/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ ///\ingroup graph_concepts ///\file ///\brief The concept of undirected graphs. #ifndef LEMON_CONCEPTS_BPGRAPH_H #define LEMON_CONCEPTS_BPGRAPH_H #include #include #include #include namespace lemon { namespace concepts { /// \ingroup graph_concepts /// /// \brief Class describing the concept of undirected bipartite graphs. /// /// This class describes the common interface of all undirected /// bipartite graphs. /// /// Like all concept classes, it only provides an interface /// without any sensible implementation. So any general algorithm for /// undirected bipartite graphs should compile with this class, /// but it will not run properly, of course. /// An actual graph implementation like \ref ListBpGraph or /// \ref SmartBpGraph may have additional functionality. /// /// The bipartite graphs also fulfill the concept of \ref Graph /// "undirected graphs". Bipartite graphs provide a bipartition of /// the node set, namely a red and blue set of the nodes. The /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the /// two node sets. With RedNodeMap and BlueNodeMap values can be /// assigned to the nodes in the two sets. /// /// The edges of the graph cannot connect two nodes of the same /// set. The edges inherent orientation is from the red nodes to /// the blue nodes. /// /// \sa Graph class BpGraph { private: /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead. BpGraph(const BpGraph&) {} /// \brief Assignment of a graph to another one is \e not allowed. /// Use bpGraphCopy instead. void operator=(const BpGraph&) {} public: /// Default constructor. BpGraph() {} /// \brief Undirected graphs should be tagged with \c UndirectedTag. /// /// Undirected graphs should be tagged with \c UndirectedTag. /// /// This tag helps the \c enable_if technics to make compile time /// specializations for undirected graphs. typedef True UndirectedTag; /// The node type of the graph /// This class identifies a node of the graph. It also serves /// as a base class of the node iterators, /// thus they convert to this type. class Node { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Node) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Node) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(Node) const { return false; } }; /// Class to represent red nodes. /// This class represents the red nodes of the graph. It does /// not supposed to be used directly, because the nodes can be /// represented as Node instances. This class can be used as /// template parameter for special map classes. class RedNode : public Node { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. RedNode() { } /// Copy constructor. /// Copy constructor. /// RedNode(const RedNode&) : Node() { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. RedNode(Invalid) { } }; /// Class to represent blue nodes. /// This class represents the blue nodes of the graph. It does /// not supposed to be used directly, because the nodes can be /// represented as Node instances. This class can be used as /// template parameter for special map classes. class BlueNode : public Node { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. BlueNode() { } /// Copy constructor. /// Copy constructor. /// BlueNode(const BlueNode&) : Node() { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. BlueNode(Invalid) { } }; /// Iterator class for the red nodes. /// This iterator goes through each red node of the graph. /// Its usage is quite simple, for example, you can count the number /// of red nodes in a graph \c g of type \c %BpGraph like this: ///\code /// int count=0; /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class RedNodeIt : public RedNode { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. RedNodeIt() { } /// Copy constructor. /// Copy constructor. /// RedNodeIt(const RedNodeIt& n) : RedNode(n) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. RedNodeIt(Invalid) { } /// Sets the iterator to the first red node. /// Sets the iterator to the first red node of the given /// digraph. explicit RedNodeIt(const BpGraph&) { } /// Sets the iterator to the given red node. /// Sets the iterator to the given red node of the given /// digraph. RedNodeIt(const BpGraph&, const RedNode&) { } /// Next node. /// Assign the iterator to the next red node. /// RedNodeIt& operator++() { return *this; } }; /// Iterator class for the blue nodes. /// This iterator goes through each blue node of the graph. /// Its usage is quite simple, for example, you can count the number /// of blue nodes in a graph \c g of type \c %BpGraph like this: ///\code /// int count=0; /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class BlueNodeIt : public BlueNode { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. BlueNodeIt() { } /// Copy constructor. /// Copy constructor. /// BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. BlueNodeIt(Invalid) { } /// Sets the iterator to the first blue node. /// Sets the iterator to the first blue node of the given /// digraph. explicit BlueNodeIt(const BpGraph&) { } /// Sets the iterator to the given blue node. /// Sets the iterator to the given blue node of the given /// digraph. BlueNodeIt(const BpGraph&, const BlueNode&) { } /// Next node. /// Assign the iterator to the next blue node. /// BlueNodeIt& operator++() { return *this; } }; /// Iterator class for the nodes. /// This iterator goes through each node of the graph. /// Its usage is quite simple, for example, you can count