1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2013 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_CONCEPTS_DIGRAPH_H |
---|
20 | #define LEMON_CONCEPTS_DIGRAPH_H |
---|
21 | |
---|
22 | ///\ingroup graph_concepts |
---|
23 | ///\file |
---|
24 | ///\brief The concept of directed graphs. |
---|
25 | |
---|
26 | #include <lemon/core.h> |
---|
27 | #include <lemon/concepts/maps.h> |
---|
28 | #include <lemon/concept_check.h> |
---|
29 | #include <lemon/concepts/graph_components.h> |
---|
30 | #include <lemon/bits/stl_iterators.h> |
---|
31 | |
---|
32 | namespace lemon { |
---|
33 | namespace concepts { |
---|
34 | |
---|
35 | /// \ingroup graph_concepts |
---|
36 | /// |
---|
37 | /// \brief Class describing the concept of directed graphs. |
---|
38 | /// |
---|
39 | /// This class describes the common interface of all directed |
---|
40 | /// graphs (digraphs). |
---|
41 | /// |
---|
42 | /// Like all concept classes, it only provides an interface |
---|
43 | /// without any sensible implementation. So any general algorithm for |
---|
44 | /// directed graphs should compile with this class, but it will not |
---|
45 | /// run properly, of course. |
---|
46 | /// An actual digraph implementation like \ref ListDigraph or |
---|
47 | /// \ref SmartDigraph may have additional functionality. |
---|
48 | /// |
---|
49 | /// \sa Graph |
---|
50 | class Digraph { |
---|
51 | private: |
---|
52 | /// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
---|
53 | Digraph(const Digraph &) {} |
---|
54 | /// \brief Assignment of a digraph to another one is \e not allowed. |
---|
55 | /// Use DigraphCopy instead. |
---|
56 | void operator=(const Digraph &) {} |
---|
57 | |
---|
58 | public: |
---|
59 | /// Default constructor. |
---|
60 | Digraph() { } |
---|
61 | |
---|
62 | /// The node type of the digraph |
---|
63 | |
---|
64 | /// This class identifies a node of the digraph. It also serves |
---|
65 | /// as a base class of the node iterators, |
---|
66 | /// thus they convert to this type. |
---|
67 | class Node { |
---|
68 | public: |
---|
69 | /// Default constructor |
---|
70 | |
---|
71 | /// Default constructor. |
---|
72 | /// \warning It sets the object to an undefined value. |
---|
73 | Node() { } |
---|
74 | /// Copy constructor. |
---|
75 | |
---|
76 | /// Copy constructor. |
---|
77 | /// |
---|
78 | Node(const Node&) { } |
---|
79 | |
---|
80 | /// Assignment operator |
---|
81 | |
---|
82 | /// Assignment operator. |
---|
83 | /// |
---|
84 | const Node &operator=(const Node&) { return *this; } |
---|
85 | |
---|
86 | /// %Invalid constructor \& conversion. |
---|
87 | |
---|
88 | /// Initializes the object to be invalid. |
---|
89 | /// \sa Invalid for more details. |
---|
90 | Node(Invalid) { } |
---|
91 | /// Equality operator |
---|
92 | |
---|
93 | /// Equality operator. |
---|
94 | /// |
---|
95 | /// Two iterators are equal if and only if they point to the |
---|
96 | /// same object or both are \c INVALID. |
---|
97 | bool operator==(Node) const { return true; } |
---|
98 | |
---|
99 | /// Inequality operator |
---|
100 | |
---|
101 | /// Inequality operator. |
---|
102 | bool operator!=(Node) const { return true; } |
---|
103 | |
---|
104 | /// Artificial ordering operator. |
---|
105 | |
---|
106 | /// Artificial ordering operator. |
---|
107 | /// |
---|
