/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ ///\ingroup graph_concepts ///\file ///\brief The concept of undirected graphs. #ifndef LEMON_CONCEPTS_GRAPH_H #define LEMON_CONCEPTS_GRAPH_H #include #include #include #include namespace lemon { namespace concepts { /// \ingroup graph_concepts /// /// \brief Class describing the concept of undirected graphs. /// /// This class describes the common interface of all undirected /// graphs. /// /// Like all concept classes, it only provides an interface /// without any sensible implementation. So any general algorithm for /// undirected graphs should compile with this class, but it will not /// run properly, of course. /// An actual graph implementation like \ref ListGraph or /// \ref SmartGraph may have additional functionality. /// /// The undirected graphs also fulfill the concept of \ref Digraph /// "directed graphs", since each edge can also be regarded as two /// oppositely directed arcs. /// Undirected graphs provide an Edge type for the undirected edges and /// an Arc type for the directed arcs. The Arc type is convertible to /// Edge or inherited from it, i.e. the corresponding edge can be /// obtained from an arc. /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt /// and ArcMap classes can be used for the arcs (just like in digraphs). /// Both InArcIt and OutArcIt iterates on the same edges but with /// opposite direction. IncEdgeIt also iterates on the same edges /// as OutArcIt and InArcIt, but it is not convertible to Arc, /// only to Edge. /// /// In LEMON, each undirected edge has an inherent orientation. /// Thus it can defined if an arc is forward or backward oriented in /// an undirected graph with respect to this default oriantation of /// the represented edge. /// With the direction() and direct() functions the direction /// of an arc can be obtained and set, respectively. /// /// Only nodes and edges can be added to or removed from an undirected /// graph and the corresponding arcs are added or removed automatically. /// /// \sa Digraph class Graph { private: /// Graphs are \e not copy constructible. Use GraphCopy instead. Graph(const Graph&) {} /// \brief Assignment of a graph to another one is \e not allowed. /// Use GraphCopy instead. void operator=(const Graph&) {} public: /// Default constructor. Graph() {} /// \brief Undirected graphs should be tagged with \c UndirectedTag. /// /// Undirected graphs should be tagged with \c UndirectedTag. /// /// This tag helps the \c enable_if technics to make compile time /// specializations for undirected graphs. typedef True UndirectedTag; /// The node type of the graph /// This class identifies a node of the graph. It also serves /// as a base class of the node iterators, /// thus they convert to this type. class Node { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Node) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Node) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(Node) const { return false; } }; /// Iterator class for the nodes. /// This iterator goes through each node of the graph. /// Its usage is quite simple, for example, you can count the number /// of nodes in a graph \c g of type \c %Graph like this: ///\code /// int count=0; /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class NodeIt : public Node { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt& n) : Node(n) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of the given digraph. /// explicit NodeIt(const Graph&) { } /// Sets the iterator to the given node. /// Sets the iterator to the given node of the given digraph. /// NodeIt(const Graph&, const Node&) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The edge type of the graph /// This class identifies an edge of the graph. It also serves /// as a base class of the edge iterators, /// thus they will convert to this type. class Edge { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Edge() { } /// Copy constructor. /// Copy constructor. /// Edge(const Edge&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Edge(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Edge) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Edge) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the edges; this order has nothing to do with the iteration /// ordering of the edges. bool operator<(Edge) const { return false; } }; /// Iterator class for the edges. /// This iterator goes through each edge of the graph. /// Its usage is quite simple, for example, you can count the number /// of edges in a graph \c g of type \c %Graph as follows: ///\code /// int count=0; /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; ///\endcode class EdgeIt : public Edge { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. EdgeIt() { } /// Copy constructor. /// Copy constructor. /// EdgeIt(const EdgeIt& e) : Edge(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. EdgeIt(Invalid) { } /// Sets the iterator to the first edge. /// Sets the iterator to the first edge of the given graph. /// explicit EdgeIt(const Graph&) { } /// Sets the iterator to the given edge. /// Sets the iterator to the given edge of the given graph. /// EdgeIt(const Graph&, const Edge&) { } /// Next edge /// Assign the iterator to the next edge. /// EdgeIt& operator++() { return *this; } }; /// Iterator class for the incident edges of a node. /// This iterator goes trough the incident undirected edges /// of a certain node of a graph. /// Its usage is quite simple, for example, you can compute the /// degree (i.e. the number of incident edges) of a node \c n /// in a graph \c g of type \c %Graph as follows. /// ///\code /// int count=0; /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode /// /// \warning Loop edges will be iterated twice. class IncEdgeIt : public Edge { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. IncEdgeIt() { } /// Copy constructor. /// Copy