1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2009 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_CONNECTIVITY_H |
---|
20 | #define LEMON_CONNECTIVITY_H |
---|
21 | |
---|
22 | #include <lemon/dfs.h> |
---|
23 | #include <lemon/bfs.h> |
---|
24 | #include <lemon/core.h> |
---|
25 | #include <lemon/maps.h> |
---|
26 | #include <lemon/adaptors.h> |
---|
27 | |
---|
28 | #include <lemon/concepts/digraph.h> |
---|
29 | #include <lemon/concepts/graph.h> |
---|
30 | #include <lemon/concept_check.h> |
---|
31 | |
---|
32 | #include <stack> |
---|
33 | #include <functional> |
---|
34 | |
---|
35 | /// \ingroup graph_properties |
---|
36 | /// \file |
---|
37 | /// \brief Connectivity algorithms |
---|
38 | /// |
---|
39 | /// Connectivity algorithms |
---|
40 | |
---|
41 | namespace lemon { |
---|
42 | |
---|
43 | /// \ingroup graph_properties |
---|
44 | /// |
---|
45 | /// \brief Check whether the given undirected graph is connected. |
---|
46 | /// |
---|
47 | /// Check whether the given undirected graph is connected. |
---|
48 | /// \param graph The undirected graph. |
---|
49 | /// \return \c true when there is path between any two nodes in the graph. |
---|
50 | /// \note By definition, the empty graph is connected. |
---|
51 | template <typename Graph> |
---|
52 | bool connected(const Graph& graph) { |
---|
53 | checkConcept<concepts::Graph, Graph>(); |
---|
54 | typedef typename Graph::NodeIt NodeIt; |
---|
55 | if (NodeIt(graph) == INVALID) return true; |
---|
56 | Dfs<Graph> dfs(graph); |
---|
57 | dfs.run(NodeIt(graph)); |
---|
58 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
59 | if (!dfs.reached(it)) { |
---|
60 | return false; |
---|
61 | } |
---|
62 | } |
---|
63 | return true; |
---|
64 | } |
---|
65 | |
---|
66 | /// \ingroup graph_properties |
---|
67 | /// |
---|
68 | /// \brief Count the number of connected components of an undirected graph |
---|
69 | /// |
---|
70 | /// Count the number of connected components of an undirected graph |
---|
71 | /// |
---|
72 | /// \param graph The graph. It must be undirected. |
---|
73 | /// \return The number of components |
---|
74 | /// \note By definition, the empty graph consists |
---|
75 | /// of zero connected components. |
---|
76 | template <typename Graph> |
---|
77 | int countConnectedComponents(const Graph &graph) { |
---|
78 | checkConcept<concepts::Graph, Graph>(); |
---|
79 | typedef typename Graph::Node Node; |
---|
80 | typedef typename Graph::Arc Arc; |
---|
81 | |
---|
82 | typedef NullMap<Node, Arc> PredMap; |
---|
83 | typedef NullMap<Node, int> DistMap; |
---|
84 | |
---|
85 | int compNum = 0; |
---|
86 | typename Bfs<Graph>:: |
---|
87 | template SetPredMap<PredMap>:: |
---|
88 | template SetDistMap<DistMap>:: |
---|
89 | Create bfs(graph); |
---|
90 | |
---|
91 | PredMap predMap; |
---|
92 | bfs.predMap(predMap); |
---|
93 | |
---|
94 | DistMap distMap; |
---|
95 | bfs.distMap(distMap); |
---|
96 | |
---|
97 | bfs.init(); |
---|
98 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
---|
99 | if (!bfs.reached(n)) { |
---|
100 | bfs.addSource(n); |
---|
101 | bfs.start(); |
---|
102 | ++compNum; |
---|
103 | } |
---|
104 | } |
---|
105 | return compNum; |
---|
106 | } |
---|
107 | |
---|
108 | /// \ingroup graph_properties |
---|
109 | /// |
---|
110 | /// \brief Find the connected components of an undirected graph |
---|
111 | /// |
---|
112 | /// Find the connected components of an undirected graph. |
---|
113 | /// |
---|
114 | /// \image html connected_components.png |
---|
115 | /// \image latex connected_components.eps "Connected components" width=\textwidth |
---|
116 | /// |
---|
117 | /// \param graph The graph. It must be undirected. |
---|
118 | /// \retval compMap A writable node map. The values will be set from 0 to |
---|
119 | /// the number of the connected components minus one. Each values of the map |
---|
120 | /// will be set exactly once, the values of a certain component will be |
---|
121 | /// set continuously. |
---|
122 | /// \return The number of components |
---|
123 | template <class Graph, class NodeMap> |
---|
124 | int connectedComponents(const Graph &graph, NodeMap &compMap) { |
---|
125 | checkConcept<concepts::Graph, Graph>(); |
---|
126 | typedef typename Graph::Node Node; |
---|
127 | typedef typename Graph::Arc Arc; |
---|
128 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
---|
129 | |
---|
130 | typedef NullMap<Node, Arc> PredMap; |
---|
131 | typedef NullMap<Node, int> DistMap; |
---|
132 | |
---|
133 | int compNum = 0; |
---|
134 | typename Bfs<Graph>:: |
---|
135 | template SetPredMap<PredMap>:: |
---|
136 | template SetDistMap<DistMap>:: |
---|
137 | Create bfs(graph); |
---|
138 | |
---|
139 | PredMap predMap; |
---|
140 | bfs.predMap(predMap); |