108 | /// \note This operator only has to define some strict ordering of |
---|
109 | /// the nodes; this order has nothing to do with the iteration |
---|
110 | /// ordering of the nodes. |
---|
111 | bool operator<(Node) const { return false; } |
---|
112 | }; |
---|
113 | |
---|
114 | /// Iterator class for the nodes. |
---|
115 | |
---|
116 | /// This iterator goes through each node of the digraph. |
---|
117 | /// Its usage is quite simple, for example, you can count the number |
---|
118 | /// of nodes in a digraph \c g of type \c %Digraph like this: |
---|
119 | ///\code |
---|
120 | /// int count=0; |
---|
121 | /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
---|
122 | ///\endcode |
---|
123 | class NodeIt : public Node { |
---|
124 | public: |
---|
125 | /// Default constructor |
---|
126 | |
---|
127 | /// Default constructor. |
---|
128 | /// \warning It sets the iterator to an undefined value. |
---|
129 | NodeIt() { } |
---|
130 | /// Copy constructor. |
---|
131 | |
---|
132 | /// Copy constructor. |
---|
133 | /// |
---|
134 | NodeIt(const NodeIt& n) : Node(n) { } |
---|
135 | /// Assignment operator |
---|
136 | |
---|
137 | /// Assignment operator. |
---|
138 | /// |
---|
139 | const NodeIt &operator=(const NodeIt&) { return *this; } |
---|
140 | |
---|
141 | /// %Invalid constructor \& conversion. |
---|
142 | |
---|
143 | /// Initializes the iterator to be invalid. |
---|
144 | /// \sa Invalid for more details. |
---|
145 | NodeIt(Invalid) { } |
---|
146 | /// Sets the iterator to the first node. |
---|
147 | |
---|
148 | /// Sets the iterator to the first node of the given digraph. |
---|
149 | /// |
---|
150 | explicit NodeIt(const Digraph&) { } |
---|
151 | /// Sets the iterator to the given node. |
---|
152 | |
---|
153 | /// Sets the iterator to the given node of the given digraph. |
---|
154 | /// |
---|
155 | NodeIt(const Digraph&, const Node&) { } |
---|
156 | /// Next node. |
---|
157 | |
---|
158 | /// Assign the iterator to the next node. |
---|
159 | /// |
---|
160 | NodeIt& operator++() { return *this; } |
---|
161 | }; |
---|
162 | |
---|
163 | /// \brief Gets the collection of the nodes of the digraph. |
---|
164 | /// |
---|
165 | /// This function can be used for iterating on |
---|
166 | /// the nodes of the digraph. It returns a wrapped NodeIt, which looks |
---|
167 | /// like an STL container (by having begin() and end()) |
---|
168 | /// which you can use in range-based for loops, STL algorithms, etc. |
---|
169 | /// For example you can write: |
---|
170 | ///\code |
---|
171 | /// ListDigraph g; |
---|
172 | /// for(auto v: g.nodes()) |
---|
173 | /// doSomething(v); |
---|
174 | /// |
---|
175 | /// //Using an STL algorithm: |
---|
176 | /// copy(g.nodes().begin(), g.nodes().end(), vect.begin()); |
---|
177 | ///\endcode |
---|
178 | LemonRangeWrapper1<NodeIt, Digraph> nodes() const { |
---|
179 | return LemonRangeWrapper1<NodeIt, Digraph>(*this); |
---|
180 | } |
---|
181 | |
---|
182 | |
---|
183 | /// The arc type of the digraph |
---|
184 | |
---|
185 | /// This class identifies an arc of the digraph. It also serves |
---|
186 | /// as a base class of the arc iterators, |
---|
187 | /// thus they will convert to this type. |
---|
188 | class Arc { |
---|
189 | public: |
---|
190 | /// Default constructor |
---|
191 | |
---|
192 | /// Default constructor. |
