| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2009 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_CONNECTIVITY_H |
|---|
| 20 | #define LEMON_CONNECTIVITY_H |
|---|
| 21 | |
|---|
| 22 | #include <lemon/dfs.h> |
|---|
| 23 | #include <lemon/bfs.h> |
|---|
| 24 | #include <lemon/core.h> |
|---|
| 25 | #include <lemon/maps.h> |
|---|
| 26 | #include <lemon/adaptors.h> |
|---|
| 27 | |
|---|
| 28 | #include <lemon/concepts/digraph.h> |
|---|
| 29 | #include <lemon/concepts/graph.h> |
|---|
| 30 | #include <lemon/concept_check.h> |
|---|
| 31 | |
|---|
| 32 | #include <stack> |
|---|
| 33 | #include <functional> |
|---|
| 34 | |
|---|
| 35 | /// \ingroup graph_properties |
|---|
| 36 | /// \file |
|---|
| 37 | /// \brief Connectivity algorithms |
|---|
| 38 | /// |
|---|
| 39 | /// Connectivity algorithms |
|---|
| 40 | |
|---|
| 41 | namespace lemon { |
|---|
| 42 | |
|---|
| 43 | /// \ingroup graph_properties |
|---|
| 44 | /// |
|---|
| 45 | /// \brief Check whether the given undirected graph is connected. |
|---|
| 46 | /// |
|---|
| 47 | /// Check whether the given undirected graph is connected. |
|---|
| 48 | /// \param graph The undirected graph. |
|---|
| 49 | /// \return \c true when there is path between any two nodes in the graph. |
|---|
| 50 | /// \note By definition, the empty graph is connected. |
|---|
| 51 | template <typename Graph> |
|---|
| 52 | bool connected(const Graph& graph) { |
|---|
| 53 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 54 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 55 | if (NodeIt(graph) == INVALID) return true; |
|---|
| 56 | Dfs<Graph> dfs(graph); |
|---|
| 57 | dfs.run(NodeIt(graph)); |
|---|
| 58 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 59 | if (!dfs.reached(it)) { |
|---|
| 60 | return false; |
|---|
| 61 | } |
|---|
| 62 | } |
|---|
| 63 | return true; |
|---|
| 64 | } |
|---|
| 65 | |
|---|
| 66 | /// \ingroup graph_properties |
|---|
| 67 | /// |
|---|
| 68 | /// \brief Count the number of connected components of an undirected graph |
|---|
| 69 | /// |
|---|
| 70 | /// Count the number of connected components of an undirected graph |
|---|
| 71 | /// |
|---|
| 72 | /// \param graph The graph. It must be undirected. |
|---|
| 73 | /// \return The number of components |
|---|
| 74 | /// \note By definition, the empty graph consists |
|---|
| 75 | /// of zero connected components. |
|---|
| 76 | template <typename Graph> |
|---|
| 77 | int countConnectedComponents(const Graph &graph) { |
|---|
| 78 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 79 | typedef typename Graph::Node Node; |
|---|
| 80 | typedef typename Graph::Arc Arc; |
|---|
| 81 | |
|---|
| 82 | typedef NullMap<Node, Arc> PredMap; |
|---|
| 83 | typedef NullMap<Node, int> DistMap; |
|---|
| 84 | |
|---|
| 85 | int compNum = 0; |
|---|
| 86 | typename Bfs<Graph>:: |
|---|
| 87 | template SetPredMap<PredMap>:: |
|---|
| 88 | template SetDistMap<DistMap>:: |
|---|
| 89 | Create bfs(graph); |
|---|
| 90 | |
|---|
| 91 | PredMap predMap; |
|---|
| 92 | bfs.predMap(predMap); |
|---|
| 93 | |
|---|
| 94 | DistMap distMap; |
|---|
| 95 | bfs.distMap(distMap); |
|---|
| 96 | |
|---|
| 97 | bfs.init(); |
|---|
| 98 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|---|
| 99 | if (!bfs.reached(n)) { |
|---|
| 100 | bfs.addSource(n); |
|---|
| 101 | bfs.start(); |
|---|
| 102 | ++compNum; |
|---|
| 103 | } |
|---|
| 104 | } |
|---|
| 105 | return compNum; |
|---|
| 106 | } |
|---|
| 107 | |
|---|
| 108 | /// \ingroup graph_properties |
|---|
| 109 | /// |
|---|
| 110 | /// \brief Find the connected components of an undirected graph |
|---|
| 111 | /// |
|---|
| 112 | /// Find the connected components of an undirected graph. |
|---|
| 113 | /// |
|---|
| 114 | /// \image html connected_components.png |
|---|
| 115 | /// \image latex connected_components.eps "Connected components" width=\textwidth |
|---|
| 116 | /// |
|---|
| 117 | /// \param graph The graph. It must be undirected. |
|---|
| 118 | /// \retval compMap A writable node map. The values will be set from 0 to |
|---|
| 119 | /// the number of the connected components minus one. Each values of the map |
|---|
| 120 | /// will be set exactly once, the values of a certain component will be |
|---|
| 121 | /// set continuously. |
|---|
| 122 | /// \return The number of components |
|---|
| 123 | template <class Graph, class NodeMap> |
|---|
| 124 | int connectedComponents(const Graph &graph, NodeMap &compMap) { |
|---|
| 125 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 126 | typedef typename Graph::Node Node; |
|---|
| 127 | typedef typename Graph::Arc Arc; |
|---|
| 128 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|---|
| 129 | |
|---|
| 130 | typedef NullMap<Node, Arc> PredMap; |
|---|
| 131 | typedef NullMap<Node, int> DistMap; |
|---|
| 132 | |
|---|
| 133 | int compNum = 0; |
|---|
| 134 | typename Bfs<Graph>:: |
|---|
| 135 | template SetPredMap<PredMap>:: |
|---|
| 136 | template SetDistMap<DistMap>:: |
|---|
| 137 | Create bfs(graph); |
|---|
| 138 | |
|---|
| 139 | PredMap predMap; |
|---|
| 140 | bfs.predMap(predMap); |
|---|
| 141 | |
|---|
| 142 | DistMap distMap; |
|---|
| 143 | bfs.distMap(distMap); |
|---|
| 144 | |
|---|
| 145 | bfs.init(); |
|---|
| 146 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|---|
| 147 | if(!bfs.reached(n)) { |
|---|
| 148 | bfs.addSource(n); |
|---|
| 149 | while (!bfs.emptyQueue()) { |
|---|
| 150 | compMap.set(bfs.nextNode(), compNum); |
|---|
| 151 | bfs.processNextNode(); |
|---|
| 152 | } |
|---|
| 153 | ++compNum; |
|---|
| 154 | } |
|---|
| 155 | } |
|---|
| 156 | return compNum; |
|---|
| 157 | } |
|---|
| 158 | |
|---|
| 159 | namespace _connectivity_bits { |
|---|
| 160 | |
|---|
| 161 | template <typename Digraph, typename Iterator > |
|---|
| 162 | struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
|---|
| 163 | public: |
|---|
| 164 | typedef typename Digraph::Node Node; |
|---|
| 165 | LeaveOrderVisitor(Iterator it) : _it(it) {} |
|---|
| 166 | |
|---|
| 167 | void leave(const Node& node) { |
|---|
| 168 | *(_it++) = node; |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | private: |
|---|
| 172 | Iterator _it; |
|---|
| 173 | }; |
|---|
| 174 | |
|---|
| 175 | template <typename Digraph, typename Map> |
|---|
| 176 | struct FillMapVisitor : public DfsVisitor<Digraph> { |
|---|
| 177 | public: |
|---|
| 178 | typedef typename Digraph::Node Node; |
|---|
| 179 | typedef typename Map::Value Value; |
|---|
| 180 | |
|---|
| 181 | FillMapVisitor(Map& map, Value& value) |
|---|
| 182 | : _map(map), _value(value) {} |
|---|
| 183 | |
|---|
| 184 | void reach(const Node& node) { |
|---|
| 185 | _map.set(node, _value); |
|---|
| 186 | } |
|---|
| 187 | private: |
|---|
| 188 | Map& _map; |
|---|
| 189 | Value& _value; |
|---|
| 190 | }; |
|---|
| 191 | |
|---|
| 192 | template <typename Digraph, typename ArcMap> |
|---|
| 193 | struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> { |
|---|
| 194 | public: |
|---|
| 195 | typedef typename Digraph::Node Node; |
|---|
| 196 | typedef typename Digraph::Arc Arc; |
|---|
| 197 | |
|---|
| 198 | StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
|---|
| 199 | ArcMap& cutMap, |
|---|
| 200 | int& cutNum) |
|---|
| 201 | : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
|---|
| 202 | _compMap(digraph, -1), _num(-1) { |
|---|
| 203 | } |
|---|
| 204 | |
|---|
| 205 | void start(const Node&) { |
|---|
| 206 | ++_num; |
|---|
| 207 | } |
|---|
| 208 | |
|---|
| 209 | void reach(const Node& node) { |
|---|
| 210 | _compMap.set(node, _num); |
|---|
| 211 | } |
|---|
| 212 | |
|---|
| 213 | void examine(const Arc& arc) { |
|---|
| 214 | if (_compMap[_digraph.source(arc)] != |
|---|
| 215 | _compMap[_digraph.target(arc)]) { |
|---|
| 216 | _cutMap.set(arc, true); |
|---|
| 217 | ++_cutNum; |
|---|
| 218 | } |
|---|
| 219 | } |
|---|
| 220 | private: |
|---|
| 221 | const Digraph& _digraph; |
|---|
| 222 | ArcMap& _cutMap; |
|---|
| 223 | int& _cutNum; |
|---|
| 224 | |
|---|
| 225 | typename Digraph::template NodeMap<int> _compMap; |