---|
141 | |
---|
142 | DistMap distMap; |
---|
143 | bfs.distMap(distMap); |
---|
144 | |
---|
145 | bfs.init(); |
---|
146 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
---|
147 | if(!bfs.reached(n)) { |
---|
148 | bfs.addSource(n); |
---|
149 | while (!bfs.emptyQueue()) { |
---|
150 | compMap.set(bfs.nextNode(), compNum); |
---|
151 | bfs.processNextNode(); |
---|
152 | } |
---|
153 | ++compNum; |
---|
154 | } |
---|
155 | } |
---|
156 | return compNum; |
---|
157 | } |
---|
158 | |
---|
159 | namespace _connectivity_bits { |
---|
160 | |
---|
161 | template <typename Digraph, typename Iterator > |
---|
162 | struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
---|
163 | public: |
---|
164 | typedef typename Digraph::Node Node; |
---|
165 | LeaveOrderVisitor(Iterator it) : _it(it) {} |
---|
166 | |
---|
167 | void leave(const Node& node) { |
---|
168 | *(_it++) = node; |
---|
169 | } |
---|
170 | |
---|
171 | private: |
---|
172 | Iterator _it; |
---|
173 | }; |
---|
174 | |
---|
175 | template <typename Digraph, typename Map> |
---|
176 | struct FillMapVisitor : public DfsVisitor<Digraph> { |
---|
177 | public: |
---|
178 | typedef typename Digraph::Node Node; |
---|
179 | typedef typename Map::Value Value; |
---|
180 | |
---|
181 | FillMapVisitor(Map& map, Value& value) |
---|
182 | : _map(map), _value(value) {} |
---|
183 | |
---|
184 | void reach(const Node& node) { |
---|
185 | _map.set(node, _value); |
---|
186 | } |
---|
187 | private: |
---|
188 | Map& _map; |
---|
189 | Value& _value; |
---|
190 | }; |
---|
191 | |
---|
192 | template <typename Digraph, typename ArcMap> |
---|
193 | struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> { |
---|
194 | public: |
---|
195 | typedef typename Digraph::Node Node; |
---|
196 | typedef typename Digraph::Arc Arc; |
---|
197 | |
---|
198 | StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
---|
199 | ArcMap& cutMap, |
---|
200 | int& cutNum) |
---|
201 | : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
---|
202 | _compMap(digraph, -1), _num(-1) { |
---|
203 | } |
---|
204 | |
---|
205 | void start(const Node&) { |
---|
206 | ++_num; |
---|
207 | } |
---|
208 | |
---|
209 | void reach(const Node& node) { |
---|
210 | _compMap.set(node, _num); |
---|
211 | } |
---|
212 | |
---|
213 | void examine(const Arc& arc) { |
---|
214 | if (_compMap[_digraph.source(arc)] != |
---|
215 | _compMap[_digraph.target(arc)]) { |
---|
216 | _cutMap.set(arc, true); |
---|
217 | ++_cutNum; |
---|
218 | } |
---|
219 | } |
---|
220 | private: |
---|
221 | const Digraph& _digraph; |
---|
222 | ArcMap& _cutMap; |
---|
223 | int& _cutNum; |
---|
224 | |
---|
225 | typename Digraph::template NodeMap<int> _compMap; |
---|
226 | int _num; |
---|
227 | }; |
---|
228 | |
---|
229 | } |
---|
230 | |
---|
231 | |
---|
232 | /// \ingroup graph_properties |
---|
233 | /// |
---|
234 | /// \brief Check whether the given directed graph is strongly connected. |
---|
235 | /// |
---|
236 | /// Check whether the given directed graph is strongly connected. The |
---|
237 | /// graph is strongly connected when any two nodes of the graph are |
---|
238 | /// connected with directed paths in both direction. |
---|
239 | /// \return \c false when the graph is not strongly connected. |
---|
240 | /// \see connected |
---|
241 | /// |
---|
242 | /// \note By definition, the empty graph is strongly connected. |
---|
243 | template <typename Digraph> |
---|
244 | bool stronglyConnected(const Digraph& digraph) { |
---|
245 | checkConcept<concepts::Digraph, Digraph>(); |
---|
246 | |
---|
247 | typedef typename Digraph::Node Node; |
---|
248 | typedef typename Digraph::NodeIt NodeIt; |
---|
249 | |
---|
250 | typename Digraph::Node source = NodeIt(digraph); |
---|
251 | if (source == INVALID) return true; |
---|
252 | |
---|
253 | using namespace _connectivity_bits; |
---|
254 | |
---|
255 | typedef DfsVisitor<Digraph> Visitor; |
---|
256 | Visitor visitor; |
---|
257 | |
---|
258 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
---|
259 | dfs.init(); |
---|
260 | dfs.addSource(source); |
---|
261 | dfs.start(); |
---|
262 | |
---|
263 | for (NodeIt it(digraph); it != INVALID; ++it) { |
---|
264 | if (!dfs.reached(it)) { |
---|
265 | return false; |
---|
266 | } |
---|
267 | } |
---|
268 | |
---|
269 | typedef ReverseDigraph<const Digraph> RDigraph; |
---|
270 | typedef typename RDigraph::NodeIt RNodeIt; |
---|
271 | RDigraph rdigraph(digraph); |
---|
272 | |
---|
273 | typedef DfsVisitor<Digraph> RVisitor; |
---|
274 | RVisitor rvisitor; |
---|
275 | |
---|
276 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
---|
277 | rdfs.init(); |
---|
278 | rdfs.addSource(source); |
---|
279 | rdfs.start(); |
---|
280 | |
---|
281 | for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