---|
193 | /// \warning It sets the object to an undefined value. |
---|
194 | Arc() { } |
---|
195 | /// Copy constructor. |
---|
196 | |
---|
197 | /// Copy constructor. |
---|
198 | /// |
---|
199 | Arc(const Arc&) { } |
---|
200 | /// Assignment operator |
---|
201 | |
---|
202 | /// Assignment operator. |
---|
203 | /// |
---|
204 | const Arc &operator=(const Arc&) { return *this; } |
---|
205 | |
---|
206 | /// %Invalid constructor \& conversion. |
---|
207 | |
---|
208 | /// Initializes the object to be invalid. |
---|
209 | /// \sa Invalid for more details. |
---|
210 | Arc(Invalid) { } |
---|
211 | /// Equality operator |
---|
212 | |
---|
213 | /// Equality operator. |
---|
214 | /// |
---|
215 | /// Two iterators are equal if and only if they point to the |
---|
216 | /// same object or both are \c INVALID. |
---|
217 | bool operator==(Arc) const { return true; } |
---|
218 | /// Inequality operator |
---|
219 | |
---|
220 | /// Inequality operator. |
---|
221 | bool operator!=(Arc) const { return true; } |
---|
222 | |
---|
223 | /// Artificial ordering operator. |
---|
224 | |
---|
225 | /// Artificial ordering operator. |
---|
226 | /// |
---|
227 | /// \note This operator only has to define some strict ordering of |
---|
228 | /// the arcs; this order has nothing to do with the iteration |
---|
229 | /// ordering of the arcs. |
---|
230 | bool operator<(Arc) const { return false; } |
---|
231 | }; |
---|
232 | |
---|
233 | /// Iterator class for the outgoing arcs of a node. |
---|
234 | |
---|
235 | /// This iterator goes trough the \e outgoing arcs of a certain node |
---|
236 | /// of a digraph. |
---|
237 | /// Its usage is quite simple, for example, you can count the number |
---|
238 | /// of outgoing arcs of a node \c n |
---|
239 | /// in a digraph \c g of type \c %Digraph as follows. |
---|
240 | ///\code |
---|
241 | /// int count=0; |
---|
242 | /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
---|
243 | ///\endcode |
---|
244 | class OutArcIt : public Arc { |
---|
245 | public: |
---|
246 | /// Default constructor |
---|
247 | |
---|
248 | /// Default constructor. |
---|
249 | /// \warning It sets the iterator to an undefined value. |
---|
250 | OutArcIt() { } |
---|
251 | /// Copy constructor. |
---|
252 | |
---|
253 | /// Copy constructor. |
---|
254 | /// |
---|
255 | OutArcIt(const OutArcIt& e) : Arc(e) { } |
---|
256 | /// Assignment operator |
---|
257 | |
---|
258 | /// Assignment operator. |
---|
259 | /// |
---|
260 | const OutArcIt &operator=(const OutArcIt&) { return *this; } |
---|
261 | /// %Invalid constructor \& conversion. |
---|
262 | |
---|
263 | /// Initializes the iterator to be invalid. |
---|
264 | /// \sa Invalid for more details. |
---|
265 | OutArcIt(Invalid) { } |
---|
266 | /// Sets the iterator to the first outgoing arc. |
---|
267 | |
---|
268 | /// Sets the iterator to the first outgoing arc of the given node. |
---|
269 | /// |
---|
270 | OutArcIt(const Digraph&, const Node&) { } |
---|
271 | /// Sets the iterator to the given arc. |
---|
272 | |
---|
273 | /// Sets the iterator to the given arc of the given digraph. |
---|
274 | /// |
---|
275 | OutArcIt(const Digraph&, const Arc&) { } |
---|
276 | /// Next outgoing arc |
---|
277 | |
---|
278 | /// Assign the iterator to the next |
---|
279 | /// outgoing arc of the corresponding node. |