|---|
| 226 | int _num; |
|---|
| 227 | }; |
|---|
| 228 | |
|---|
| 229 | } |
|---|
| 230 | |
|---|
| 231 | |
|---|
| 232 | /// \ingroup graph_properties |
|---|
| 233 | /// |
|---|
| 234 | /// \brief Check whether the given directed graph is strongly connected. |
|---|
| 235 | /// |
|---|
| 236 | /// Check whether the given directed graph is strongly connected. The |
|---|
| 237 | /// graph is strongly connected when any two nodes of the graph are |
|---|
| 238 | /// connected with directed paths in both direction. |
|---|
| 239 | /// \return \c false when the graph is not strongly connected. |
|---|
| 240 | /// \see connected |
|---|
| 241 | /// |
|---|
| 242 | /// \note By definition, the empty graph is strongly connected. |
|---|
| 243 | template <typename Digraph> |
|---|
| 244 | bool stronglyConnected(const Digraph& digraph) { |
|---|
| 245 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 246 | |
|---|
| 247 | typedef typename Digraph::Node Node; |
|---|
| 248 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 249 | |
|---|
| 250 | typename Digraph::Node source = NodeIt(digraph); |
|---|
| 251 | if (source == INVALID) return true; |
|---|
| 252 | |
|---|
| 253 | using namespace _connectivity_bits; |
|---|
| 254 | |
|---|
| 255 | typedef DfsVisitor<Digraph> Visitor; |
|---|
| 256 | Visitor visitor; |
|---|
| 257 | |
|---|
| 258 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|---|
| 259 | dfs.init(); |
|---|
| 260 | dfs.addSource(source); |
|---|
| 261 | dfs.start(); |
|---|
| 262 | |
|---|
| 263 | for (NodeIt it(digraph); it != INVALID; ++it) { |
|---|
| 264 | if (!dfs.reached(it)) { |
|---|
| 265 | return false; |
|---|
| 266 | } |
|---|
| 267 | } |
|---|
| 268 | |
|---|
| 269 | typedef ReverseDigraph<const Digraph> RDigraph; |
|---|
| 270 | typedef typename RDigraph::NodeIt RNodeIt; |
|---|
| 271 | RDigraph rdigraph(digraph); |
|---|
| 272 | |
|---|
| 273 | typedef DfsVisitor<Digraph> RVisitor; |
|---|
| 274 | RVisitor rvisitor; |
|---|
| 275 | |
|---|
| 276 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|---|
| 277 | rdfs.init(); |
|---|
| 278 | rdfs.addSource(source); |
|---|
| 279 | rdfs.start(); |
|---|
| 280 | |
|---|
| 281 | for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
|---|
| 282 | if (!rdfs.reached(it)) { |
|---|
| 283 | return false; |
|---|
| 284 | } |
|---|
| 285 | } |
|---|
| 286 | |
|---|
| 287 | return true; |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | /// \ingroup graph_properties |
|---|
| 291 | /// |
|---|
| 292 | /// \brief Count the strongly connected components of a directed graph |
|---|
| 293 | /// |
|---|
| 294 | /// Count the strongly connected components of a directed graph. |
|---|
| 295 | /// The strongly connected components are the classes of an |
|---|
| 296 | /// equivalence relation on the nodes of the graph. Two nodes are in |
|---|
| 297 | /// the same class if they are connected with directed paths in both |
|---|
| 298 | /// direction. |
|---|
| 299 | /// |
|---|
| 300 | /// \param digraph The graph. |
|---|
| 301 | /// \return The number of components |
|---|
| 302 | /// \note By definition, the empty graph has zero |
|---|
| 303 | /// strongly connected components. |
|---|
| 304 | template <typename Digraph> |
|---|
| 305 | int countStronglyConnectedComponents(const Digraph& digraph) { |
|---|
| 306 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 307 | |
|---|
| 308 | using namespace _connectivity_bits; |
|---|
| 309 | |
|---|
| 310 | typedef typename Digraph::Node Node; |
|---|
| 311 | typedef typename Digraph::Arc Arc; |
|---|
| 312 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 313 | typedef typename Digraph::ArcIt ArcIt; |
|---|
| 314 | |
|---|
| 315 | typedef std::vector<Node> Container; |
|---|
| 316 | typedef typename Container::iterator Iterator; |
|---|
| 317 | |
|---|
| 318 | Container nodes(countNodes(digraph)); |
|---|
| 319 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|---|
| 320 | Visitor visitor(nodes.begin()); |
|---|
| 321 | |
|---|
| 322 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|---|
| 323 | dfs.init(); |
|---|
| 324 | for (NodeIt it(digraph); it != INVALID; ++it) { |
|---|
| 325 | if (!dfs.reached(it)) { |
|---|
| 326 | dfs.addSource(it); |
|---|
| 327 | dfs.start(); |
|---|
| 328 | } |
|---|
| 329 | } |
|---|
| 330 | |
|---|
| 331 | typedef typename Container::reverse_iterator RIterator; |
|---|
| 332 | typedef ReverseDigraph<const Digraph> RDigraph; |
|---|
| 333 | |
|---|
| 334 | RDigraph rdigraph(digraph); |
|---|
| 335 | |
|---|
| 336 | typedef DfsVisitor<Digraph> RVisitor; |
|---|
| 337 | RVisitor rvisitor; |
|---|
| 338 | |
|---|
| 339 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|---|
| 340 | |
|---|
| 341 | int compNum = 0; |
|---|
| 342 | |
|---|
| 343 | rdfs.init(); |
|---|
| 344 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
|---|
| 345 | if (!rdfs.reached(*it)) { |
|---|
| 346 | rdfs.addSource(*it); |
|---|
| 347 | rdfs.start(); |
|---|
| 348 | ++compNum; |
|---|
| 349 | } |
|---|
| 350 | } |
|---|
| 351 | return compNum; |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | /// \ingroup graph_properties |
|---|
| 355 | /// |
|---|
| 356 | /// \brief Find the strongly connected components of a directed graph |
|---|
| 357 | /// |
|---|
| 358 | /// Find the strongly connected components of a directed graph. The |
|---|
| 359 | /// strongly connected components are the classes of an equivalence |
|---|
| 360 | /// relation on the nodes of the graph. Two nodes are in |
|---|
| 361 | /// relationship when there are directed paths between them in both |
|---|
| 362 | /// direction. In addition, the numbering of components will satisfy |
|---|
| 363 | /// that there is no arc going from a higher numbered component to |
|---|
| 364 | /// a lower. |
|---|
| 365 | /// |
|---|
| 366 | /// \image html strongly_connected_components.png |
|---|
| 367 | /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
|---|
| 368 | /// |
|---|
| 369 | /// \param digraph The digraph. |
|---|
| 370 | /// \retval compMap A writable node map. The values will be set from 0 to |
|---|
| 371 | /// the number of the strongly connected components minus one. Each value |
|---|
| 372 | /// of the map will be set exactly once, the values of a certain component |
|---|
| 373 | /// will be set continuously. |
|---|
| 374 | /// \return The number of components |
|---|
| 375 | template <typename Digraph, typename NodeMap> |
|---|
| 376 | int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
|---|
| 377 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 378 | typedef typename Digraph::Node Node; |
|---|
| 379 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 380 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|---|
| 381 | |
|---|
| 382 | using namespace _connectivity_bits; |
|---|
| 383 | |
|---|
| 384 | typedef std::vector<Node> Container; |
|---|
| 385 | typedef typename Container::iterator Iterator; |
|---|
| 386 | |
|---|
| 387 | Container nodes(countNodes(digraph)); |
|---|
| 388 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|---|
| 389 | Visitor visitor(nodes.begin()); |
|---|
| 390 | |
|---|
| 391 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|---|
| 392 | dfs.init(); |
|---|
| 393 | for (NodeIt it(digraph); it != INVALID; ++it) { |
|---|
| 394 | if (!dfs.reached(it)) { |
|---|
| 395 | dfs.addSource(it); |
|---|
| 396 | dfs.start(); |
|---|
| 397 | } |
|---|
| 398 | } |
|---|
| 399 | |
|---|
| 400 | typedef typename Container::reverse_iterator RIterator; |
|---|
| 401 | typedef ReverseDigraph<const Digraph> RDigraph; |
|---|
| 402 | |
|---|
| 403 | RDigraph rdigraph(digraph); |
|---|
| 404 | |
|---|
| 405 | int compNum = 0; |
|---|
| 406 | |
|---|
| 407 | typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
|---|
| 408 | RVisitor rvisitor(compMap, compNum); |
|---|
| 409 | |
|---|
| 410 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|---|
| 411 | |
|---|
| 412 | rdfs.init(); |
|---|
| 413 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
|---|
| 414 | if (!rdfs.reached(*it)) { |