---|
282 | if (!rdfs.reached(it)) { |
---|
283 | return false; |
---|
284 | } |
---|
285 | } |
---|
286 | |
---|
287 | return true; |
---|
288 | } |
---|
289 | |
---|
290 | /// \ingroup graph_properties |
---|
291 | /// |
---|
292 | /// \brief Count the strongly connected components of a directed graph |
---|
293 | /// |
---|
294 | /// Count the strongly connected components of a directed graph. |
---|
295 | /// The strongly connected components are the classes of an |
---|
296 | /// equivalence relation on the nodes of the graph. Two nodes are in |
---|
297 | /// the same class if they are connected with directed paths in both |
---|
298 | /// direction. |
---|
299 | /// |
---|
300 | /// \param digraph The graph. |
---|
301 | /// \return The number of components |
---|
302 | /// \note By definition, the empty graph has zero |
---|
303 | /// strongly connected components. |
---|
304 | template <typename Digraph> |
---|
305 | int countStronglyConnectedComponents(const Digraph& digraph) { |
---|
306 | checkConcept<concepts::Digraph, Digraph>(); |
---|
307 | |
---|
308 | using namespace _connectivity_bits; |
---|
309 | |
---|
310 | typedef typename Digraph::Node Node; |
---|
311 | typedef typename Digraph::Arc Arc; |
---|
312 | typedef typename Digraph::NodeIt NodeIt; |
---|
313 | typedef typename Digraph::ArcIt ArcIt; |
---|
314 | |
---|
315 | typedef std::vector<Node> Container; |
---|
316 | typedef typename Container::iterator Iterator; |
---|
317 | |
---|
318 | Container nodes(countNodes(digraph)); |
---|
319 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
---|
320 | Visitor visitor(nodes.begin()); |
---|
321 | |
---|
322 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
---|
323 | dfs.init(); |
---|
324 | for (NodeIt it(digraph); it != INVALID; ++it) { |
---|
325 | if (!dfs.reached(it)) { |
---|
326 | dfs.addSource(it); |
---|
327 | dfs.start(); |
---|
328 | } |
---|
329 | } |
---|
330 | |
---|
331 | typedef typename Container::reverse_iterator RIterator; |
---|
332 | typedef ReverseDigraph<const Digraph> RDigraph; |
---|
333 | |
---|
334 | RDigraph rdigraph(digraph); |
---|
335 | |
---|
336 | typedef DfsVisitor<Digraph> RVisitor; |
---|
337 | RVisitor rvisitor; |
---|
338 | |
---|
339 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
---|
340 | |
---|
341 | int compNum = 0; |
---|
342 | |
---|
343 | rdfs.init(); |
---|
344 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
345 | if (!rdfs.reached(*it)) { |
---|
346 | rdfs.addSource(*it); |
---|
347 | rdfs.start(); |
---|
348 | ++compNum; |
---|
349 | } |
---|
350 | } |
---|
351 | return compNum; |
---|
352 | } |
---|
353 | |
---|
354 | /// \ingroup graph_properties |
---|
355 | /// |
---|
356 | /// \brief Find the strongly connected components of a directed graph |
---|
357 | /// |
---|
358 | /// Find the strongly connected components of a directed graph. The |
---|
359 | /// strongly connected components are the classes of an equivalence |
---|
360 | /// relation on the nodes of the graph. Two nodes are in |
---|
361 | /// relationship when there are directed paths between them in both |
---|
362 | /// direction. In addition, the numbering of components will satisfy |
---|
363 | /// that there is no arc going from a higher numbered component to |
---|
364 | /// a lower. |
---|
365 | /// |
---|
366 | /// \image html strongly_connected_components.png |
---|
367 | /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
---|
368 | /// |
---|
369 | /// \param digraph The digraph. |
---|
370 | /// \retval compMap A writable node map. The values will be set from 0 to |
---|
371 | /// the number of the strongly connected components minus one. Each value |
---|
372 | /// of the map will be set exactly once, the values of a certain component |
---|
373 | /// will be set continuously. |
---|
374 | /// \return The number of components |
---|
375 | template <typename Digraph, typename NodeMap> |
---|
376 | int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
---|
377 | checkConcept<concepts::Digraph, Digraph>(); |
---|
378 | typedef typename Digraph::Node Node; |
---|
379 | typedef typename Digraph::NodeIt NodeIt; |
---|
380 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
---|
381 | |
---|
382 | using namespace _connectivity_bits; |
---|
383 | |
---|
384 | typedef std::vector<Node> Container; |
---|
385 | typedef typename Container::iterator Iterator; |
---|
386 | |
---|
387 | Container nodes(countNodes(digraph)); |
---|
388 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
---|
389 | Visitor visitor(nodes.begin()); |
---|
390 | |
---|
391 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
---|
392 | dfs.init(); |
---|
393 | for (NodeIt it(digraph); it != INVALID; ++it) { |
---|
394 | if (!dfs.reached(it)) { |