---|
280 | OutArcIt& operator++() { return *this; } |
---|
281 | }; |
---|
282 | |
---|
283 | /// \brief Gets the collection of the outgoing arcs of a certain node |
---|
284 | /// of the digraph. |
---|
285 | /// |
---|
286 | /// This function can be used for iterating on the |
---|
287 | /// outgoing arcs of a certain node of the digraph. It returns a wrapped |
---|
288 | /// OutArcIt, which looks like an STL container |
---|
289 | /// (by having begin() and end()) which you can use in range-based |
---|
290 | /// for loops, STL algorithms, etc. |
---|
291 | /// For example if g is a Digraph and u is a node, you can write: |
---|
292 | ///\code |
---|
293 | /// for(auto a: g.outArcs(u)) |
---|
294 | /// doSomething(a); |
---|
295 | /// |
---|
296 | /// //Using an STL algorithm: |
---|
297 | /// copy(g.outArcs(u).begin(), g.outArcs(u).end(), vect.begin()); |
---|
298 | ///\endcode |
---|
299 | LemonRangeWrapper2<OutArcIt, Digraph, Node> outArcs(const Node& u) const { |
---|
300 | return LemonRangeWrapper2<OutArcIt, Digraph, Node>(*this, u); |
---|
301 | } |
---|
302 | |
---|
303 | |
---|
304 | /// Iterator class for the incoming arcs of a node. |
---|
305 | |
---|
306 | /// This iterator goes trough the \e incoming arcs of a certain node |
---|
307 | /// of a digraph. |
---|
308 | /// Its usage is quite simple, for example, you can count the number |
---|
309 | /// of incoming arcs of a node \c n |
---|
310 | /// in a digraph \c g of type \c %Digraph as follows. |
---|
311 | ///\code |
---|
312 | /// int count=0; |
---|
313 | /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
---|
314 | ///\endcode |
---|
315 | class InArcIt : public Arc { |
---|
316 | public: |
---|
317 | /// Default constructor |
---|
318 | |
---|
319 | /// Default constructor. |
---|
320 | /// \warning It sets the iterator to an undefined value. |
---|
321 | InArcIt() { } |
---|
322 | /// Copy constructor. |
---|
323 | |
---|
324 | /// Copy constructor. |
---|
325 | /// |
---|
326 | InArcIt(const InArcIt& e) : Arc(e) { } |
---|
327 | /// Assignment operator |
---|
328 | |
---|
329 | /// Assignment operator. |
---|
330 | /// |
---|
331 | const InArcIt &operator=(const InArcIt&) { return *this; } |
---|
332 | |
---|
333 | /// %Invalid constructor \& conversion. |
---|
334 | |
---|
335 | /// Initializes the iterator to be invalid. |
---|
336 | /// \sa Invalid for more details. |
---|
337 | InArcIt(Invalid) { } |
---|
338 | /// Sets the iterator to the first incoming arc. |
---|
339 | |
---|
340 | /// Sets the iterator to the first incoming arc of the given node. |
---|
341 | /// |
---|
342 | InArcIt(const Digraph&, const Node&) { } |
---|
343 | /// Sets the iterator to the given arc. |
---|
344 | |
---|
345 | /// Sets the iterator to the given arc of the given digraph. |
---|
346 | /// |
---|
347 | InArcIt(const Digraph&, const Arc&) { } |
---|
348 | /// Next incoming arc |
---|
349 | |
---|
350 | /// Assign the iterator to the next |
---|
351 | /// incoming arc of the corresponding node. |
---|
352 | InArcIt& operator++() { return *this; } |
---|
353 | }; |
---|
354 | |
---|
355 | /// \brief Gets the collection of the incoming arcs of a certain node |
---|
356 | /// of the digraph. |
---|
357 | /// |
---|
358 | /// This function can be used for iterating on the |
---|
359 | /// incoming arcs of a certain node of the digraph. It returns a wrapped |