|---|
| 415 | rdfs.addSource(*it); |
|---|
| 416 | rdfs.start(); |
|---|
| 417 | ++compNum; |
|---|
| 418 | } |
|---|
| 419 | } |
|---|
| 420 | return compNum; |
|---|
| 421 | } |
|---|
| 422 | |
|---|
| 423 | /// \ingroup graph_properties |
|---|
| 424 | /// |
|---|
| 425 | /// \brief Find the cut arcs of the strongly connected components. |
|---|
| 426 | /// |
|---|
| 427 | /// Find the cut arcs of the strongly connected components. |
|---|
| 428 | /// The strongly connected components are the classes of an equivalence |
|---|
| 429 | /// relation on the nodes of the graph. Two nodes are in relationship |
|---|
| 430 | /// when there are directed paths between them in both direction. |
|---|
| 431 | /// The strongly connected components are separated by the cut arcs. |
|---|
| 432 | /// |
|---|
| 433 | /// \param graph The graph. |
|---|
| 434 | /// \retval cutMap A writable node map. The values will be set true when the |
|---|
| 435 | /// arc is a cut arc. |
|---|
| 436 | /// |
|---|
| 437 | /// \return The number of cut arcs |
|---|
| 438 | template <typename Digraph, typename ArcMap> |
|---|
| 439 | int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) { |
|---|
| 440 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 441 | typedef typename Digraph::Node Node; |
|---|
| 442 | typedef typename Digraph::Arc Arc; |
|---|
| 443 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 444 | checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
|---|
| 445 | |
|---|
| 446 | using namespace _connectivity_bits; |
|---|
| 447 | |
|---|
| 448 | typedef std::vector<Node> Container; |
|---|
| 449 | typedef typename Container::iterator Iterator; |
|---|
| 450 | |
|---|
| 451 | Container nodes(countNodes(graph)); |
|---|
| 452 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|---|
| 453 | Visitor visitor(nodes.begin()); |
|---|
| 454 | |
|---|
| 455 | DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
|---|
| 456 | dfs.init(); |
|---|
| 457 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 458 | if (!dfs.reached(it)) { |
|---|
| 459 | dfs.addSource(it); |
|---|
| 460 | dfs.start(); |
|---|
| 461 | } |
|---|
| 462 | } |
|---|
| 463 | |
|---|
| 464 | typedef typename Container::reverse_iterator RIterator; |
|---|
| 465 | typedef ReverseDigraph<const Digraph> RDigraph; |
|---|
| 466 | |
|---|
| 467 | RDigraph rgraph(graph); |
|---|
| 468 | |
|---|
| 469 | int cutNum = 0; |
|---|
| 470 | |
|---|
| 471 | typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
|---|
| 472 | RVisitor rvisitor(rgraph, cutMap, cutNum); |
|---|
| 473 | |
|---|
| 474 | DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
|---|
| 475 | |
|---|
| 476 | rdfs.init(); |
|---|
| 477 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
|---|
| 478 | if (!rdfs.reached(*it)) { |
|---|
| 479 | rdfs.addSource(*it); |
|---|
| 480 | rdfs.start(); |
|---|
| 481 | } |
|---|
| 482 | } |
|---|
| 483 | return cutNum; |
|---|
| 484 | } |
|---|
| 485 | |
|---|
| 486 | namespace _connectivity_bits { |
|---|
| 487 | |
|---|
| 488 | template <typename Digraph> |
|---|
| 489 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|---|
| 490 | public: |
|---|
| 491 | typedef typename Digraph::Node Node; |
|---|
| 492 | typedef typename Digraph::Arc Arc; |
|---|
| 493 | typedef typename Digraph::Edge Edge; |
|---|
| 494 | |
|---|
| 495 | CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
|---|
| 496 | : _graph(graph), _compNum(compNum), |
|---|
| 497 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|---|
| 498 | |
|---|
| 499 | void start(const Node& node) { |
|---|
| 500 | _predMap.set(node, INVALID); |
|---|
| 501 | } |
|---|
| 502 | |
|---|
| 503 | void reach(const Node& node) { |
|---|
| 504 | _numMap.set(node, _num); |
|---|
| 505 | _retMap.set(node, _num); |
|---|
| 506 | ++_num; |
|---|
| 507 | } |
|---|
| 508 | |
|---|
| 509 | void discover(const Arc& edge) { |
|---|
| 510 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
|---|
| 511 | } |
|---|
| 512 | |
|---|
| 513 | void examine(const Arc& edge) { |
|---|
| 514 | if (_graph.source(edge) == _graph.target(edge) && |
|---|
| 515 | _graph.direction(edge)) { |
|---|
| 516 | ++_compNum; |
|---|
| 517 | return; |
|---|
| 518 | } |
|---|
| 519 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
|---|
| 520 | return; |
|---|
| 521 | } |
|---|
| 522 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
|---|
| 523 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
|---|
| 524 | } |
|---|
| 525 | } |
|---|
| 526 | |
|---|
| 527 | void backtrack(const Arc& edge) { |
|---|
| 528 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 529 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 530 | } |
|---|
| 531 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
|---|
| 532 | ++_compNum; |
|---|
| 533 | } |
|---|
| 534 | } |
|---|
| 535 | |
|---|
| 536 | private: |
|---|
| 537 | const Digraph& _graph; |
|---|
| 538 | int& _compNum; |
|---|
| 539 | |
|---|
| 540 | typename Digraph::template NodeMap<int> _numMap; |
|---|
| 541 | typename Digraph::template NodeMap<int> _retMap; |
|---|
| 542 | typename Digraph::template NodeMap<Node> _predMap; |
|---|
| 543 | int _num; |
|---|
| 544 | }; |
|---|
| 545 | |
|---|
| 546 | template <typename Digraph, typename ArcMap> |
|---|
| 547 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|---|
| 548 | public: |
|---|
| 549 | typedef typename Digraph::Node Node; |
|---|
| 550 | typedef typename Digraph::Arc Arc; |
|---|
| 551 | typedef typename Digraph::Edge Edge; |
|---|
| 552 | |
|---|
| 553 | BiNodeConnectedComponentsVisitor(const Digraph& graph, |
|---|
| 554 | ArcMap& compMap, int &compNum) |
|---|
| 555 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
|---|
| 556 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|---|
| 557 | |
|---|
| 558 | void start(const Node& node) { |
|---|
| 559 | _predMap.set(node, INVALID); |
|---|
| 560 | } |
|---|
| 561 | |
|---|
| 562 | void reach(const Node& node) { |
|---|
| 563 | _numMap.set(node, _num); |
|---|
| 564 | _retMap.set(node, _num); |
|---|
| 565 | ++_num; |
|---|
| 566 | } |
|---|
| 567 | |
|---|
| 568 | void discover(const Arc& edge) { |
|---|
| 569 | Node target = _graph.target(edge); |
|---|
| 570 | _predMap.set(target, edge); |
|---|
| 571 | _edgeStack.push(edge); |
|---|
| 572 | } |
|---|
| 573 | |
|---|
| 574 | void examine(const Arc& edge) { |
|---|
| 575 | Node source = _graph.source(edge); |
|---|
| 576 | Node target = _graph.target(edge); |
|---|
| 577 | if (source == target && _graph.direction(edge)) { |
|---|
| 578 | _compMap.set(edge, _compNum); |
|---|
| 579 | ++_compNum; |
|---|
| 580 | return; |
|---|
| 581 | } |
|---|
| 582 | if (_numMap[target] < _numMap[source]) { |
|---|
| 583 | if (_predMap[source] != _graph.oppositeArc(edge)) { |
|---|
| 584 | _edgeStack.push(edge); |
|---|
| 585 | } |
|---|
| 586 | } |
|---|
| 587 | if (_predMap[source] != INVALID && |
|---|
| 588 | target == _graph.source(_predMap[source])) { |
|---|
| 589 | return; |
|---|
| 590 | } |
|---|
| 591 | if (_retMap[source] > _numMap[target]) { |
|---|
| 592 | _retMap.set(source, _numMap[target]); |
|---|
| 593 | } |
|---|
| 594 | } |
|---|
| 595 | |
|---|
| 596 | void backtrack(const Arc& edge) { |
|---|
| 597 | Node source = _graph.source(edge); |
|---|
| 598 | Node target = _graph.target(edge); |
|---|
| 599 | if (_retMap[source] > _retMap[target]) { |
|---|
| 600 | _retMap.set(source, _retMap[target]); |
|---|
| 601 | } |
|---|
| 602 | if (_numMap[source] <= _retMap[target]) { |
|---|
| 603 | while (_edgeStack.top() != edge) { |
|---|
| 604 | _compMap.set(_edgeStack.top(), _compNum); |
|---|
| 605 | _edgeStack.pop(); |
|---|
| 606 | } |
|---|
| 607 | _compMap.set(edge, _compNum); |
|---|
| 608 | _edgeStack.pop(); |
|---|
| 609 | ++_compNum; |
|---|
| 610 | } |
|---|
| 611 | } |
|---|
| 612 | |
|---|
| 613 | private: |
|---|
| 614 | const Digraph& _graph; |
|---|
| 615 | ArcMap& _compMap; |
|---|
| 616 | int& _compNum; |
|---|
| 617 | |
|---|
| 618 | typename Digraph::template NodeMap<int> _numMap; |
|---|
| 619 | typename Digraph::template NodeMap<int> _retMap; |
