualDijkstra _dijkstra(*this); |
|---|
| 916 | while ( _excess[_excess_nodes[next_node]] > 0 || |
|---|
| 917 | ++next_node < int(_excess_nodes.size()) ) |
|---|
| 918 | { |
|---|
| 919 | // Run Dijkstra in the residual network |
|---|
| 920 | s = _excess_nodes[next_node]; |
|---|
| 921 | if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE; |
|---|
| 922 | |
|---|
| 923 | // Augment along a shortest path from s to t |
|---|
| 924 | Value d = std::min(_excess[s], -_excess[t]); |
|---|
| 925 | int u = t; |
|---|
| 926 | int a; |
|---|
| 927 | if (d > 1) { |
|---|
| 928 | while ((a = _pred[u]) != -1) { |
|---|
| 929 | if (_res_cap[a] < d) d = _res_cap[a]; |
|---|
| 930 | u = _source[a]; |
|---|
| 931 | } |
|---|
| 932 | } |
|---|
| 933 | u = t; |
|---|
| 934 | while ((a = _pred[u]) != -1) { |
|---|
| 935 | _res_cap[a] -= d; |
|---|
| 936 | _res_cap[_reverse[a]] += d; |
|---|
| 937 | u = _source[a]; |
|---|
| 938 | } |
|---|
| 939 | _excess[s] -= d; |
|---|
| 940 | _excess[t] += d; |
|---|
| 941 | } |
|---|
| 942 | |
|---|
| 943 | return OPTIMAL; |
|---|
| 944 | } |
|---|
| 945 | |
|---|
| 946 | }; //class CapacityScaling |
|---|
| 947 | |
|---|
| 948 | ///@} |
|---|
| 949 | |
|---|
| 950 | } //namespace lemon |
|---|
| 951 | |
|---|
| 952 | #endif //LEMON_CAPACITY_SCALING_H |
|---|