---|
360 | /// InArcIt, which looks like an STL container |
---|
361 | /// (by having begin() and end()) which you can use in range-based |
---|
362 | /// for loops, STL algorithms, etc. |
---|
363 | /// For example if g is a Digraph and u is a node, you can write: |
---|
364 | ///\code |
---|
365 | /// for(auto a: g.inArcs(u)) |
---|
366 | /// doSomething(a); |
---|
367 | /// |
---|
368 | /// //Using an STL algorithm: |
---|
369 | /// copy(g.inArcs(u).begin(), g.inArcs(u).end(), vect.begin()); |
---|
370 | ///\endcode |
---|
371 | LemonRangeWrapper2<InArcIt, Digraph, Node> inArcs(const Node& u) const { |
---|
372 | return LemonRangeWrapper2<InArcIt, Digraph, Node>(*this, u); |
---|
373 | } |
---|
374 | |
---|
375 | |
---|
376 | /// Iterator class for the arcs. |
---|
377 | |
---|
378 | /// This iterator goes through each arc of the digraph. |
---|
379 | /// Its usage is quite simple, for example, you can count the number |
---|
380 | /// of arcs in a digraph \c g of type \c %Digraph as follows: |
---|
381 | ///\code |
---|
382 | /// int count=0; |
---|
383 | /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
---|
384 | ///\endcode |
---|
385 | class ArcIt : public Arc { |
---|
386 | public: |
---|
387 | /// Default constructor |
---|
388 | |
---|
389 | /// Default constructor. |
---|
390 | /// \warning It sets the iterator to an undefined value. |
---|
391 | ArcIt() { } |
---|
392 | /// Copy constructor. |
---|
393 | |
---|
394 | /// Copy constructor. |
---|
395 | /// |
---|
396 | ArcIt(const ArcIt& e) : Arc(e) { } |
---|
397 | /// Assignment operator |
---|
398 | |
---|
399 | /// Assignment operator. |
---|
400 | /// |
---|
401 | const ArcIt &operator=(const ArcIt&) { return *this; } |
---|
402 | |
---|
403 | /// %Invalid constructor \& conversion. |
---|
404 | |
---|
405 | /// Initializes the iterator to be invalid. |
---|
406 | /// \sa Invalid for more details. |
---|
407 | ArcIt(Invalid) { } |
---|
408 | /// Sets the iterator to the first arc. |
---|
409 | |
---|
410 | /// Sets the iterator to the first arc of the given digraph. |
---|
411 | /// |
---|
412 | explicit ArcIt(const Digraph& g) { |
---|
413 | ::lemon::ignore_unused_variable_warning(g); |
---|
414 | } |
---|
415 | /// Sets the iterator to the given arc. |
---|
416 | |
---|
417 | /// Sets the iterator to the given arc of the given digraph. |
---|
418 | /// |
---|
419 | ArcIt(const Digraph&, const Arc&) { } |
---|
420 | /// Next arc |
---|
421 | |
---|
422 | /// Assign the iterator to the next arc. |
---|
423 | /// |
---|
424 | ArcIt& operator++() { return *this; } |
---|
425 | }; |
---|
426 | |
---|
427 | /// \brief Gets the collection of the arcs of the digraph. |
---|
428 | /// |
---|
429 | /// This function can be used for iterating on the |
---|
430 | /// arcs of the digraph. It returns a wrapped |
---|
431 | /// ArcIt, which looks like an STL container |
---|
432 | /// (by having begin() and end()) which you can use in range-based |
---|
433 | /// for loops, STL algorithms, etc. |
---|
434 | /// For example you can write: |
---|
435 | ///\code |
---|
436 | /// ListDigraph g; |
---|
437 | /// for(auto a: g.arcs()) |
---|
438 | /// doSomething(a); |
---|
439 | /// |
---|
440 | /// //Using an STL algorithm: |
---|
441 | /// copy(g.arcs().begin(), g.arcs().end(), vect.begin()); |
---|
442 | ///\endcode |
---|