|---|
| 620 | typename Digraph::template NodeMap<Arc> _predMap; |
|---|
| 621 | std::stack<Edge> _edgeStack; |
|---|
| 622 | int _num; |
|---|
| 623 | }; |
|---|
| 624 | |
|---|
| 625 | |
|---|
| 626 | template <typename Digraph, typename NodeMap> |
|---|
| 627 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> { |
|---|
| 628 | public: |
|---|
| 629 | typedef typename Digraph::Node Node; |
|---|
| 630 | typedef typename Digraph::Arc Arc; |
|---|
| 631 | typedef typename Digraph::Edge Edge; |
|---|
| 632 | |
|---|
| 633 | BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
|---|
| 634 | int& cutNum) |
|---|
| 635 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
|---|
| 636 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|---|
| 637 | |
|---|
| 638 | void start(const Node& node) { |
|---|
| 639 | _predMap.set(node, INVALID); |
|---|
| 640 | rootCut = false; |
|---|
| 641 | } |
|---|
| 642 | |
|---|
| 643 | void reach(const Node& node) { |
|---|
| 644 | _numMap.set(node, _num); |
|---|
| 645 | _retMap.set(node, _num); |
|---|
| 646 | ++_num; |
|---|
| 647 | } |
|---|
| 648 | |
|---|
| 649 | void discover(const Arc& edge) { |
|---|
| 650 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
|---|
| 651 | } |
|---|
| 652 | |
|---|
| 653 | void examine(const Arc& edge) { |
|---|
| 654 | if (_graph.source(edge) == _graph.target(edge) && |
|---|
| 655 | _graph.direction(edge)) { |
|---|
| 656 | if (!_cutMap[_graph.source(edge)]) { |
|---|
| 657 | _cutMap.set(_graph.source(edge), true); |
|---|
| 658 | ++_cutNum; |
|---|
| 659 | } |
|---|
| 660 | return; |
|---|
| 661 | } |
|---|
| 662 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
|---|
| 663 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
|---|
| 664 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
|---|
| 665 | } |
|---|
| 666 | } |
|---|
| 667 | |
|---|
| 668 | void backtrack(const Arc& edge) { |
|---|
| 669 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 670 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 671 | } |
|---|
| 672 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
|---|
| 673 | if (_predMap[_graph.source(edge)] != INVALID) { |
|---|
| 674 | if (!_cutMap[_graph.source(edge)]) { |
|---|
| 675 | _cutMap.set(_graph.source(edge), true); |
|---|
| 676 | ++_cutNum; |
|---|
| 677 | } |
|---|
| 678 | } else if (rootCut) { |
|---|
| 679 | if (!_cutMap[_graph.source(edge)]) { |
|---|
| 680 | _cutMap.set(_graph.source(edge), true); |
|---|
| 681 | ++_cutNum; |
|---|
| 682 | } |
|---|
| 683 | } else { |
|---|
| 684 | rootCut = true; |
|---|
| 685 | } |
|---|
| 686 | } |
|---|
| 687 | } |
|---|
| 688 | |
|---|
| 689 | private: |
|---|
| 690 | const Digraph& _graph; |
|---|
| 691 | NodeMap& _cutMap; |
|---|
| 692 | int& _cutNum; |
|---|
| 693 | |
|---|
| 694 | typename Digraph::template NodeMap<int> _numMap; |
|---|
| 695 | typename Digraph::template NodeMap<int> _retMap; |
|---|
| 696 | typename Digraph::template NodeMap<Node> _predMap; |
|---|
| 697 | std::stack<Edge> _edgeStack; |
|---|
| 698 | int _num; |
|---|
| 699 | bool rootCut; |
|---|
| 700 | }; |
|---|
| 701 | |
|---|
| 702 | } |
|---|
| 703 | |
|---|
| 704 | template <typename Graph> |
|---|
| 705 | int countBiNodeConnectedComponents(const Graph& graph); |
|---|
| 706 | |
|---|
| 707 | /// \ingroup graph_properties |
|---|
| 708 | /// |
|---|
| 709 | /// \brief Checks the graph is bi-node-connected. |
|---|
| 710 | /// |
|---|
| 711 | /// This function checks that the undirected graph is bi-node-connected |
|---|
| 712 | /// graph. The graph is bi-node-connected if any two undirected edge is |
|---|
| 713 | /// on same circle. |
|---|
| 714 | /// |
|---|
| 715 | /// \param graph The graph. |
|---|
| 716 | /// \return \c true when the graph bi-node-connected. |
|---|
| 717 | template <typename Graph> |
|---|
| 718 | bool biNodeConnected(const Graph& graph) { |
|---|
| 719 | return countBiNodeConnectedComponents(graph) <= 1; |
|---|
| 720 | } |
|---|
| 721 | |
|---|
| 722 | /// \ingroup graph_properties |
|---|
| 723 | /// |
|---|
| 724 | /// \brief Count the biconnected components. |
|---|
| 725 | /// |
|---|
| 726 | /// This function finds the bi-node-connected components in an undirected |
|---|
| 727 | /// graph. The biconnected components are the classes of an equivalence |
|---|
| 728 | /// relation on the undirected edges. Two undirected edge is in relationship |
|---|
| 729 | /// when they are on same circle. |
|---|
| 730 | /// |
|---|
| 731 | /// \param graph The graph. |
|---|
| 732 | /// \return The number of components. |
|---|
| 733 | template <typename Graph> |
|---|
| 734 | int countBiNodeConnectedComponents(const Graph& graph) { |
|---|
| 735 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 736 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 737 | |
|---|
| 738 | using namespace _connectivity_bits; |
|---|
| 739 | |
|---|
| 740 | typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
|---|
| 741 | |
|---|
| 742 | int compNum = 0; |
|---|
| 743 | Visitor visitor(graph, compNum); |
|---|
| 744 | |
|---|
| 745 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|---|
| 746 | dfs.init(); |
|---|
| 747 | |
|---|
| 748 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 749 | if (!dfs.reached(it)) { |
|---|
| 750 | dfs.addSource(it); |
|---|
| 751 | dfs.start(); |
|---|
| 752 | } |
|---|
| 753 | } |
|---|
| 754 | return compNum; |
|---|
| 755 | } |
|---|
| 756 | |
|---|
| 757 | /// \ingroup graph_properties |
|---|
| 758 | /// |
|---|
| 759 | /// \brief Find the bi-node-connected components. |
|---|
| 760 | /// |
|---|
| 761 | /// This function finds the bi-node-connected components in an undirected |
|---|
| 762 | /// graph. The bi-node-connected components are the classes of an equivalence |
|---|
| 763 | /// relation on the undirected edges. Two undirected edge are in relationship |
|---|
| 764 | /// when they are on same circle. |
|---|
| 765 | /// |
|---|
| 766 | /// \image html node_biconnected_components.png |
|---|
| 767 | /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
|---|
| 768 | /// |
|---|
| 769 | /// \param graph The graph. |
|---|
| 770 | /// \retval compMap A writable uedge map. The values will be set from 0 |
|---|
| 771 | /// to the number of the biconnected components minus one. Each values |
|---|
| 772 | /// of the map will be set exactly once, the values of a certain component |
|---|
| 773 | /// will be set continuously. |
|---|
| 774 | /// \return The number of components. |
|---|
| 775 | template <typename Graph, typename EdgeMap> |
|---|
| 776 | int biNodeConnectedComponents(const Graph& graph, |
|---|
| 777 | EdgeMap& compMap) { |
|---|
| 778 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 779 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 780 | typedef typename Graph::Edge Edge; |
|---|
| 781 | checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
|---|
| 782 | |
|---|
| 783 | using namespace _connectivity_bits; |
|---|
| 784 | |
|---|
| 785 | typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
|---|
| 786 | |
|---|
| 787 | int compNum = 0; |
|---|
| 788 | Visitor visitor(graph, compMap, compNum); |
|---|
| 789 | |
|---|
| 790 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|---|
| 791 | dfs.init(); |
|---|
| 792 | |
|---|
| 793 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 794 | if (!dfs.reached(it)) { |
|---|
| 795 | dfs.addSource(it); |
|---|
| 796 | dfs.start(); |
|---|
| 797 | } |
|---|
| 798 | } |
|---|
| 799 | return compNum; |
|---|
| 800 | } |
|---|
| 801 | |
|---|
| 802 | /// \ingroup graph_properties |
|---|
| 803 | /// |
|---|
| 804 | /// \brief Find the bi-node-connected cut nodes. |
|---|
| 805 | /// |
|---|
| 806 | /// This function finds the bi-node-connected cut nodes in an undirected |
|---|
| 807 | /// graph. The bi-node-connected components are the classes of an equivalence |
|---|
| 808 | /// relation on the undirected edges. Two undirected edges are in |
|---|
| 809 | /// relationship when they are on same circle. The biconnected components |
|---|