---|
395 | dfs.addSource(it); |
---|
396 | dfs.start(); |
---|
397 | } |
---|
398 | } |
---|
399 | |
---|
400 | typedef typename Container::reverse_iterator RIterator; |
---|
401 | typedef ReverseDigraph<const Digraph> RDigraph; |
---|
402 | |
---|
403 | RDigraph rdigraph(digraph); |
---|
404 | |
---|
405 | int compNum = 0; |
---|
406 | |
---|
407 | typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
---|
408 | RVisitor rvisitor(compMap, compNum); |
---|
409 | |
---|
410 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
---|
411 | |
---|
412 | rdfs.init(); |
---|
413 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
414 | if (!rdfs.reached(*it)) { |
---|
415 | rdfs.addSource(*it); |
---|
416 | rdfs.start(); |
---|
417 | ++compNum; |
---|
418 | } |
---|
419 | } |
---|
420 | return compNum; |
---|
421 | } |
---|
422 | |
---|
423 | /// \ingroup graph_properties |
---|
424 | /// |
---|
425 | /// \brief Find the cut arcs of the strongly connected components. |
---|
426 | /// |
---|
427 | /// Find the cut arcs of the strongly connected components. |
---|
428 | /// The strongly connected components are the classes of an equivalence |
---|
429 | /// relation on the nodes of the graph. Two nodes are in relationship |
---|
430 | /// when there are directed paths between them in both direction. |
---|
431 | /// The strongly connected components are separated by the cut arcs. |
---|
432 | /// |
---|
433 | /// \param graph The graph. |
---|
434 | /// \retval cutMap A writable node map. The values will be set true when the |
---|
435 | /// arc is a cut arc. |
---|
436 | /// |
---|
437 | /// \return The number of cut arcs |
---|
438 | template <typename Digraph, typename ArcMap> |
---|
439 | int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) { |
---|
440 | checkConcept<concepts::Digraph, Digraph>(); |
---|
441 | typedef typename Digraph::Node Node; |
---|
442 | typedef typename Digraph::Arc Arc; |
---|
443 | typedef typename Digraph::NodeIt NodeIt; |
---|
444 | checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
---|
445 | |
---|
446 | using namespace _connectivity_bits; |
---|
447 | |
---|
448 | typedef std::vector<Node> Container; |
---|
449 | typedef typename Container::iterator Iterator; |
---|
450 | |
---|
451 | Container nodes(countNodes(graph)); |
---|
452 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
---|
453 | Visitor visitor(nodes.begin()); |
---|
454 | |
---|
455 | DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
---|
456 | dfs.init(); |
---|
457 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
458 | if (!dfs.reached(it)) { |
---|
459 | dfs.addSource(it); |
---|
460 | dfs.start(); |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | typedef typename Container::reverse_iterator RIterator; |
---|
465 | typedef ReverseDigraph<const Digraph> RDigraph; |
---|
466 | |
---|
467 | RDigraph rgraph(graph); |
---|
468 | |
---|
469 | int cutNum = 0; |
---|
470 | |
---|
471 | typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
---|
472 | RVisitor rvisitor(rgraph, cutMap, cutNum); |
---|
473 | |
---|
474 | DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
475 | |
---|
476 | rdfs.init(); |
---|
477 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
478 | if (!rdfs.reached(*it)) { |
---|
479 | rdfs.addSource(*it); |
---|
480 | rdfs.start(); |
---|
481 | } |
---|
482 | } |
---|
483 | return cutNum; |
---|
484 | } |
---|
485 | |
---|
486 | namespace _connectivity_bits { |
---|
487 | |
---|
488 | template <typename Digraph> |
---|
489 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
---|
490 | public: |
---|
491 | typedef typename Digraph::Node Node; |
---|
492 | typedef typename Digraph::Arc Arc; |
---|
493 | typedef typename Digraph::Edge Edge; |
---|
494 | |
---|
495 | CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
---|
496 | : _graph(graph), _compNum(compNum), |
---|
497 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
498 | |
---|
499 | void start(const Node& node) { |
---|
500 | _predMap.set(node, INVALID); |
---|
501 | } |
---|
502 | |
---|
503 | void reach(const Node& node) { |
---|
504 | _numMap.set(node, _num); |
---|
505 | _retMap.set(node, _num); |
---|
506 | ++_num; |
---|
507 | } |
---|
508 | |
---|
509 | void discover(const Arc& edge) { |
---|
510 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
---|
511 | } |
---|
512 | |
---|
513 | void examine(const Arc& edge) { |
---|
514 | if (_graph.source(edge) == _graph.target(edge) && |
---|
515 | _graph.direction(edge)) { |
---|
516 | ++_compNum; |
---|
517 | return; |
---|
518 | } |
---|
519 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
---|
520 | return; |
---|
521 | } |
---|
522 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
---|
