COIN-OR::LEMON - Graph Library

source: lemon/lemon/christofides_tsp.h @ 1201:9a51db038228

Last change on this file since 1201:9a51db038228 was 1201:9a51db038228, checked in by Peter Kovacs <kpeter@…>, 13 years ago

Document and greatly improve TSP algorithms (#386)

  • Add LEMON headers.
  • Add Doxygen doc for all classes and their members.
  • Clarify and unify the public API of the algorithms.
  • Various small improvements in the implementations to make them clearer and faster.
  • Avoid using adaptors in ChristofidesTsp?.
File size: 7.4 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_CHRISTOFIDES_TSP_H
20#define LEMON_CHRISTOFIDES_TSP_H
21
22/// \ingroup tsp
23/// \file
24/// \brief Christofides algorithm for symmetric TSP
25
26#include <lemon/full_graph.h>
27#include <lemon/smart_graph.h>
28#include <lemon/kruskal.h>
29#include <lemon/matching.h>
30#include <lemon/euler.h>
31
32namespace lemon {
33 
34  /// \brief Christofides algorithm for symmetric TSP.
35  ///
36  /// ChristofidesTsp implements Christofides' heuristic for solving
37  /// symmetric \ref tsp "TSP".
38  ///
39  /// This a well-known approximation method for the TSP problem with
40  /// \ref checkMetricCost() "metric cost function".
41  /// It yields a tour whose total cost is at most 3/2 of the optimum,
42  /// but it is usually much better.
43  /// This implementation runs in O(n<sup>3</sup>log(n)) time.
44  ///
45  /// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
46  /// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
47  /// in the subgraph induced by the nodes that have odd degree in the
48  /// spanning tree.
49  /// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
50  /// of the union of the spanning tree and the matching.
51  /// During this last step, the algorithm simply skips the visited nodes
52  /// (i.e. creates shortcuts) assuming that the triangle inequality holds
53  /// for the cost function.
54  ///
55  /// \tparam CM Type of the cost map.
56  ///
57  /// \warning \& CM::Value must be signed type.
58  template <typename CM>
59  class ChristofidesTsp
60  {
61    public:
62
63      /// Type of the cost map
64      typedef CM CostMap;
65      /// Type of the edge costs
66      typedef typename CM::Value Cost;
67
68    private:
69
70      GRAPH_TYPEDEFS(FullGraph);
71
72      const FullGraph &_gr;
73      const CostMap &_cost;
74      std::vector<Node> _path;
75      Cost _sum;
76
77    public:
78
79      /// \brief Constructor
80      ///
81      /// Constructor.
82      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
83      /// \param cost The cost map.
84      ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
85        : _gr(gr), _cost(cost) {}
86
87      /// \name Execution Control
88      /// @{
89
90      /// \brief Runs the algorithm.
91      ///
92      /// This function runs the algorithm.
93      ///
94      /// \return The total cost of the found tour.
95      Cost run() {
96        _path.clear();
97
98        if (_gr.nodeNum() == 0) return _sum = 0;
99        else if (_gr.nodeNum() == 1) {
100          _path.push_back(_gr(0));
101          return _sum = 0;
102        }
103        else if (_gr.nodeNum() == 2) {
104          _path.push_back(_gr(0));
105          _path.push_back(_gr(1));
106          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
107        }
108       
109        // Compute min. cost spanning tree
110        std::vector<Edge> tree;
111        kruskal(_gr, _cost, std::back_inserter(tree));
112       
113        FullGraph::NodeMap<int> deg(_gr, 0);
114        for (int i = 0; i != int(tree.size()); ++i) {
115          Edge e = tree[i];
116          ++deg[_gr.u(e)];
117          ++deg[_gr.v(e)];
118        }
119
120        // Copy the induced subgraph of odd nodes
121        std::vector<Node> odd_nodes;
122        for (NodeIt u(_gr); u != INVALID; ++u) {
123          if (deg[u] % 2 == 1) odd_nodes.push_back(u);
124        }
125 
126        SmartGraph sgr;
127        SmartGraph::EdgeMap<Cost> scost(sgr);
128        for (int i = 0; i != int(odd_nodes.size()); ++i) {
129          sgr.addNode();
130        }
131        for (int i = 0; i != int(odd_nodes.size()); ++i) {
132          for (int j = 0; j != int(odd_nodes.size()); ++j) {
133            if (j == i) continue;
134            SmartGraph::Edge e =
135              sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
136            scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
137          }
138        }
139       
140        // Compute min. cost perfect matching
141        MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
142          mwpm(sgr, scost);
143        mwpm.run();
144       
145        for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
146          if (mwpm.matching(e)) {
147            tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
148                                     odd_nodes[sgr.id(sgr.v(e))]) );
149          }
150        }
151       
152        // Join the spanning tree and the matching       
153        sgr.clear();
154        for (int i = 0; i != _gr.nodeNum(); ++i) {
155          sgr.addNode();
156        }
157        for (int i = 0; i != int(tree.size()); ++i) {
158          int ui = _gr.id(_gr.u(tree[i])),
159              vi = _gr.id(_gr.v(tree[i]));
160          sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
161        }
162
163        // Compute the tour from the Euler traversal
164        SmartGraph::NodeMap<bool> visited(sgr, false);
165        for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
166          SmartGraph::Node n = sgr.target(e);
167          if (!visited[n]) {
168            _path.push_back(_gr(sgr.id(n)));
169            visited[n] = true;
170          }
171        }
172
173        _sum = _cost[_gr.edge(_path.back(), _path.front())];
174        for (int i = 0; i < int(_path.size())-1; ++i) {
175          _sum += _cost[_gr.edge(_path[i], _path[i+1])];
176        }
177
178        return _sum;
179      }
180
181      /// @}
182     
183      /// \name Query Functions
184      /// @{
185     
186      /// \brief The total cost of the found tour.
187      ///
188      /// This function returns the total cost of the found tour.
189      ///
190      /// \pre run() must be called before using this function.
191      Cost tourCost() const {
192        return _sum;
193      }
194     
195      /// \brief Returns a const reference to the node sequence of the
196      /// found tour.
197      ///
198      /// This function returns a const reference to the internal structure
199      /// that stores the node sequence of the found tour.
200      ///
201      /// \pre run() must be called before using this function.
202      const std::vector<Node>& tourNodes() const {
203        return _path;
204      }
205
206      /// \brief Gives back the node sequence of the found tour.
207      ///
208      /// This function copies the node sequence of the found tour into
209      /// the given standard container.
210      ///
211      /// \pre run() must be called before using this function.
212      template <typename Container>
213      void tourNodes(Container &container) const {
214        container.assign(_path.begin(), _path.end());
215      }
216     
217      /// \brief Gives back the found tour as a path.
218      ///
219      /// This function copies the found tour as a list of arcs/edges into
220      /// the given \ref concept::Path "path structure".
221      ///
222      /// \pre run() must be called before using this function.
223      template <typename Path>
224      void tour(Path &path) const {
225        path.clear();
226        for (int i = 0; i < int(_path.size()) - 1; ++i) {
227          path.addBack(_gr.arc(_path[i], _path[i+1]));
228        }
229        if (int(_path.size()) >= 2) {
230          path.addBack(_gr.arc(_path.back(), _path.front()));
231        }
232      }
233     
234      /// @}
235     
236  };
237
238}; // namespace lemon
239
240#endif
Note: See TracBrowser for help on using the repository browser.