| 810 | /// are separted by nodes which are the cut nodes of the components. |
|---|
| 811 | /// |
|---|
| 812 | /// \param graph The graph. |
|---|
| 813 | /// \retval cutMap A writable edge map. The values will be set true when |
|---|
| 814 | /// the node separate two or more components. |
|---|
| 815 | /// \return The number of the cut nodes. |
|---|
| 816 | template <typename Graph, typename NodeMap> |
|---|
| 817 | int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
|---|
| 818 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 819 | typedef typename Graph::Node Node; |
|---|
| 820 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 821 | checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
|---|
| 822 | |
|---|
| 823 | using namespace _connectivity_bits; |
|---|
| 824 | |
|---|
| 825 | typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
|---|
| 826 | |
|---|
| 827 | int cutNum = 0; |
|---|
| 828 | Visitor visitor(graph, cutMap, cutNum); |
|---|
| 829 | |
|---|
| 830 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|---|
| 831 | dfs.init(); |
|---|
| 832 | |
|---|
| 833 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 834 | if (!dfs.reached(it)) { |
|---|
| 835 | dfs.addSource(it); |
|---|
| 836 | dfs.start(); |
|---|
| 837 | } |
|---|
| 838 | } |
|---|
| 839 | return cutNum; |
|---|
| 840 | } |
|---|
| 841 | |
|---|
| 842 | namespace _connectivity_bits { |
|---|
| 843 | |
|---|
| 844 | template <typename Digraph> |
|---|
| 845 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|---|
| 846 | public: |
|---|
| 847 | typedef typename Digraph::Node Node; |
|---|
| 848 | typedef typename Digraph::Arc Arc; |
|---|
| 849 | typedef typename Digraph::Edge Edge; |
|---|
| 850 | |
|---|
| 851 | CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
|---|
| 852 | : _graph(graph), _compNum(compNum), |
|---|
| 853 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|---|
| 854 | |
|---|
| 855 | void start(const Node& node) { |
|---|
| 856 | _predMap.set(node, INVALID); |
|---|
| 857 | } |
|---|
| 858 | |
|---|
| 859 | void reach(const Node& node) { |
|---|
| 860 | _numMap.set(node, _num); |
|---|
| 861 | _retMap.set(node, _num); |
|---|
| 862 | ++_num; |
|---|
| 863 | } |
|---|
| 864 | |
|---|
| 865 | void leave(const Node& node) { |
|---|
| 866 | if (_numMap[node] <= _retMap[node]) { |
|---|
| 867 | ++_compNum; |
|---|
| 868 | } |
|---|
| 869 | } |
|---|
| 870 | |
|---|
| 871 | void discover(const Arc& edge) { |
|---|
| 872 | _predMap.set(_graph.target(edge), edge); |
|---|
| 873 | } |
|---|
| 874 | |
|---|
| 875 | void examine(const Arc& edge) { |
|---|
| 876 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
|---|
| 877 | return; |
|---|
| 878 | } |
|---|
| 879 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 880 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 881 | } |
|---|
| 882 | } |
|---|
| 883 | |
|---|
| 884 | void backtrack(const Arc& edge) { |
|---|
| 885 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 886 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 887 | } |
|---|
| 888 | } |
|---|
| 889 | |
|---|
| 890 | private: |
|---|
| 891 | const Digraph& _graph; |
|---|
| 892 | int& _compNum; |
|---|
| 893 | |
|---|
| 894 | typename Digraph::template NodeMap<int> _numMap; |
|---|
| 895 | typename Digraph::template NodeMap<int> _retMap; |
|---|
| 896 | typename Digraph::template NodeMap<Arc> _predMap; |
|---|
| 897 | int _num; |
|---|
| 898 | }; |
|---|
| 899 | |
|---|
| 900 | template <typename Digraph, typename NodeMap> |
|---|
| 901 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|---|
| 902 | public: |
|---|
| 903 | typedef typename Digraph::Node Node; |
|---|
| 904 | typedef typename Digraph::Arc Arc; |
|---|
| 905 | typedef typename Digraph::Edge Edge; |
|---|
| 906 | |
|---|
| 907 | BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
|---|
| 908 | NodeMap& compMap, int &compNum) |
|---|
| 909 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
|---|
| 910 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|---|
| 911 | |
|---|
| 912 | void start(const Node& node) { |
|---|
| 913 | _predMap.set(node, INVALID); |
|---|
| 914 | } |
|---|
| 915 | |
|---|
| 916 | void reach(const Node& node) { |
|---|
| 917 | _numMap.set(node, _num); |
|---|
| 918 | _retMap.set(node, _num); |
|---|
| 919 | _nodeStack.push(node); |
|---|
| 920 | ++_num; |
|---|
| 921 | } |
|---|
| 922 | |
|---|
| 923 | void leave(const Node& node) { |
|---|
| 924 | if (_numMap[node] <= _retMap[node]) { |
|---|
| 925 | while (_nodeStack.top() != node) { |
|---|
| 926 | _compMap.set(_nodeStack.top(), _compNum); |
|---|
| 927 | _nodeStack.pop(); |
|---|
| 928 | } |
|---|
| 929 | _compMap.set(node, _compNum); |
|---|
| 930 | _nodeStack.pop(); |
|---|
| 931 | ++_compNum; |
|---|
| 932 | } |
|---|
| 933 | } |
|---|
| 934 | |
|---|
| 935 | void discover(const Arc& edge) { |
|---|
| 936 | _predMap.set(_graph.target(edge), edge); |
|---|
| 937 | } |
|---|
| 938 | |
|---|
| 939 | void examine(const Arc& edge) { |
|---|
| 940 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
|---|
| 941 | return; |
|---|
| 942 | } |
|---|
| 943 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 944 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 945 | } |
|---|
| 946 | } |
|---|
| 947 | |
|---|
| 948 | void backtrack(const Arc& edge) { |
|---|
| 949 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 950 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 951 | } |
|---|
| 952 | } |
|---|
| 953 | |
|---|
| 954 | private: |
|---|
| 955 | const Digraph& _graph; |
|---|
| 956 | NodeMap& _compMap; |
|---|
| 957 | int& _compNum; |
|---|
| 958 | |
|---|
| 959 | typename Digraph::template NodeMap<int> _numMap; |
|---|
| 960 | typename Digraph::template NodeMap<int> _retMap; |
|---|
| 961 | typename Digraph::template NodeMap<Arc> _predMap; |
|---|
| 962 | std::stack<Node> _nodeStack; |
|---|
| 963 | int _num; |
|---|
| 964 | }; |
|---|
| 965 | |
|---|
| 966 | |
|---|
| 967 | template <typename Digraph, typename ArcMap> |
|---|
| 968 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
|---|
| 969 | public: |
|---|
| 970 | typedef typename Digraph::Node Node; |
|---|
| 971 | typedef typename Digraph::Arc Arc; |
|---|
| 972 | typedef typename Digraph::Edge Edge; |
|---|
| 973 | |
|---|
| 974 | BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
|---|
| 975 | ArcMap& cutMap, int &cutNum) |
|---|
| 976 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
|---|
| 977 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|---|
| 978 | |
|---|
| 979 | void start(const Node& node) { |
|---|
| 980 | _predMap[node] = INVALID; |
|---|
| 981 | } |
|---|
| 982 | |
|---|
| 983 | void reach(const Node& node) { |
|---|
| 984 | _numMap.set(node, _num); |
|---|
| 985 | _retMap.set(node, _num); |
|---|
| 986 | ++_num; |
|---|
| 987 | } |
|---|
| 988 | |
|---|
| 989 | void leave(const Node& node) { |
|---|
| 990 | if (_numMap[node] <= _retMap[node]) { |
|---|
| 991 | if (_predMap[node] != INVALID) { |
|---|
| 992 | _cutMap.set(_predMap[node], true); |
|---|
| 993 | ++_cutNum; |
|---|
| 994 | } |
|---|
| 995 | } |
|---|
| 996 | } |
|---|
| 997 | |
|---|
| 998 | void discover(const Arc& edge) { |
|---|
| 999 | _predMap.set(_graph.target(edge), edge); |
|---|
| 1000 | } |
|---|
| 1001 | |
|---|
| 1002 | void examine(const Arc& edge) { |
|---|
| 1003 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
|---|
| 1004 | return; |
|---|
| 1005 | } |
|---|
| 1006 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 1007 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 1008 | } |
|---|
| 1009 | } |
|---|
| 1010 | |
|---|
| 1011 | void backtrack(const Arc& edge) { |
|---|
| 1012 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|---|
| 1013 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|---|
| 1014 | } |
|---|
| 1015 | } |
|---|
| 1016 | |
|---|
| 1017 | private: |
|---|
| 1018 | const Digraph& _graph; |
|---|
| 1019 | ArcMap& _cutMap; |
|---|
| 1020 | int& _cutNum; |
|---|
| 1021 | |
|---|
| 1022 | typename Digraph::template NodeMap<int> _numMap; |
|---|
| 1023 | typename Digraph::template NodeMap<int> _retMap; |