523 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
---|
524 | } |
---|
525 | } |
---|
526 | |
---|
527 | void backtrack(const Arc& edge) { |
---|
528 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
529 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
530 | } |
---|
531 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
---|
532 | ++_compNum; |
---|
533 | } |
---|
534 | } |
---|
535 | |
---|
536 | private: |
---|
537 | const Digraph& _graph; |
---|
538 | int& _compNum; |
---|
539 | |
---|
540 | typename Digraph::template NodeMap<int> _numMap; |
---|
541 | typename Digraph::template NodeMap<int> _retMap; |
---|
542 | typename Digraph::template NodeMap<Node> _predMap; |
---|
543 | int _num; |
---|
544 | }; |
---|
545 | |
---|
546 | template <typename Digraph, typename ArcMap> |
---|
547 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
---|
548 | public: |
---|
549 | typedef typename Digraph::Node Node; |
---|
550 | typedef typename Digraph::Arc Arc; |
---|
551 | typedef typename Digraph::Edge Edge; |
---|
552 | |
---|
553 | BiNodeConnectedComponentsVisitor(const Digraph& graph, |
---|
554 | ArcMap& compMap, int &compNum) |
---|
555 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
---|
556 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
557 | |
---|
558 | void start(const Node& node) { |
---|
559 | _predMap.set(node, INVALID); |
---|
560 | } |
---|
561 | |
---|
562 | void reach(const Node& node) { |
---|
563 | _numMap.set(node, _num); |
---|
564 | _retMap.set(node, _num); |
---|
565 | ++_num; |
---|
566 | } |
---|
567 | |
---|
568 | void discover(const Arc& edge) { |
---|
569 | Node target = _graph.target(edge); |
---|
570 | _predMap.set(target, edge); |
---|
571 | _edgeStack.push(edge); |
---|
572 | } |
---|
573 | |
---|
574 | void examine(const Arc& edge) { |
---|
575 | Node source = _graph.source(edge); |
---|
576 | Node target = _graph.target(edge); |
---|
577 | if (source == target && _graph.direction(edge)) { |
---|
578 | _compMap.set(edge, _compNum); |
---|
579 | ++_compNum; |
---|
580 | return; |
---|
581 | } |
---|
582 | if (_numMap[target] < _numMap[source]) { |
---|
583 | if (_predMap[source] != _graph.oppositeArc(edge)) { |
---|
584 | _edgeStack.push(edge); |
---|
585 | } |
---|
586 | } |
---|
587 | if (_predMap[source] != INVALID && |
---|
588 | target == _graph.source(_predMap[source])) { |
---|
589 | return; |
---|
590 | } |
---|
591 | if (_retMap[source] > _numMap[target]) { |
---|
592 | _retMap.set(source, _numMap[target]); |
---|
593 | } |
---|
594 | } |
---|
595 | |
---|
596 | void backtrack(const Arc& edge) { |
---|
597 | Node source = _graph.source(edge); |
---|
598 | Node target = _graph.target(edge); |
---|
599 | if (_retMap[source] > _retMap[target]) { |
---|
600 | _retMap.set(source, _retMap[target]); |
---|
601 | } |
---|
602 | if (_numMap[source] <= _retMap[target]) { |
---|
603 | while (_edgeStack.top() != edge) { |
---|
604 | _compMap.set(_edgeStack.top(), _compNum); |
---|
605 | _edgeStack.pop(); |
---|
606 | } |
---|
607 | _compMap.set(edge, _compNum); |
---|
608 | _edgeStack.pop(); |
---|
609 | ++_compNum; |
---|
610 | } |
---|
611 | } |
---|
612 | |
---|
613 | private: |
---|
614 | const Digraph& _graph; |
---|
615 | ArcMap& _compMap; |
---|
616 | int& _compNum; |
---|
617 | |
---|
618 | typename Digraph::template NodeMap<int> _numMap; |
---|
619 | typename Digraph::template NodeMap<int> _retMap; |
---|
620 | typename Digraph::template NodeMap<Arc> _predMap; |
---|
621 | std::stack<Edge> _edgeStack; |
---|
622 | int _num; |
---|
623 | }; |
---|
624 | |
---|
625 | |
---|
626 | template <typename Digraph, typename NodeMap> |
---|
627 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> { |
---|
628 | public: |
---|
629 | typedef typename Digraph::Node Node; |
---|
630 | typedef typename Digraph::Arc Arc; |
---|
631 | typedef typename Digraph::Edge Edge; |
---|
632 | |
---|
633 | BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
---|
634 | int& cutNum) |
---|
635 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
636 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
637 | |
---|
638 | void start(const Node& node) { |
---|
639 | _predMap.set(node, INVALID); |
---|
640 | rootCut = false; |
---|
641 | } |
---|
642 | |
---|
643 | void reach(const Node& node) { |
---|
644 | _numMap.set(node, _num); |
---|
645 | _retMap.set(node, _num); |
---|
646 | ++_num; |
---|
647 | } |
---|
648 | |
---|
649 | void discover(const Arc& edge) { |
---|
650 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
---|
651 | } |
---|
652 | |
---|
653 | void examine(const Arc& edge) { |
---|
654 | if (_graph.source(edge) == _graph.target(edge) && |
---|
655 | _graph.direction(edge)) { |
---|
656 | if (!_cutMap[_graph.source(edge)]) { |
---|