constructor. /// IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. IncEdgeIt(Invalid) { } /// Sets the iterator to the first incident edge. /// Sets the iterator to the first incident edge of the given node. /// IncEdgeIt(const Graph&, const Node&) { } /// Sets the iterator to the given edge. /// Sets the iterator to the given edge of the given graph. /// IncEdgeIt(const Graph&, const Edge&) { } /// Next incident edge /// Assign the iterator to the next incident edge /// of the corresponding node. IncEdgeIt& operator++() { return *this; } }; /// The arc type of the graph /// This class identifies a directed arc of the graph. It also serves /// as a base class of the arc iterators, /// thus they will convert to this type. class Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the object to an undefined value. Arc() { } /// Copy constructor. /// Copy constructor. /// Arc(const Arc&) { } /// %Invalid constructor \& conversion. /// Initializes the object to be invalid. /// \sa Invalid for more details. Arc(Invalid) { } /// Equality operator /// Equality operator. /// /// Two iterators are equal if and only if they point to the /// same object or both are \c INVALID. bool operator==(Arc) const { return true; } /// Inequality operator /// Inequality operator. bool operator!=(Arc) const { return true; } /// Artificial ordering operator. /// Artificial ordering operator. /// /// \note This operator only has to define some strict ordering of /// the arcs; this order has nothing to do with the iteration /// ordering of the arcs. bool operator<(Arc) const { return false; } /// Converison to \c Edge /// Converison to \c Edge. /// operator Edge() const { return Edge(); } }; /// Iterator class for the arcs. /// This iterator goes through each directed arc of the graph. /// Its usage is quite simple, for example, you can count the number /// of arcs in a graph \c g of type \c %Graph as follows: ///\code /// int count=0; /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; ///\endcode class ArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. ArcIt() { } /// Copy constructor. /// Copy constructor. /// ArcIt(const ArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. ArcIt(Invalid) { } /// Sets the iterator to the first arc. /// Sets the iterator to the first arc of the given graph. /// explicit ArcIt(const Graph &g) { ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given graph. /// ArcIt(const Graph&, const Arc&) { } /// Next arc /// Assign the iterator to the next arc. /// ArcIt& operator++() { return *this; } }; /// Iterator class for the outgoing arcs of a node. /// This iterator goes trough the \e outgoing directed arcs of a /// certain node of a graph. /// Its usage is quite simple, for example, you can count the number /// of outgoing arcs of a node \c n /// in a graph \c g of type \c %Graph as follows. ///\code /// int count=0; /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; ///\endcode class OutArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. OutArcIt() { } /// Copy constructor. /// Copy constructor. /// OutArcIt(const OutArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. OutArcIt(Invalid) { } /// Sets the iterator to the first outgoing arc. /// Sets the iterator to the first outgoing arc of the given node. /// OutArcIt(const Graph& n, const Node& g) { ::lemon::ignore_unused_variable_warning(n); ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given graph. /// OutArcIt(const Graph&, const Arc&) { } /// Next outgoing arc /// Assign the iterator to the next /// outgoing arc of the corresponding node. OutArcIt& operator++() { return *this; } }; /// Iterator class for the incoming arcs of a node. /// This iterator goes trough the \e incoming directed arcs of a /// certain node of a graph. /// Its usage is quite simple, for example, you can count the number /// of incoming arcs of a node \c n /// in a graph \c g of type \c %Graph as follows. ///\code /// int count=0; /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; ///\endcode class InArcIt : public Arc { public: /// Default constructor /// Default constructor. /// \warning It sets the iterator to an undefined value. InArcIt() { } /// Copy constructor. /// Copy constructor. /// InArcIt(const InArcIt& e) : Arc(e) { } /// %Invalid constructor \& conversion. /// Initializes the iterator to be invalid. /// \sa Invalid for more details. InArcIt(Invalid) { } /// Sets the iterator to the first incoming arc. /// Sets the iterator to the first incoming arc of the given node. /// InArcIt(const Graph& g, const Node& n) { ::lemon::ignore_unused_variable_warning(n); ::lemon::ignore_unused_variable_warning(g); } /// Sets the iterator to the given arc. /// Sets the iterator to the given arc of the given graph. /// InArcIt(const Graph&, const Arc&) { } /// Next incoming arc /// Assign the iterator to the next /// incoming arc of the corresponding node. InArcIt& operator++() { return *this; } }; /// \brief Standard graph map type for the nodes. /// /// Standard graph map type for the nodes. /// It conforms to the ReferenceMap concept. template class NodeMap : public ReferenceMap { public: /// Constructor explicit NodeMap(const Graph&) { } /// Constructor with given initial value NodeMap(const Graph&, T) { } private: ///Copy constructor NodeMap(const NodeMap& nm) : ReferenceMap(nm) { } ///Assignment operator template NodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the arcs. /// /// Standard graph map type for the arcs. /// It conforms to the ReferenceMap concept. template class ArcMap : public ReferenceMap { public: /// Constructor explicit ArcMap(const Graph&) { } /// Constructor with given initial value ArcMap(const Graph&, T) { } private: ///Copy constructor ArcMap(const ArcMap& em) : ReferenceMap(em) { } ///Assignment operator template ArcMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Standard graph map type for the