|---|
| 1024 | typename Digraph::template NodeMap<Arc> _predMap; |
|---|
| 1025 | int _num; |
|---|
| 1026 | }; |
|---|
| 1027 | } |
|---|
| 1028 | |
|---|
| 1029 | template <typename Graph> |
|---|
| 1030 | int countBiEdgeConnectedComponents(const Graph& graph); |
|---|
| 1031 | |
|---|
| 1032 | /// \ingroup graph_properties |
|---|
| 1033 | /// |
|---|
| 1034 | /// \brief Checks that the graph is bi-edge-connected. |
|---|
| 1035 | /// |
|---|
| 1036 | /// This function checks that the graph is bi-edge-connected. The undirected |
|---|
| 1037 | /// graph is bi-edge-connected when any two nodes are connected with two |
|---|
| 1038 | /// edge-disjoint paths. |
|---|
| 1039 | /// |
|---|
| 1040 | /// \param graph The undirected graph. |
|---|
| 1041 | /// \return The number of components. |
|---|
| 1042 | template <typename Graph> |
|---|
| 1043 | bool biEdgeConnected(const Graph& graph) { |
|---|
| 1044 | return countBiEdgeConnectedComponents(graph) <= 1; |
|---|
| 1045 | } |
|---|
| 1046 | |
|---|
| 1047 | /// \ingroup graph_properties |
|---|
| 1048 | /// |
|---|
| 1049 | /// \brief Count the bi-edge-connected components. |
|---|
| 1050 | /// |
|---|
| 1051 | /// This function count the bi-edge-connected components in an undirected |
|---|
| 1052 | /// graph. The bi-edge-connected components are the classes of an equivalence |
|---|
| 1053 | /// relation on the nodes. Two nodes are in relationship when they are |
|---|
| 1054 | /// connected with at least two edge-disjoint paths. |
|---|
| 1055 | /// |
|---|
| 1056 | /// \param graph The undirected graph. |
|---|
| 1057 | /// \return The number of components. |
|---|
| 1058 | template <typename Graph> |
|---|
| 1059 | int countBiEdgeConnectedComponents(const Graph& graph) { |
|---|
| 1060 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1061 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1062 | |
|---|
| 1063 | using namespace _connectivity_bits; |
|---|
| 1064 | |
|---|
| 1065 | typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
|---|
| 1066 | |
|---|
| 1067 | int compNum = 0; |
|---|
| 1068 | Visitor visitor(graph, compNum); |
|---|
| 1069 | |
|---|
| 1070 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|---|
| 1071 | dfs.init(); |
|---|
| 1072 | |
|---|
| 1073 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1074 | if (!dfs.reached(it)) { |
|---|
| 1075 | dfs.addSource(it); |
|---|
| 1076 | dfs.start(); |
|---|
| 1077 | } |
|---|
| 1078 | } |
|---|
| 1079 | return compNum; |
|---|
| 1080 | } |
|---|
| 1081 | |
|---|
| 1082 | /// \ingroup graph_properties |
|---|
| 1083 | /// |
|---|
| 1084 | /// \brief Find the bi-edge-connected components. |
|---|
| 1085 | /// |
|---|
| 1086 | /// This function finds the bi-edge-connected components in an undirected |
|---|
| 1087 | /// graph. The bi-edge-connected components are the classes of an equivalence |
|---|
| 1088 | /// relation on the nodes. Two nodes are in relationship when they are |
|---|
| 1089 | /// connected at least two edge-disjoint paths. |
|---|
| 1090 | /// |
|---|
| 1091 | /// \image html edge_biconnected_components.png |
|---|
| 1092 | /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|---|
| 1093 | /// |
|---|
| 1094 | /// \param graph The graph. |
|---|
| 1095 | /// \retval compMap A writable node map. The values will be set from 0 to |
|---|
| 1096 | /// the number of the biconnected components minus one. Each values |
|---|
| 1097 | /// of the map will be set exactly once, the values of a certain component |
|---|
| 1098 | /// will be set continuously. |
|---|
| 1099 | /// \return The number of components. |
|---|
| 1100 | template <typename Graph, typename NodeMap> |
|---|
| 1101 | int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
|---|
| 1102 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1103 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1104 | typedef typename Graph::Node Node; |
|---|
| 1105 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|---|
| 1106 | |
|---|
| 1107 | using namespace _connectivity_bits; |
|---|
| 1108 | |
|---|
| 1109 | typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
|---|
| 1110 | |
|---|
| 1111 | int compNum = 0; |
|---|
| 1112 | Visitor visitor(graph, compMap, compNum); |
|---|
| 1113 | |
|---|
| 1114 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|---|
| 1115 | dfs.init(); |
|---|
| 1116 | |
|---|
| 1117 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1118 | if (!dfs.reached(it)) { |
|---|
| 1119 | dfs.addSource(it); |
|---|
| 1120 | dfs.start(); |
|---|
| 1121 | } |
|---|
| 1122 | } |
|---|
| 1123 | return compNum; |
|---|
| 1124 | } |
|---|
| 1125 | |
|---|
| 1126 | /// \ingroup graph_properties |
|---|
| 1127 | /// |
|---|
| 1128 | /// \brief Find the bi-edge-connected cut edges. |
|---|
| 1129 | /// |
|---|
| 1130 | /// This function finds the bi-edge-connected components in an undirected |
|---|
| 1131 | /// graph. The bi-edge-connected components are the classes of an equivalence |
|---|
| 1132 | /// relation on the nodes. Two nodes are in relationship when they are |
|---|
| 1133 | /// connected with at least two edge-disjoint paths. The bi-edge-connected |
|---|
| 1134 | /// components are separted by edges which are the cut edges of the |
|---|
| 1135 | /// components. |
|---|
| 1136 | /// |
|---|
| 1137 | /// \param graph The graph. |
|---|
| 1138 | /// \retval cutMap A writable node map. The values will be set true when the |
|---|
| 1139 | /// edge is a cut edge. |
|---|
| 1140 | /// \return The number of cut edges. |
|---|
| 1141 | template <typename Graph, typename EdgeMap> |
|---|
| 1142 | int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
|---|
| 1143 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1144 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1145 | typedef typename Graph::Edge Edge; |
|---|
| 1146 | checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
|---|
| 1147 | |
|---|
| 1148 | using namespace _connectivity_bits; |
|---|
| 1149 | |
|---|
| 1150 | typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
|---|
| 1151 | |
|---|
| 1152 | int cutNum = 0; |
|---|
| 1153 | Visitor visitor(graph, cutMap, cutNum); |
|---|
| 1154 | |
|---|
| 1155 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|---|
| 1156 | dfs.init(); |
|---|
| 1157 | |
|---|
| 1158 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1159 | if (!dfs.reached(it)) { |
|---|
| 1160 | dfs.addSource(it); |
|---|
| 1161 | dfs.start(); |
|---|
| 1162 | } |
|---|
| 1163 | } |
|---|
| 1164 | return cutNum; |
|---|
| 1165 | } |
|---|
| 1166 | |
|---|
| 1167 | |
|---|
| 1168 | namespace _connectivity_bits { |
|---|
| 1169 | |
|---|
| 1170 | template <typename Digraph, typename IntNodeMap> |
|---|
| 1171 | class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
|---|
| 1172 | public: |
|---|
| 1173 | typedef typename Digraph::Node Node; |
|---|
| 1174 | typedef typename Digraph::Arc edge; |
|---|
| 1175 | |
|---|
| 1176 | TopologicalSortVisitor(IntNodeMap& order, int num) |
|---|
| 1177 | : _order(order), _num(num) {} |
|---|
| 1178 | |
|---|
| 1179 | void leave(const Node& node) { |
|---|
| 1180 | _order.set(node, --_num); |
|---|
| 1181 | } |
|---|
| 1182 | |
|---|
| 1183 | private: |
|---|
| 1184 | IntNodeMap& _order; |
|---|
| 1185 | int _num; |
|---|
| 1186 | }; |
|---|
| 1187 | |
|---|
| 1188 | } |
|---|
| 1189 | |
|---|
| 1190 | /// \ingroup graph_properties |
|---|
| 1191 | /// |
|---|
| 1192 | /// \brief Sort the nodes of a DAG into topolgical order. |
|---|
| 1193 | /// |
|---|
| 1194 | /// Sort the nodes of a DAG into topolgical order. |
|---|
| 1195 | /// |
|---|
| 1196 | /// \param graph The graph. It must be directed and acyclic. |
|---|
| 1197 | /// \retval order A writable node map. The values will be set from 0 to |
|---|
| 1198 | /// the number of the nodes in the graph minus one. Each values of the map |
|---|
| 1199 | /// will be set exactly once, the values will be set descending order. |
|---|
| 1200 | /// |
|---|
| 1201 | /// \see checkedTopologicalSort |
|---|
| 1202 | /// \see dag |
|---|