657 | _cutMap.set(_graph.source(edge), true); |
---|
658 | ++_cutNum; |
---|
659 | } |
---|
660 | return; |
---|
661 | } |
---|
662 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
---|
663 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
---|
664 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
---|
665 | } |
---|
666 | } |
---|
667 | |
---|
668 | void backtrack(const Arc& edge) { |
---|
669 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
670 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
671 | } |
---|
672 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
---|
673 | if (_predMap[_graph.source(edge)] != INVALID) { |
---|
674 | if (!_cutMap[_graph.source(edge)]) { |
---|
675 | _cutMap.set(_graph.source(edge), true); |
---|
676 | ++_cutNum; |
---|
677 | } |
---|
678 | } else if (rootCut) { |
---|
679 | if (!_cutMap[_graph.source(edge)]) { |
---|
680 | _cutMap.set(_graph.source(edge), true); |
---|
681 | ++_cutNum; |
---|
682 | } |
---|
683 | } else { |
---|
684 | rootCut = true; |
---|
685 | } |
---|
686 | } |
---|
687 | } |
---|
688 | |
---|
689 | private: |
---|
690 | const Digraph& _graph; |
---|
691 | NodeMap& _cutMap; |
---|
692 | int& _cutNum; |
---|
693 | |
---|
694 | typename Digraph::template NodeMap<int> _numMap; |
---|
695 | typename Digraph::template NodeMap<int> _retMap; |
---|
696 | typename Digraph::template NodeMap<Node> _predMap; |
---|
697 | std::stack<Edge> _edgeStack; |
---|
698 | int _num; |
---|
699 | bool rootCut; |
---|
700 | }; |
---|
701 | |
---|
702 | } |
---|
703 | |
---|
704 | template <typename Graph> |
---|
705 | int countBiNodeConnectedComponents(const Graph& graph); |
---|
706 | |
---|
707 | /// \ingroup graph_properties |
---|
708 | /// |
---|
709 | /// \brief Checks the graph is bi-node-connected. |
---|
710 | /// |
---|
711 | /// This function checks that the undirected graph is bi-node-connected |
---|
712 | /// graph. The graph is bi-node-connected if any two undirected edge is |
---|
713 | /// on same circle. |
---|
714 | /// |
---|
715 | /// \param graph The graph. |
---|
716 | /// \return \c true when the graph bi-node-connected. |
---|
717 | template <typename Graph> |
---|
718 | bool biNodeConnected(const Graph& graph) { |
---|
719 | return countBiNodeConnectedComponents(graph) <= 1; |
---|
720 | } |
---|
721 | |
---|
722 | /// \ingroup graph_properties |
---|
723 | /// |
---|
724 | /// \brief Count the biconnected components. |
---|
725 | /// |
---|
726 | /// This function finds the bi-node-connected components in an undirected |
---|
727 | /// graph. The biconnected components are the classes of an equivalence |
---|
728 | /// relation on the undirected edges. Two undirected edge is in relationship |
---|
729 | /// when they are on same circle. |
---|
730 | /// |
---|
731 | /// \param graph The graph. |
---|
732 | /// \return The number of components. |
---|
733 | template <typename Graph> |
---|
734 | int countBiNodeConnectedComponents(const Graph& graph) { |
---|
735 | checkConcept<concepts::Graph, Graph>(); |
---|
736 | typedef typename Graph::NodeIt NodeIt; |
---|
737 | |
---|
738 | using namespace _connectivity_bits; |
---|
739 | |
---|
740 | typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
---|
741 | |
---|
742 | int compNum = 0; |
---|
743 | Visitor visitor(graph, compNum); |
---|
744 | |
---|
745 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
746 | dfs.init(); |
---|
747 | |
---|
748 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
749 | if (!dfs.reached(it)) { |
---|
750 | dfs.addSource(it); |
---|
751 | dfs.start(); |
---|
752 | } |
---|
753 | } |
---|
754 | return compNum; |
---|
755 | } |
---|
756 | |
---|
757 | /// \ingroup graph_properties |
---|
758 | /// |
---|
759 | /// \brief Find the bi-node-connected components. |
---|
760 | /// |
---|
761 | /// This function finds the bi-node-connected components in an undirected |
---|
762 | /// graph. The bi-node-connected components are the classes of an equivalence |
---|
763 | /// relation on the undirected edges. Two undirected edge are in relationship |
---|
764 | /// when they are on same circle. |
---|
765 | /// |
---|
766 | /// \image html node_biconnected_components.png |
---|
767 | /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
---|
768 | /// |
---|
769 | /// \param graph The graph. |
---|
770 | /// \retval compMap A writable uedge map. The values will be set from 0 |
---|
771 | /// to the number of the biconnected components minus one. Each values |
---|
772 | /// of the map will be set exactly once, the values of a certain component |
---|
773 | /// will be set continuously. |
---|
774 | /// \return The number of components. |
---|
775 | template <typename Graph, typename EdgeMap> |
---|
776 | int biNodeConnectedComponents(const Graph& graph, |