443 | LemonRangeWrapper1<ArcIt, Digraph> arcs() const { |
---|
444 | return LemonRangeWrapper1<ArcIt, Digraph>(*this); |
---|
445 | } |
---|
446 | |
---|
447 | |
---|
448 | /// \brief The source node of the arc. |
---|
449 | /// |
---|
450 | /// Returns the source node of the given arc. |
---|
451 | Node source(Arc) const { return INVALID; } |
---|
452 | |
---|
453 | /// \brief The target node of the arc. |
---|
454 | /// |
---|
455 | /// Returns the target node of the given arc. |
---|
456 | Node target(Arc) const { return INVALID; } |
---|
457 | |
---|
458 | /// \brief The ID of the node. |
---|
459 | /// |
---|
460 | /// Returns the ID of the given node. |
---|
461 | int id(Node) const { return -1; } |
---|
462 | |
---|
463 | /// \brief The ID of the arc. |
---|
464 | /// |
---|
465 | /// Returns the ID of the given arc. |
---|
466 | int id(Arc) const { return -1; } |
---|
467 | |
---|
468 | /// \brief The node with the given ID. |
---|
469 | /// |
---|
470 | /// Returns the node with the given ID. |
---|
471 | /// \pre The argument should be a valid node ID in the digraph. |
---|
472 | Node nodeFromId(int) const { return INVALID; } |
---|
473 | |
---|
474 | /// \brief The arc with the given ID. |
---|
475 | /// |
---|
476 | /// Returns the arc with the given ID. |
---|
477 | /// \pre The argument should be a valid arc ID in the digraph. |
---|
478 | Arc arcFromId(int) const { return INVALID; } |
---|
479 | |
---|
480 | /// \brief An upper bound on the node IDs. |
---|
481 | /// |
---|
482 | /// Returns an upper bound on the node IDs. |
---|
483 | int maxNodeId() const { return -1; } |
---|
484 | |
---|
485 | /// \brief An upper bound on the arc IDs. |
---|
486 | /// |
---|
487 | /// Returns an upper bound on the arc IDs. |
---|
488 | int maxArcId() const { return -1; } |
---|
489 | |
---|
490 | void first(Node&) const {} |
---|
491 | void next(Node&) const {} |
---|
492 | |
---|
493 | void first(Arc&) const {} |
---|
494 | void next(Arc&) const {} |
---|
495 | |
---|
496 | |
---|
497 | void firstIn(Arc&, const Node&) const {} |
---|
498 | void nextIn(Arc&) const {} |
---|
499 | |
---|
500 | void firstOut(Arc&, const Node&) const {} |
---|
501 | void nextOut(Arc&) const {} |
---|
502 | |
---|
503 | // The second parameter is dummy. |
---|
504 | Node fromId(int, Node) const { return INVALID; } |
---|
505 | // The second parameter is dummy. |
---|
506 | Arc fromId(int, Arc) const { return INVALID; } |
---|
507 | |
---|
508 | // Dummy parameter. |
---|
509 | int maxId(Node) const { return -1; } |
---|
510 | // Dummy parameter. |
---|
511 | int maxId(Arc) const { return -1; } |
---|
512 | |
---|
513 | /// \brief The opposite node on the arc. |
---|
514 | /// |
---|
515 | /// Returns the opposite node on the given arc. |
---|
516 | Node oppositeNode(Node, Arc) const { return INVALID; } |
---|
517 | |
---|
518 | /// \brief The base node of the iterator. |
---|
519 | /// |
---|
520 | /// Returns the base node of the given outgoing arc iterator |
---|
521 | /// (i.e. the source node of the corresponding arc). |
---|
522 | Node baseNode(OutArcIt) const { return INVALID; } |
---|
523 | |
---|
524 | /// \brief The running node of the iterator. |
---|
525 | /// |
---|
526 | /// Returns the running node of the given outgoing arc iterator |
---|
527 | /// (i.e. the target node of the corresponding arc). |