| 1203 | template <typename Digraph, typename NodeMap> |
|---|
| 1204 | void topologicalSort(const Digraph& graph, NodeMap& order) { |
|---|
| 1205 | using namespace _connectivity_bits; |
|---|
| 1206 | |
|---|
| 1207 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 1208 | checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
|---|
| 1209 | |
|---|
| 1210 | typedef typename Digraph::Node Node; |
|---|
| 1211 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 1212 | typedef typename Digraph::Arc Arc; |
|---|
| 1213 | |
|---|
| 1214 | TopologicalSortVisitor<Digraph, NodeMap> |
|---|
| 1215 | visitor(order, countNodes(graph)); |
|---|
| 1216 | |
|---|
| 1217 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
|---|
| 1218 | dfs(graph, visitor); |
|---|
| 1219 | |
|---|
| 1220 | dfs.init(); |
|---|
| 1221 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1222 | if (!dfs.reached(it)) { |
|---|
| 1223 | dfs.addSource(it); |
|---|
| 1224 | dfs.start(); |
|---|
| 1225 | } |
|---|
| 1226 | } |
|---|
| 1227 | } |
|---|
| 1228 | |
|---|
| 1229 | /// \ingroup graph_properties |
|---|
| 1230 | /// |
|---|
| 1231 | /// \brief Sort the nodes of a DAG into topolgical order. |
|---|
| 1232 | /// |
|---|
| 1233 | /// Sort the nodes of a DAG into topolgical order. It also checks |
|---|
| 1234 | /// that the given graph is DAG. |
|---|
| 1235 | /// |
|---|
| 1236 | /// \param digraph The graph. It must be directed and acyclic. |
|---|
| 1237 | /// \retval order A readable - writable node map. The values will be set |
|---|
| 1238 | /// from 0 to the number of the nodes in the graph minus one. Each values |
|---|
| 1239 | /// of the map will be set exactly once, the values will be set descending |
|---|
| 1240 | /// order. |
|---|
| 1241 | /// \return \c false when the graph is not DAG. |
|---|
| 1242 | /// |
|---|
| 1243 | /// \see topologicalSort |
|---|
| 1244 | /// \see dag |
|---|
| 1245 | template <typename Digraph, typename NodeMap> |
|---|
| 1246 | bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
|---|
| 1247 | using namespace _connectivity_bits; |
|---|
| 1248 | |
|---|
| 1249 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 1250 | checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
|---|
| 1251 | NodeMap>(); |
|---|
| 1252 | |
|---|
| 1253 | typedef typename Digraph::Node Node; |
|---|
| 1254 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 1255 | typedef typename Digraph::Arc Arc; |
|---|
| 1256 | |
|---|
| 1257 | for (NodeIt it(digraph); it != INVALID; ++it) { |
|---|
| 1258 | order.set(it, -1); |
|---|
| 1259 | } |
|---|
| 1260 | |
|---|
| 1261 | TopologicalSortVisitor<Digraph, NodeMap> |
|---|
| 1262 | visitor(order, countNodes(digraph)); |
|---|
| 1263 | |
|---|
| 1264 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
|---|
| 1265 | dfs(digraph, visitor); |
|---|
| 1266 | |
|---|
| 1267 | dfs.init(); |
|---|
| 1268 | for (NodeIt it(digraph); it != INVALID; ++it) { |
|---|
| 1269 | if (!dfs.reached(it)) { |
|---|
| 1270 | dfs.addSource(it); |
|---|
| 1271 | while (!dfs.emptyQueue()) { |
|---|
| 1272 | Arc arc = dfs.nextArc(); |
|---|
| 1273 | Node target = digraph.target(arc); |
|---|
| 1274 | if (dfs.reached(target) && order[target] == -1) { |
|---|
| 1275 | return false; |
|---|
| 1276 | } |
|---|
| 1277 | dfs.processNextArc(); |
|---|
| 1278 | } |
|---|
| 1279 | } |
|---|
| 1280 | } |
|---|
| 1281 | return true; |
|---|
| 1282 | } |
|---|
| 1283 | |
|---|
| 1284 | /// \ingroup graph_properties |
|---|
| 1285 | /// |
|---|
| 1286 | /// \brief Check that the given directed graph is a DAG. |
|---|
| 1287 | /// |
|---|
| 1288 | /// Check that the given directed graph is a DAG. The DAG is |
|---|
| 1289 | /// an Directed Acyclic Digraph. |
|---|
| 1290 | /// \return \c false when the graph is not DAG. |
|---|
| 1291 | /// \see acyclic |
|---|
| 1292 | template <typename Digraph> |
|---|
| 1293 | bool dag(const Digraph& digraph) { |
|---|
| 1294 | |
|---|
| 1295 | checkConcept<concepts::Digraph, Digraph>(); |
|---|
| 1296 | |
|---|
| 1297 | typedef typename Digraph::Node Node; |
|---|
| 1298 | typedef typename Digraph::NodeIt NodeIt; |
|---|
| 1299 | typedef typename Digraph::Arc Arc; |
|---|
| 1300 | |
|---|
| 1301 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|---|
| 1302 | |
|---|
| 1303 | typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|---|
| 1304 | Create dfs(digraph); |
|---|
| 1305 | |
|---|
| 1306 | ProcessedMap processed(digraph); |
|---|
| 1307 | dfs.processedMap(processed); |
|---|
| 1308 | |
|---|
| 1309 | dfs.init(); |
|---|
| 1310 | for (NodeIt it(digraph); it != INVALID; ++it) { |
|---|
| 1311 | if (!dfs.reached(it)) { |
|---|
| 1312 | dfs.addSource(it); |
|---|
| 1313 | while (!dfs.emptyQueue()) { |
|---|
| 1314 | Arc edge = dfs.nextArc(); |
|---|
| 1315 | Node target = digraph.target(edge); |
|---|
| 1316 | if (dfs.reached(target) && !processed[target]) { |
|---|
| 1317 | return false; |
|---|
| 1318 | } |
|---|
| 1319 | dfs.processNextArc(); |
|---|
| 1320 | } |
|---|
| 1321 | } |
|---|
| 1322 | } |
|---|
| 1323 | return true; |
|---|
| 1324 | } |
|---|
| 1325 | |
|---|
| 1326 | /// \ingroup graph_properties |
|---|
| 1327 | /// |
|---|
| 1328 | /// \brief Check that the given undirected graph is acyclic. |
|---|
| 1329 | /// |
|---|
| 1330 | /// Check that the given undirected graph acyclic. |
|---|
| 1331 | /// \param graph The undirected graph. |
|---|
| 1332 | /// \return \c true when there is no circle in the graph. |
|---|
| 1333 | /// \see dag |
|---|
| 1334 | template <typename Graph> |
|---|
| 1335 | bool acyclic(const Graph& graph) { |
|---|
| 1336 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1337 | typedef typename Graph::Node Node; |
|---|
| 1338 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1339 | typedef typename Graph::Arc Arc; |
|---|
| 1340 | Dfs<Graph> dfs(graph); |
|---|
| 1341 | dfs.init(); |
|---|
| 1342 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1343 | if (!dfs.reached(it)) { |
|---|
| 1344 | dfs.addSource(it); |
|---|
| 1345 | while (!dfs.emptyQueue()) { |
|---|
| 1346 | Arc edge = dfs.nextArc(); |
|---|
| 1347 | Node source = graph.source(edge); |
|---|
| 1348 | Node target = graph.target(edge); |
|---|
| 1349 | if (dfs.reached(target) && |
|---|
| 1350 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
|---|
| 1351 | return false; |
|---|
| 1352 | } |
|---|
| 1353 | dfs.processNextArc(); |
|---|
| 1354 | } |
|---|
| 1355 | } |
|---|
| 1356 | } |
|---|
| 1357 | return true; |
|---|
| 1358 | } |
|---|
| 1359 | |
|---|
| 1360 | /// \ingroup graph_properties |
|---|
| 1361 | /// |
|---|
| 1362 | /// \brief Check that the given undirected graph is tree. |
|---|
| 1363 | /// |
|---|
| 1364 | /// Check that the given undirected graph is tree. |
|---|
| 1365 | /// \param graph The undirected graph. |
|---|
| 1366 | /// \return \c true when the graph is acyclic and connected. |
|---|
| 1367 | template <typename Graph> |
|---|
| 1368 | bool tree(const Graph& graph) { |
|---|
| 1369 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1370 | typedef typename Graph::Node Node; |
|---|
| 1371 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1372 | typedef typename Graph::Arc Arc; |
|---|
| 1373 | if (NodeIt(graph) == INVALID) return true; |
|---|
| 1374 | Dfs<Graph> dfs(graph); |
|---|
| 1375 | dfs.init(); |
|---|
| 1376 | dfs.addSource(NodeIt(graph)); |
|---|
| 1377 | while (!dfs.emptyQueue()) { |
|---|
| 1378 | Arc edge = dfs.nextArc(); |
|---|
| 1379 | Node source = graph.source(edge); |
|---|
| 1380 | Node target = graph.target(edge); |
|---|
| 1381 | if (dfs.reached(target) && |
|---|
| 1382 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
|---|
| 1383 | return false; |
|---|
| 1384 | } |
|---|
| 1385 | dfs.processNextArc(); |
|---|
| 1386 | } |
|---|
| 1387 | for (NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1388 | if (!dfs.reached(it)) { |
|---|
| 1389 | return false; |
|---|
| 1390 | } |
|---|
| 1391 | } |
|---|
| 1392 | return true; |
|---|
| 1393 | } |
|---|
| 1394 | |
|---|
| 1395 | namespace _connectivity_bits { |
|---|
| 1396 | |
|---|