---|
777 | EdgeMap& compMap) { |
---|
778 | checkConcept<concepts::Graph, Graph>(); |
---|
779 | typedef typename Graph::NodeIt NodeIt; |
---|
780 | typedef typename Graph::Edge Edge; |
---|
781 | checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
---|
782 | |
---|
783 | using namespace _connectivity_bits; |
---|
784 | |
---|
785 | typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
---|
786 | |
---|
787 | int compNum = 0; |
---|
788 | Visitor visitor(graph, compMap, compNum); |
---|
789 | |
---|
790 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
791 | dfs.init(); |
---|
792 | |
---|
793 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
794 | if (!dfs.reached(it)) { |
---|
795 | dfs.addSource(it); |
---|
796 | dfs.start(); |
---|
797 | } |
---|
798 | } |
---|
799 | return compNum; |
---|
800 | } |
---|
801 | |
---|
802 | /// \ingroup graph_properties |
---|
803 | /// |
---|
804 | /// \brief Find the bi-node-connected cut nodes. |
---|
805 | /// |
---|
806 | /// This function finds the bi-node-connected cut nodes in an undirected |
---|
807 | /// graph. The bi-node-connected components are the classes of an equivalence |
---|
808 | /// relation on the undirected edges. Two undirected edges are in |
---|
809 | /// relationship when they are on same circle. The biconnected components |
---|
810 | /// are separted by nodes which are the cut nodes of the components. |
---|
811 | /// |
---|
812 | /// \param graph The graph. |
---|
813 | /// \retval cutMap A writable edge map. The values will be set true when |
---|
814 | /// the node separate two or more components. |
---|
815 | /// \return The number of the cut nodes. |
---|
816 | template <typename Graph, typename NodeMap> |
---|
817 | int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
---|
818 | checkConcept<concepts::Graph, Graph>(); |
---|
819 | typedef typename Graph::Node Node; |
---|
820 | typedef typename Graph::NodeIt NodeIt; |
---|
821 | checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
---|
822 | |
---|
823 | using namespace _connectivity_bits; |
---|
824 | |
---|
825 | typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
---|
826 | |
---|
827 | int cutNum = 0; |
---|
828 | Visitor visitor(graph, cutMap, cutNum); |
---|
829 | |
---|
830 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
831 | dfs.init(); |
---|
832 | |
---|
833 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
834 | if (!dfs.reached(it)) { |
---|
835 | dfs.addSource(it); |
---|
836 | dfs.start(); |
---|
837 | } |
---|
838 | } |
---|
839 | return cutNum; |
---|
840 | } |
---|
841 | |
---|
842 | namespace _connectivity_bits { |
---|
843 | |
---|
844 | template <typename Digraph> |
---|
845 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
---|
846 | public: |
---|
847 | typedef typename Digraph::Node Node; |
---|
848 | typedef typename Digraph::Arc Arc; |
---|
849 | typedef typename Digraph::Edge Edge; |
---|
850 | |
---|
851 | CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
---|
852 | : _graph(graph), _compNum(compNum), |
---|
853 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
854 | |
---|
855 | void start(const Node& node) { |
---|
856 | _predMap.set(node, INVALID); |
---|
857 | } |
---|
858 | |
---|
859 | void reach(const Node& node) { |
---|
860 | _numMap.set(node, _num); |
---|
861 | _retMap.set(node, _num); |
---|
862 | ++_num; |
---|
863 | } |
---|
864 | |
---|
865 | void leave(const Node& node) { |
---|
866 | if (_numMap[node] <= _retMap[node]) { |
---|
867 | ++_compNum; |
---|
868 | } |
---|
869 | } |
---|
870 | |
---|
871 | void discover(const Arc& edge) { |
---|
872 | _predMap.set(_graph.target(edge), edge); |
---|
873 | } |
---|
874 | |
---|
875 | void examine(const Arc& edge) { |
---|
876 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
---|
877 | return; |
---|
878 | } |
---|
879 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
880 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
881 | } |
---|
882 | } |
---|
883 | |
---|
884 | void backtrack(const Arc& edge) { |
---|
885 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
886 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
887 | } |
---|
888 | } |
---|
889 | |
---|
890 | private: |
---|
891 | const Digraph& _graph; |
---|
892 | int& _compNum; |
---|
893 | |
---|
894 | typename Digraph::template NodeMap<int> _numMap; |
---|
895 | typename Digraph::template NodeMap<int> _retMap; |
---|
896 | typename Digraph::template NodeMap<Arc> _predMap; |
---|
897 | int _num; |
---|
898 | }; |
---|
899 | |
---|
900 | template <typename Digraph, typename NodeMap> |
---|
901 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
---|
902 | public: |
---|
903 | typedef typename Digraph::Node Node; |
---|
904 | typedef typename Digraph::Arc Arc; |