the number /// of nodes in a graph \c g of type \c %BpGraph like this: ///\code /// int count=0; /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class NodeIt : public Node { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt& n) : Node(n) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of the given digraph. /// explicit NodeIt(const BpGraph&) { } /// Sets the iterator to the given node. /// Sets the iterator to the given node of the given digraph. /// NodeIt(const BpGraph&, const Node&) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The edge type of the graph /// This class identifies an edge of the graph. It also serves /// as a base class of the edge iterators, /// thus they will convert to this type. class Edge { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Edge() { } /// Copy constructor. /// Copy constructor. /// Edge(const Edge&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Edge(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Edge) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Edge) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the edges; this order has nothing to do with the iteration /// ordering of the edges. bool operator<(Edge) const { return false; } }; /// Iterator class for the edges. /// This iterator goes through each edge of the graph. /// Its usage is quite simple, for example, you can count the number /// of edges in a graph \c g of type \c %BpGraph as follows: ///\code /// int count=0; /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count; ///\endcode class EdgeIt : public Edge { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. EdgeIt() { } /// Copy constructor. /// Copy constructor. /// EdgeIt(const EdgeIt& e) : Edge(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. EdgeIt(Invalid) { } /// Sets the iterator to the first edge. /// Sets the iterator to the first edge of the given graph. /// explicit EdgeIt(const BpGraph&) { } /// Sets the iterator to the given edge. /// Sets the iterator to the given edge of the given graph. /// EdgeIt(const BpGraph&, const Edge&) { } /// Next edge /// Assign the iterator to the next edge. /// EdgeIt& operator++() { return *this; } }; /// Iterator class for the incident edges of a node. /// This iterator goes trough the incident undirected edges /// of a certain node of a graph. /// Its usage is quite simple, for example, you can compute the /// degree (i.e. the number of incident edges) of a node \c n /// in a graph \c g of type \c %BpGraph as follows. /// ///\code /// int count=0; /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode /// /// \warning Loop edges will be iterated twice. class IncEdgeIt : public Edge { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. IncEdgeIt() { } /// Copy constructor. /// Copy constructor. /// IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. IncEdgeIt(Invalid) { } /// Sets the iterator to the first incident edge. /// Sets the iterator to the first incident edge of the given node. /// IncEdgeIt(const BpGraph&, const Node&) { } /// Sets the iterator to the given edge. /// Sets the iterator to the given edge of the given graph. /// IncEdgeIt(const BpGraph&, const Edge&) { } /// Next incident edge /// Assign the iterator to the next incident edge /// of the corresponding node. IncEdgeIt& operator++() { return *this; } }; /// The arc type of the graph /// This class identifies a directed arc of the graph. It also serves /// as a base class of the arc iterators, /// thus they will convert to this type. class Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Arc() { } /// Copy constructor. /// Copy constructor. /// Arc(const Arc&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Arc(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Arc) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Arc) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the arcs; this order has nothing to do with the iteration /// ordering of the arcs. bool operator<(Arc) const { return false; } /// Converison to \c Edge /// Converison to \c Edge. /// operator Edge() const { return Edge(); } }; /// Iterator class for the arcs. /// This iterator goes through each directed arc of the graph. /// Its usage is quite simple, for example, you can count the number /// of arcs in a graph \c g of type \c %BpGraph as follows: ///\code /// int count=0; /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count; ///\endcode class ArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. ArcIt() { } /// Copy constructor. /// Copy constructor. /// ArcIt(const ArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. ArcIt(Invalid) { } /// Sets the iterator to the first arc. /// Sets the iterator to the first arc of the given graph. /// explicit ArcIt(const BpGraph &g) { ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given graph. /// ArcIt(const BpGraph&, const Arc&) { } /// Next arc /// Assign the iterator to the next arc. /// ArcIt& operator++() { return *this; } }; /// Iterator class for the outgoing arcs of a node. /// This iterator goes trough the \e outgoing directed arcs of a /// certain node of a graph. /// Its usage is quite simple, for example, you can count the number /// of outgoing arcs of a node \c n /// in a graph \c g of type \c %BpGraph as follows. ///\code /// int count=0; /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; ///\endcode class OutArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. OutArcIt() { } /// Copy constructor. /// Copy