---|
528 | Node runningNode(OutArcIt) const { return INVALID; } |
---|
529 | |
---|
530 | /// \brief The base node of the iterator. |
---|
531 | /// |
---|
532 | /// Returns the base node of the given incoming arc iterator |
---|
533 | /// (i.e. the target node of the corresponding arc). |
---|
534 | Node baseNode(InArcIt) const { return INVALID; } |
---|
535 | |
---|
536 | /// \brief The running node of the iterator. |
---|
537 | /// |
---|
538 | /// Returns the running node of the given incoming arc iterator |
---|
539 | /// (i.e. the source node of the corresponding arc). |
---|
540 | Node runningNode(InArcIt) const { return INVALID; } |
---|
541 | |
---|
542 | /// \brief Standard graph map type for the nodes. |
---|
543 | /// |
---|
544 | /// Standard graph map type for the nodes. |
---|
545 | /// It conforms to the ReferenceMap concept. |
---|
546 | template<class T> |
---|
547 | class NodeMap : public ReferenceMap<Node, T, T&, const T&> { |
---|
548 | public: |
---|
549 | |
---|
550 | /// Constructor |
---|
551 | explicit NodeMap(const Digraph&) { } |
---|
552 | /// Constructor with given initial value |
---|
553 | NodeMap(const Digraph&, T) { } |
---|
554 | |
---|
555 | private: |
---|
556 | ///Copy constructor |
---|
557 | NodeMap(const NodeMap& nm) : |
---|
558 | ReferenceMap<Node, T, T&, const T&>(nm) { } |
---|
559 | public: |
---|
560 | ///Assignment operator |
---|
561 | NodeMap& operator=(const NodeMap&) { |
---|
562 | return *this; |
---|
563 | } |
---|
564 | ///Template Assignment operator |
---|
565 | template <typename CMap> |
---|
566 | NodeMap& operator=(const CMap&) { |
---|
567 | checkConcept<ReadMap<Node, T>, CMap>(); |
---|
568 | return *this; |
---|
569 | } |
---|
570 | }; |
---|
571 | |
---|
572 | /// \brief Standard graph map type for the arcs. |
---|
573 | /// |
---|
574 | /// Standard graph map type for the arcs. |
---|
575 | /// It conforms to the ReferenceMap concept. |
---|
576 | template<class T> |
---|
577 | class ArcMap : public ReferenceMap<Arc, T, T&, const T&> { |
---|
578 | public: |
---|
579 | |
---|
580 | /// Constructor |
---|
581 | explicit ArcMap(const Digraph&) { } |
---|
582 | /// Constructor with given initial value |
---|
583 | ArcMap(const Digraph&, T) { } |
---|
584 | |
---|
585 | private: |
---|
586 | ///Copy constructor |
---|
587 | ArcMap(const ArcMap& em) : |
---|
588 | ReferenceMap<Arc, T, T&, const T&>(em) { } |
---|
589 | ///Assignment operator |
---|
590 | ArcMap& operator=(const ArcMap&) { |
---|
591 | return *this; |
---|
592 | } |
---|
593 | ///Template Assignment operator |
---|
594 | template <typename CMap> |
---|
595 | ArcMap& operator=(const CMap&) { |
---|
596 | checkConcept<ReadMap<Arc, T>, CMap>(); |
---|
597 | return *this; |
---|
598 | } |
---|
599 | }; |
---|
600 | |
---|
601 | template <typename _Digraph> |
---|
602 | struct Constraints { |
---|
603 | void constraints() { |
---|
604 | checkConcept<BaseDigraphComponent, _Digraph>(); |
---|
605 | checkConcept<IterableDigraphComponent<>, _Digraph>(); |
---|
606 | checkConcept<IDableDigraphComponent<>, _Digraph>(); |
---|
607 | checkConcept<MappableDigraphComponent<>, _Digraph>(); |
---|
608 | } |
---|
609 | }; |
---|
610 | |
---|
611 | }; |
---|
612 | |
---|
613 | } //namespace concepts |
---|
614 | } //namespace lemon |
---|
615 | |
---|
616 | |
---|
617 | |
---|
618 | #endif |
---|