edges. /// /// Standard graph map type for the edges. /// It conforms to the ReferenceMap concept. template class EdgeMap : public ReferenceMap { public: /// Constructor explicit EdgeMap(const Graph&) { } /// Constructor with given initial value EdgeMap(const Graph&, T) { } private: ///Copy constructor EdgeMap(const EdgeMap& em) : ReferenceMap(em) {} ///Assignment operator template EdgeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief The first node of the edge. /// /// Returns the first node of the given edge. /// /// Edges don't have source and target nodes, however, methods /// u() and v() are used to query the two end-nodes of an edge. /// The orientation of an edge that arises this way is called /// the inherent direction, it is used to define the default /// direction for the corresponding arcs. /// \sa v() /// \sa direction() Node u(Edge) const { return INVALID; } /// \brief The second node of the edge. /// /// Returns the second node of the given edge. /// /// Edges don't have source and target nodes, however, methods /// u() and v() are used to query the two end-nodes of an edge. /// The orientation of an edge that arises this way is called /// the inherent direction, it is used to define the default /// direction for the corresponding arcs. /// \sa u() /// \sa direction() Node v(Edge) const { return INVALID; } /// \brief The source node of the arc. /// /// Returns the source node of the given arc. Node source(Arc) const { return INVALID; } /// \brief The target node of the arc. /// /// Returns the target node of the given arc. Node target(Arc) const { return INVALID; } /// \brief The ID of the node. /// /// Returns the ID of the given node. int id(Node) const { return -1; } /// \brief The ID of the edge. /// /// Returns the ID of the given edge. int id(Edge) const { return -1; } /// \brief The ID of the arc. /// /// Returns the ID of the given arc. int id(Arc) const { return -1; } /// \brief The node with the given ID. /// /// Returns the node with the given ID. /// \pre The argument should be a valid node ID in the graph. Node nodeFromId(int) const { return INVALID; } /// \brief The edge with the given ID. /// /// Returns the edge with the given ID. /// \pre The argument should be a valid edge ID in the graph. Edge edgeFromId(int) const { return INVALID; } /// \brief The arc with the given ID. /// /// Returns the arc with the given ID. /// \pre The argument should be a valid arc ID in the graph. Arc arcFromId(int) const { return INVALID; } /// \brief An upper bound on the node IDs. /// /// Returns an upper bound on the node IDs. int maxNodeId() const { return -1; } /// \brief An upper bound on the edge IDs. /// /// Returns an upper bound on the edge IDs. int maxEdgeId() const { return -1; } /// \brief An upper bound on the arc IDs. /// /// Returns an upper bound on the arc IDs. int maxArcId() const { return -1; } /// \brief The direction of the arc. /// /// Returns \c true if the direction of the given arc is the same as /// the inherent orientation of the represented edge. bool direction(Arc) const { return true; } /// \brief Direct the edge. /// /// Direct the given edge. The returned arc /// represents the given edge and its direction comes /// from the bool parameter. If it is \c true, then the direction /// of the arc is the same as the inherent orientation of the edge. Arc direct(Edge, bool) const { return INVALID; } /// \brief Direct the edge. /// /// Direct the given edge. The returned arc represents the given /// edge and its source node is the given node. Arc direct(Edge, Node) const { return INVALID; } /// \brief The oppositely directed arc. /// /// Returns the oppositely directed arc representing the same edge. Arc oppositeArc(Arc) const { return INVALID; } /// \brief The opposite node on the edge. /// /// Returns the opposite node on the given edge. Node oppositeNode(Node, Edge) const { return INVALID; } void first(Node&) const {} void next(Node&) const {} void first(Edge&) const {} void next(Edge&) const {} void first(Arc&) const {} void next(Arc&) const {} void firstOut(Arc&, Node) const {} void nextOut(Arc&) const {} void firstIn(Arc&, Node) const {} void nextIn(Arc&) const {} void firstInc(Edge &, bool &, const Node &) const {} void nextInc(Edge &, bool &) const {} // The second parameter is dummy. Node fromId(int, Node) const { return INVALID; } // The second parameter is dummy. Edge fromId(int, Edge) const { return INVALID; } // The second parameter is dummy. Arc fromId(int, Arc) const { return INVALID; } // Dummy parameter. int maxId(Node) const { return -1; } // Dummy parameter. int maxId(Edge) const { return -1; } // Dummy parameter. int maxId(Arc) const { return -1; } /// \brief The base node of the iterator. /// /// Returns the base node of the given incident edge iterator. Node baseNode(IncEdgeIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given incident edge iterator. Node runningNode(IncEdgeIt) const { return INVALID; } /// \brief The base node of the iterator. /// /// Returns the base node of the given outgoing arc iterator /// (i.e. the source node of the corresponding arc). Node baseNode(OutArcIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given outgoing arc iterator /// (i.e. the target node of the corresponding arc). Node runningNode(OutArcIt) const { return INVALID; } /// \brief The base node of the iterator. /// /// Returns the base node of the given incoming arc iterator /// (i.e. the target node of the corresponding arc). Node baseNode(InArcIt) const { return INVALID; } /// \brief The running node of the iterator. /// /// Returns the running node of the given incoming arc iterator /// (i.e. the source node of the corresponding arc). Node runningNode(InArcIt) const { return INVALID; } template struct Constraints { void constraints() { checkConcept(); checkConcept, _Graph>(); checkConcept, _Graph>(); checkConcept, _Graph>(); } }; }; } } #endif