constructor. /// OutArcIt(const OutArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. OutArcIt(Invalid) { } /// Sets the iterator to the first outgoing arc. /// Sets the iterator to the first outgoing arc of the given node. /// OutArcIt(const BpGraph& n, const Node& g) { ::lemon::ignore_unused_variable_warning(n); ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given graph. /// OutArcIt(const BpGraph&, const Arc&) { } /// Next outgoing arc /// Assign the iterator to the next /// outgoing arc of the corresponding node. OutArcIt& operator++() { return *this; } }; /// Iterator class for the incoming arcs of a node. /// This iterator goes trough the \e incoming directed arcs of a /// certain node of a graph. /// Its usage is quite simple, for example, you can count the number /// of incoming arcs of a node \c n /// in a graph \c g of type \c %BpGraph as follows. ///\code /// int count=0; /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; ///\endcode class InArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. InArcIt() { } /// Copy constructor. /// Copy constructor. /// InArcIt(const InArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. InArcIt(Invalid) { } /// Sets the iterator to the first incoming arc. /// Sets the iterator to the first incoming arc of the given node. /// InArcIt(const BpGraph& g, const Node& n) { ::lemon::ignore_unused_variable_warning(n); ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given graph. /// InArcIt(const BpGraph&, const Arc&) { } /// Next incoming arc /// Assign the iterator to the next /// incoming arc of the corresponding node. InArcIt& operator++() { return *this; } }; /// \brief Standard graph map type for the nodes. /// /// Standard graph map type for the nodes. /// It conforms to the ReferenceMap concept. template class NodeMap : public ReferenceMap { public: /// Constructor explicit NodeMap(const BpGraph&) { } /// Constructor with given initial value NodeMap(const BpGraph&, T) { } private: ///Copy constructor NodeMap(const NodeMap& nm) : ReferenceMap(nm) { } ///Assignment operator template NodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the red nodes. /// /// Standard graph map type for the red nodes. /// It conforms to the ReferenceMap concept. template class RedNodeMap : public ReferenceMap { public: /// Constructor explicit RedNodeMap(const BpGraph&) { } /// Constructor with given initial value RedNodeMap(const BpGraph&, T) { } private: ///Copy constructor RedNodeMap(const RedNodeMap& nm) : ReferenceMap(nm) { } ///Assignment operator template RedNodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the blue nodes. /// /// Standard graph map type for the blue nodes. /// It conforms to the ReferenceMap concept. template class BlueNodeMap : public ReferenceMap { public: /// Constructor explicit BlueNodeMap(const BpGraph&) { } /// Constructor with given initial value BlueNodeMap(const BpGraph&, T) { } private: ///Copy constructor BlueNodeMap(const BlueNodeMap& nm) : ReferenceMap(nm) { } ///Assignment operator template BlueNodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the arcs. /// /// Standard graph map type for the arcs. /// It conforms to the ReferenceMap concept. template class ArcMap : public ReferenceMap { public: /// Constructor explicit ArcMap(const BpGraph&) { } /// Constructor with given initial value ArcMap(const BpGraph&, T) { } private: ///Copy constructor ArcMap(const ArcMap& em) : ReferenceMap(em) { } ///Assignment operator template ArcMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the edges. /// /// Standard graph map type for the edges. /// It conforms to the ReferenceMap concept. template class EdgeMap : public ReferenceMap { public: /// Constructor explicit EdgeMap(const BpGraph&) { } /// Constructor with given initial value EdgeMap(const BpGraph&, T) { } private: ///Copy constructor EdgeMap(const EdgeMap& em) : ReferenceMap(em) {} ///Assignment operator template EdgeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Gives back %true for red nodes. /// /// Gives back %true for red nodes. bool red(const Node&) const { return true; } /// \brief Gives back %true for blue nodes. /// /// Gives back %true for blue nodes. bool blue(const Node&) const { return true; } /// \brief Converts the node to red node object. /// /// This function converts unsafely the node to red node /// object. It should be called only if the node is from the red /// partition or INVALID. RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); } /// \brief Converts the node to blue node object. /// /// This function converts unsafely the node to blue node /// object. It should be called only if the node is from the red /// partition or INVALID. BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); } /// \brief Converts the node to red node object. /// /// This function converts safely the node to red node /// object. If the node is not from the red partition, then it /// returns INVALID. RedNode asRedNode(const Node&) const { return RedNode(); } /// \brief Converts the node to blue node object. /// /// This function converts unsafely the node to blue node /// object. If the node is not from the blue partition, then it /// returns INVALID. BlueNode asBlueNode(const Node&) const { return BlueNode(); } /// \brief Gives back the red end node of the edge. /// /// Gives back the red end node of the edge. RedNode redNode(const Edge&) const { return RedNode(); } /// \brief Gives back the blue end node of the edge. /// /// Gives back the blue