/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_CONCEPT_DIGRAPH_H #define LEMON_CONCEPT_DIGRAPH_H ///\ingroup graph_concepts ///\file ///\brief The concept of directed graphs. #include #include #include #include namespace lemon { namespace concepts { /// \ingroup graph_concepts /// /// \brief Class describing the concept of directed graphs. /// /// This class describes the \ref concept "concept" of the /// immutable directed digraphs. /// /// Note that actual digraph implementation like @ref ListDigraph or /// @ref SmartDigraph may have several additional functionality. /// /// \sa concept class Digraph { private: ///Digraphs are \e not copy constructible. Use DigraphCopy() instead. ///Digraphs are \e not copy constructible. Use DigraphCopy() instead. /// Digraph(const Digraph &) {}; ///\brief Assignment of \ref Digraph "Digraph"s to another ones are ///\e not allowed. Use DigraphCopy() instead. ///Assignment of \ref Digraph "Digraph"s to another ones are ///\e not allowed. Use DigraphCopy() instead. void operator=(const Digraph &) {} public: ///\e /// Defalult constructor. /// Defalult constructor. /// Digraph() { } /// Class for identifying a node of the digraph /// This class identifies a node of the digraph. It also serves /// as a base class of the node iterators, /// thus they will convert to this type. class Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// Invalid constructor \& conversion. /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Node) const { return true; } /// Artificial ordering operator. /// To allow the use of digraph descriptors as key type in std::map or /// similar associative container we require this. /// /// \note This operator only have to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(Node) const { return false; } }; /// This iterator goes through each node. /// This iterator goes through each node. /// Its usage is quite simple, for example you can count the number /// of nodes in digraph \c g of type \c Digraph like this: ///\code /// int count=0; /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class NodeIt : public Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt& n) : Node(n) { } /// Invalid constructor \& conversion. /// Initialize the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of \c g. /// NodeIt(const Digraph&) { } /// Node -> NodeIt conversion. /// Sets the iterator to the node of \c the digraph pointed by /// the trivial iterator. /// This feature necessitates that each time we /// iterate the arc-set, the iteration order is the same. NodeIt(const Digraph&, const Node&) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// Class for identifying an arc of the digraph /// This class identifies an arc of the digraph. It also serves /// as a base class of the arc iterators, /// thus they will convert to this type. class Arc { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Arc() { } /// Copy constructor. /// Copy constructor. /// Arc(const Arc&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// Arc(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Arc) const { return true; } /// Inequality operator /// \sa operator==(Arc n) /// bool operator!=(Arc) const { return true; } /// Artificial ordering operator. /// To allow the use of digraph descriptors as key type in std::map or /// similar associative container we require this. /// /// \note This operator only have to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(Arc) const { return false; } }; /// This iterator goes trough the outgoing arcs of a node. /// This iterator goes trough the \e outgoing arcs of a certain node /// of a digraph. /// Its usage is quite simple, for example you can count the number /// of outgoing arcs of a node \c n /// in digraph \c g of type \c Digraph as follows. ///\code /// int count=0; /// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode class OutArcIt : public Arc { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. OutArcIt() { } /// Copy constructor. /// Copy constructor. /// OutArcIt(const OutArcIt& e) : Arc(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// OutArcIt(Invalid) { } /// This constructor sets the iterator to the first outgoing arc. /// This constructor sets the iterator to the first outgoing arc of /// the node. OutArcIt(const Digraph&, const Node&) { } /// Arc -> OutArcIt conversion /// Sets the iterator to the value of the trivial iterator. /// This feature necessitates that each time we /// iterate the arc-set, the iteration order is the same. OutArcIt(const Digraph&, const Arc&) { } ///Next outgoing arc /// Assign the iterator to the next /// outgoing arc of the corresponding node. OutArcIt& operator++() { return *this; } }; /// This iterator goes trough the incoming arcs of a node. /// This iterator goes trough the \e incoming arcs of a certain node /// of a digraph. /// Its usage is quite simple, for example you can count the number /// of outgoing arcs of a node \c n /// in digraph \c g of type \c Digraph as follows. ///\code /// int count=0; /// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode class InArcIt : public Arc { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. InArcIt() { } /// Copy constructor. /// Copy constructor. /// InArcIt(const InArcIt& e) : Arc(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// InArcIt(Invalid) { } /// This constructor sets the iterator to first incoming arc. /// This constructor set the iterator to the first incoming arc of /// the node. InArcIt(const Digraph&, const Node&) { } /// Arc -> InArcIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the arc-set, the iteration order is the same. InArcIt(const Digraph&, const Arc&) { } /// Next incoming arc /// Assign the iterator to the next inarc of the corresponding node. /// InArcIt& operator++() { return *this; } }; /// This iterator goes through each arc. /// This iterator goes through each arc of a digraph. /// Its usage is quite simple, for example you can count the number /// of arcs in a digraph \c g of type \c Digraph as follows: ///\code /// int count=0; /// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count; ///\endcode class ArcIt : public Arc { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. ArcIt() { } /// Copy constructor. /// Copy constructor. /// ArcIt(const ArcIt& e) : Arc(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// ArcIt(Invalid) { } /// This constructor sets the iterator to the first arc. /// This constructor sets the iterator to the first arc of \c g. ///@param g the digraph ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); } /// Arc -> ArcIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the arc-set, the iteration order is the same. ArcIt(const Digraph&, const Arc&) { } ///Next arc /// Assign the iterator to the next arc. ArcIt& operator++() { return *this; } }; ///Gives back the target node of an arc. ///Gives back the target node of an arc. /// Node target(Arc) const { return INVALID; } ///Gives back the source node of an arc. ///Gives back the source node of an arc. /// Node source(Arc) const { return INVALID; } /// \brief Returns the ID of the node. int id(Node) const { return -1; } /// \brief Returns the ID of the arc. int id(Arc) const { return -1; } /// \brief Returns the node with the given ID. /// /// \pre The argument should be a valid node ID in the graph. Node nodeFromId(int) const { return INVALID; } /// \brief Returns the arc with the given ID. /// /// \pre The argument should be a valid arc ID in the graph. Arc arcFromId(int) const { return INVALID; } /// \brief Returns an upper bound on the node IDs. int maxNodeId() const { return -1; } /// \brief Returns an upper bound on the arc IDs. int maxArcId() const { return -1; } void first(Node&) const {} void next(Node&) const {} void first(Arc&) const {} void next(Arc&) const {} void firstIn(Arc&, const Node&) const {} void nextIn(Arc&) const {} void firstOut(Arc&, const Node&) const {} void nextOut(Arc&) const {} // The second parameter is dummy. Node fromId(int, Node) const { return INVALID; } // The second parameter is dummy. Arc fromId(int, Arc) const { return INVALID; } // Dummy parameter. int maxId(Node) const { return -1; } // Dummy parameter. int maxId(Arc) const { return -1; } /// \brief The base node of the iterator. /// /// Gives back the base node of the iterator. /// It is always the target of the pointed arc. Node baseNode(const InArcIt&) const { return INVALID; } /// \brief The running node of the iterator. /// /// Gives back the running node of the iterator. /// It is always the source of the pointed arc. Node runningNode(const InArcIt&) const { return INVALID; } /// \brief The base node of the iterator. /// /// Gives back the base node of the iterator. /// It is always the source of the pointed arc. Node baseNode(const OutArcIt&) const { return INVALID; } /// \brief The running node of the iterator. /// /// Gives back the running node of the iterator. /// It is always the target of the pointed arc. Node runningNode(const OutArcIt&) const { return INVALID; } /// \brief The opposite node on the given arc. /// /// Gives back the opposite node on the given arc. Node oppositeNode(const Node&, const Arc&) const { return INVALID; } /// \brief Read write map of the nodes to type \c T. /// /// ReadWrite map of the nodes to type \c T. /// \sa Reference template class NodeMap : public ReadWriteMap< Node, T > { public: ///\e NodeMap(const Digraph&) { } ///\e NodeMap(const Digraph&, T) { } private: ///Copy constructor NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } ///Assignment operator template NodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Read write map of the arcs to type \c T. /// /// Reference map of the arcs to type \c T. /// \sa Reference template class ArcMap : public ReadWriteMap { public: ///\e ArcMap(const Digraph&) { } ///\e ArcMap(const Digraph&, T) { } private: ///Copy constructor ArcMap(const ArcMap& em) : ReadWriteMap(em) { } ///Assignment operator template ArcMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; template struct Constraints { void constraints() { checkConcept, _Digraph>(); checkConcept, _Digraph>(); checkConcept, _Digraph>(); } }; }; } //namespace concepts } //namespace lemon #endif // LEMON_CONCEPT_DIGRAPH_H