| 1397 | template <typename Digraph> |
|---|
| 1398 | class BipartiteVisitor : public BfsVisitor<Digraph> { |
|---|
| 1399 | public: |
|---|
| 1400 | typedef typename Digraph::Arc Arc; |
|---|
| 1401 | typedef typename Digraph::Node Node; |
|---|
| 1402 | |
|---|
| 1403 | BipartiteVisitor(const Digraph& graph, bool& bipartite) |
|---|
| 1404 | : _graph(graph), _part(graph), _bipartite(bipartite) {} |
|---|
| 1405 | |
|---|
| 1406 | void start(const Node& node) { |
|---|
| 1407 | _part[node] = true; |
|---|
| 1408 | } |
|---|
| 1409 | void discover(const Arc& edge) { |
|---|
| 1410 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
|---|
| 1411 | } |
|---|
| 1412 | void examine(const Arc& edge) { |
|---|
| 1413 | _bipartite = _bipartite && |
|---|
| 1414 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
|---|
| 1415 | } |
|---|
| 1416 | |
|---|
| 1417 | private: |
|---|
| 1418 | |
|---|
| 1419 | const Digraph& _graph; |
|---|
| 1420 | typename Digraph::template NodeMap<bool> _part; |
|---|
| 1421 | bool& _bipartite; |
|---|
| 1422 | }; |
|---|
| 1423 | |
|---|
| 1424 | template <typename Digraph, typename PartMap> |
|---|
| 1425 | class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
|---|
| 1426 | public: |
|---|
| 1427 | typedef typename Digraph::Arc Arc; |
|---|
| 1428 | typedef typename Digraph::Node Node; |
|---|
| 1429 | |
|---|
| 1430 | BipartitePartitionsVisitor(const Digraph& graph, |
|---|
| 1431 | PartMap& part, bool& bipartite) |
|---|
| 1432 | : _graph(graph), _part(part), _bipartite(bipartite) {} |
|---|
| 1433 | |
|---|
| 1434 | void start(const Node& node) { |
|---|
| 1435 | _part.set(node, true); |
|---|
| 1436 | } |
|---|
| 1437 | void discover(const Arc& edge) { |
|---|
| 1438 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
|---|
| 1439 | } |
|---|
| 1440 | void examine(const Arc& edge) { |
|---|
| 1441 | _bipartite = _bipartite && |
|---|
| 1442 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
|---|
| 1443 | } |
|---|
| 1444 | |
|---|
| 1445 | private: |
|---|
| 1446 | |
|---|
| 1447 | const Digraph& _graph; |
|---|
| 1448 | PartMap& _part; |
|---|
| 1449 | bool& _bipartite; |
|---|
| 1450 | }; |
|---|
| 1451 | } |
|---|
| 1452 | |
|---|
| 1453 | /// \ingroup graph_properties |
|---|
| 1454 | /// |
|---|
| 1455 | /// \brief Check if the given undirected graph is bipartite or not |
|---|
| 1456 | /// |
|---|
| 1457 | /// The function checks if the given undirected \c graph graph is bipartite |
|---|
| 1458 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
|---|
| 1459 | /// \param graph The undirected graph. |
|---|
| 1460 | /// \return \c true if \c graph is bipartite, \c false otherwise. |
|---|
| 1461 | /// \sa bipartitePartitions |
|---|
| 1462 | template<typename Graph> |
|---|
| 1463 | inline bool bipartite(const Graph &graph){ |
|---|
| 1464 | using namespace _connectivity_bits; |
|---|
| 1465 | |
|---|
| 1466 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1467 | |
|---|
| 1468 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1469 | typedef typename Graph::ArcIt ArcIt; |
|---|
| 1470 | |
|---|
| 1471 | bool bipartite = true; |
|---|
| 1472 | |
|---|
| 1473 | BipartiteVisitor<Graph> |
|---|
| 1474 | visitor(graph, bipartite); |
|---|
| 1475 | BfsVisit<Graph, BipartiteVisitor<Graph> > |
|---|
| 1476 | bfs(graph, visitor); |
|---|
| 1477 | bfs.init(); |
|---|
| 1478 | for(NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1479 | if(!bfs.reached(it)){ |
|---|
| 1480 | bfs.addSource(it); |
|---|
| 1481 | while (!bfs.emptyQueue()) { |
|---|
| 1482 | bfs.processNextNode(); |
|---|
| 1483 | if (!bipartite) return false; |
|---|
| 1484 | } |
|---|
| 1485 | } |
|---|
| 1486 | } |
|---|
| 1487 | return true; |
|---|
| 1488 | } |
|---|
| 1489 | |
|---|
| 1490 | /// \ingroup graph_properties |
|---|
| 1491 | /// |
|---|
| 1492 | /// \brief Check if the given undirected graph is bipartite or not |
|---|
| 1493 | /// |
|---|
| 1494 | /// The function checks if the given undirected graph is bipartite |
|---|
| 1495 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
|---|
| 1496 | /// During the execution, the \c partMap will be set as the two |
|---|
| 1497 | /// partitions of the graph. |
|---|
| 1498 | /// |
|---|
| 1499 | /// \image html bipartite_partitions.png |
|---|
| 1500 | /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
|---|
| 1501 | /// |
|---|
| 1502 | /// \param graph The undirected graph. |
|---|
| 1503 | /// \retval partMap A writable bool map of nodes. It will be set as the |
|---|
| 1504 | /// two partitions of the graph. |
|---|
| 1505 | /// \return \c true if \c graph is bipartite, \c false otherwise. |
|---|
| 1506 | template<typename Graph, typename NodeMap> |
|---|
| 1507 | inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
|---|
| 1508 | using namespace _connectivity_bits; |
|---|
| 1509 | |
|---|
| 1510 | checkConcept<concepts::Graph, Graph>(); |
|---|
| 1511 | |
|---|
| 1512 | typedef typename Graph::Node Node; |
|---|
| 1513 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1514 | typedef typename Graph::ArcIt ArcIt; |
|---|
| 1515 | |
|---|
| 1516 | bool bipartite = true; |
|---|
| 1517 | |
|---|
| 1518 | BipartitePartitionsVisitor<Graph, NodeMap> |
|---|
| 1519 | visitor(graph, partMap, bipartite); |
|---|
| 1520 | BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
|---|
| 1521 | bfs(graph, visitor); |
|---|
| 1522 | bfs.init(); |
|---|
| 1523 | for(NodeIt it(graph); it != INVALID; ++it) { |
|---|
| 1524 | if(!bfs.reached(it)){ |
|---|
| 1525 | bfs.addSource(it); |
|---|
| 1526 | while (!bfs.emptyQueue()) { |
|---|
| 1527 | bfs.processNextNode(); |
|---|
| 1528 | if (!bipartite) return false; |
|---|
| 1529 | } |
|---|
| 1530 | } |
|---|
| 1531 | } |
|---|
| 1532 | return true; |
|---|
| 1533 | } |
|---|
| 1534 | |
|---|
| 1535 | /// \brief Returns true when there are not loop edges in the graph. |
|---|
| 1536 | /// |
|---|
| 1537 | /// Returns true when there are not loop edges in the graph. |
|---|
| 1538 | template <typename Digraph> |
|---|
| 1539 | bool loopFree(const Digraph& digraph) { |
|---|
| 1540 | for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
|---|
| 1541 | if (digraph.source(it) == digraph.target(it)) return false; |
|---|
| 1542 | } |
|---|
| 1543 | return true; |
|---|
| 1544 | } |
|---|
| 1545 | |
|---|
| 1546 | /// \brief Returns true when there are not parallel edges in the graph. |
|---|
| 1547 | /// |
|---|
| 1548 | /// Returns true when there are not parallel edges in the graph. |
|---|
| 1549 | template <typename Graph> |
|---|
| 1550 | bool parallelFree(const Graph& graph) { |
|---|
| 1551 | typename Graph::template NodeMap<int> reached(graph, 0); |
|---|
| 1552 | int cnt = 1; |
|---|
| 1553 | for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|---|
| 1554 | for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
|---|
| 1555 | if (reached[graph.target(a)] == cnt) return false; |
|---|
| 1556 | reached[graph.target(a)] = cnt; |
|---|
| 1557 | } |
|---|
| 1558 | ++cnt; |
|---|
| 1559 | } |
|---|
| 1560 | return true; |
|---|
| 1561 | } |
|---|
| 1562 | |
|---|
| 1563 | /// \brief Returns true when there are not loop edges and parallel |
|---|
| 1564 | /// edges in the graph. |
|---|
| 1565 | /// |
|---|
| 1566 | /// Returns true when there are not loop edges and parallel edges in |
|---|
| 1567 | /// the graph. |
|---|
| 1568 | template <typename Graph> |
|---|
| 1569 | bool simpleGraph(const Graph& graph) { |
|---|
| 1570 | typename Graph::template NodeMap<int> reached(graph, 0); |
|---|
| 1571 | int cnt = 1; |
|---|
| 1572 | for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|---|
| 1573 | reached[n] = cnt; |
|---|
| 1574 | for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
|---|
| 1575 | if (reached[graph.target(a)] == cnt) return false; |
|---|
| 1576 | reached[graph.target(a)] = cnt; |
|---|
| 1577 | } |
|---|
| 1578 | ++cnt; |
|---|
| 1579 | } |
|---|
| 1580 | return true; |
|---|
| 1581 | } |
|---|
| 1582 | |
|---|
| 1583 | } //namespace lemon |
|---|
| 1584 | |
|---|
| 1585 | #endif //LEMON_CONNECTIVITY_H |
|---|