end node of the edge. BlueNode blueNode(const Edge&) const { return BlueNode(); } /// \brief The first node of the edge. /// /// It is a synonim for the \c redNode(). Node u(Edge) const { return INVALID; } /// \brief The second node of the edge. /// /// It is a synonim for the \c blueNode(). Node v(Edge) const { return INVALID; } /// \brief The source node of the arc. /// /// Returns the source node of the given arc. Node source(Arc) const { return INVALID; } /// \brief The target node of the arc. /// /// Returns the target node of the given arc. Node target(Arc) const { return INVALID; } /// \brief The ID of the node. /// /// Returns the ID of the given node. int id(Node) const { return -1; } /// \brief The red ID of the node. /// /// Returns the red ID of the given node. int id(RedNode) const { return -1; } /// \brief The blue ID of the node. /// /// Returns the blue ID of the given node. int id(BlueNode) const { return -1; } /// \brief The ID of the edge. /// /// Returns the ID of the given edge. int id(Edge) const { return -1; } /// \brief The ID of the arc. /// /// Returns the ID of the given arc. int id(Arc) const { return -1; } /// \brief The node with the given ID. /// /// Returns the node with the given ID. /// \pre The argument should be a valid node ID in the graph. Node nodeFromId(int) const { return INVALID; } /// \brief The edge with the given ID. /// /// Returns the edge with the given ID. /// \pre The argument should be a valid edge ID in the graph. Edge edgeFromId(int) const { return INVALID; } /// \brief The arc with the given ID. /// /// Returns the arc with the given ID. /// \pre The argument should be a valid arc ID in the graph. Arc arcFromId(int) const { return INVALID; } /// \brief An upper bound on the node IDs. /// /// Returns an upper bound on the node IDs. int maxNodeId() const { return -1; } /// \brief An upper bound on the red IDs. /// /// Returns an upper bound on the red IDs. int maxRedId() const { return -1; } /// \brief An upper bound on the blue IDs. /// /// Returns an upper bound on the blue IDs. int maxBlueId() const { return -1; } /// \brief An upper bound on the edge IDs. /// /// Returns an upper bound on the edge IDs. int maxEdgeId() const { return -1; } /// \brief An upper bound on the arc IDs. /// /// Returns an upper bound on the arc IDs. int maxArcId() const { return -1; } /// \brief The direction of the arc. /// /// Returns \c true if the given arc goes from a red node to a blue node. bool direction(Arc) const { return true; } /// \brief Direct the edge. /// /// Direct the given edge. The returned arc /// represents the given edge and its direction comes /// from the bool parameter. If it is \c true, then the source of the node /// will be a red node. Arc direct(Edge, bool) const { return INVALID; } /// \brief Direct the edge. /// /// Direct the given edge. The returned arc represents the given /// edge and its source node is the given node. Arc direct(Edge, Node) const { return INVALID; } /// \brief The oppositely directed arc. /// /// Returns the oppositely directed arc representing the same edge. Arc oppositeArc(Arc) const { return INVALID; } /// \brief The opposite node on the edge. /// /// Returns the opposite node on the given edge. Node oppositeNode(Node, Edge) const { return INVALID; } void first(Node&) const {} void next(Node&) const {} void firstRed(RedNode&) const {} void nextRed(RedNode&) const {} void firstBlue(BlueNode&) const {} void nextBlue(BlueNode&) const {} void first(Edge&) const {} void next(Edge&) const {} void first(Arc&) const {} void next(Arc&) const {} void firstOut(Arc&, Node) const {} void nextOut(Arc&) const {} void firstIn(Arc&, Node) const {} void nextIn(Arc&) const {} void firstInc(Edge &, bool &, const Node &) const {} void nextInc(Edge &, bool &) const {} // The second parameter is dummy. Node fromId(int, Node) const { return INVALID; } // The second parameter is dummy. Edge fromId(int, Edge) const { return INVALID; } // The second parameter is dummy. Arc fromId(int, Arc) const { return INVALID; } // Dummy parameter. int maxId(Node) const { return -1; } // Dummy parameter. int maxId(RedNode) const { return -1; } // Dummy parameter. int maxId(BlueNode) const { return -1; } // Dummy parameter. int maxId(Edge) const { return -1; } // Dummy parameter. int maxId(Arc) const { return -1; } /// \brief The base node of the iterator. /// /// Returns the base node of the given incident edge iterator. Node baseNode(IncEdgeIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given incident edge iterator. Node runningNode(IncEdgeIt) const { return INVALID; } /// \brief The base node of the iterator. /// /// Returns the base node of the given outgoing arc iterator /// (i.e. the source node of the corresponding arc). Node baseNode(OutArcIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given outgoing arc iterator /// (i.e. the target node of the corresponding arc). Node runningNode(OutArcIt) const { return INVALID; } /// \brief The base node of the iterator. /// /// Returns the base node of the given incoming arc iterator /// (i.e. the target node of the corresponding arc). Node baseNode(InArcIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given incoming arc iterator /// (i.e. the source node of the corresponding arc). Node runningNode(InArcIt) const { return INVALID; } template struct Constraints { void constraints() { checkConcept(); checkConcept, _BpGraph>(); checkConcept, _BpGraph>(); checkConcept, _BpGraph>(); } }; }; } } #endif