---|
905 | typedef typename Digraph::Edge Edge; |
---|
906 | |
---|
907 | BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
---|
908 | NodeMap& compMap, int &compNum) |
---|
909 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
---|
910 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
911 | |
---|
912 | void start(const Node& node) { |
---|
913 | _predMap.set(node, INVALID); |
---|
914 | } |
---|
915 | |
---|
916 | void reach(const Node& node) { |
---|
917 | _numMap.set(node, _num); |
---|
918 | _retMap.set(node, _num); |
---|
919 | _nodeStack.push(node); |
---|
920 | ++_num; |
---|
921 | } |
---|
922 | |
---|
923 | void leave(const Node& node) { |
---|
924 | if (_numMap[node] <= _retMap[node]) { |
---|
925 | while (_nodeStack.top() != node) { |
---|
926 | _compMap.set(_nodeStack.top(), _compNum); |
---|
927 | _nodeStack.pop(); |
---|
928 | } |
---|
929 | _compMap.set(node, _compNum); |
---|
930 | _nodeStack.pop(); |
---|
931 | ++_compNum; |
---|
932 | } |
---|
933 | } |
---|
934 | |
---|
935 | void discover(const Arc& edge) { |
---|
936 | _predMap.set(_graph.target(edge), edge); |
---|
937 | } |
---|
938 | |
---|
939 | void examine(const Arc& edge) { |
---|
940 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
---|
941 | return; |
---|
942 | } |
---|
943 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
944 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
945 | } |
---|
946 | } |
---|
947 | |
---|
948 | void backtrack(const Arc& edge) { |
---|
949 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
950 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
951 | } |
---|
952 | } |
---|
953 | |
---|
954 | private: |
---|
955 | const Digraph& _graph; |
---|
956 | NodeMap& _compMap; |
---|
957 | int& _compNum; |
---|
958 | |
---|
959 | typename Digraph::template NodeMap<int> _numMap; |
---|
960 | typename Digraph::template NodeMap<int> _retMap; |
---|
961 | typename Digraph::template NodeMap<Arc> _predMap; |
---|
962 | std::stack<Node> _nodeStack; |
---|
963 | int _num; |
---|
964 | }; |
---|
965 | |
---|
966 | |
---|
967 | template <typename Digraph, typename ArcMap> |
---|
968 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
---|
969 | public: |
---|
970 | typedef typename Digraph::Node Node; |
---|
971 | typedef typename Digraph::Arc Arc; |
---|
972 | typedef typename Digraph::Edge Edge; |
---|
973 | |
---|
974 | BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
---|
975 | ArcMap& cutMap, int &cutNum) |
---|
976 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
977 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
978 | |
---|
979 | void start(const Node& node) { |
---|
980 | _predMap[node] = INVALID; |
---|
981 | } |
---|
982 | |
---|
983 | void reach(const Node& node) { |
---|
984 | _numMap.set(node, _num); |
---|
985 | _retMap.set(node, _num); |
---|
986 | ++_num; |
---|
987 | } |
---|
988 | |
---|
989 | void leave(const Node& node) { |
---|
990 | if (_numMap[node] <= _retMap[node]) { |
---|
991 | if (_predMap[node] != INVALID) { |
---|
992 | _cutMap.set(_predMap[node], true); |
---|
993 | ++_cutNum; |
---|
994 | } |
---|
995 | } |
---|
996 | } |
---|
997 | |
---|
998 | void discover(const Arc& edge) { |
---|
999 | _predMap.set(_graph.target(edge), edge); |
---|
1000 | } |
---|
1001 | |
---|
1002 | void examine(const Arc& edge) { |
---|
1003 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
---|
1004 | return; |
---|
1005 | } |
---|
1006 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
1007 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
1008 | } |
---|
1009 | } |
---|
1010 | |
---|
1011 | void backtrack(const Arc& edge) { |
---|
1012 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
1013 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
1014 | } |
---|
1015 | } |
---|
1016 | |
---|
1017 | private: |
---|
1018 | const Digraph& _graph; |
---|
1019 | ArcMap& _cutMap; |
---|
1020 | int& _cutNum; |
---|
1021 | |
---|
1022 | typename Digraph::template NodeMap<int> _numMap; |
---|
1023 | typename Digraph::template NodeMap<int> _retMap; |
---|
1024 | typename Digraph::template NodeMap<Arc> _predMap; |
---|
1025 | int _num; |
---|
1026 | }; |
---|
1027 | } |
---|
1028 | |
---|
1029 | template <typename Graph> |
---|
1030 | int countBiEdgeConnectedComponents(const Graph& graph); |
---|
1031 | |
---|
1032 | /// \ingroup graph_properties |
---|
1033 | /// |
---|
1034 | /// \brief Checks that the graph is bi-edge-connected. |
---|
1035 | /// |
---|
1036 | /// This function checks that the graph is bi-edge-connected. The undirected |
---|
1037 | /// graph is bi-edge-connected when any two nodes are connected with two |
---|
1038 | /// edge-disjoint paths. |
---|
1039 | /// |
---|
1040 | /// \param graph The undirected graph. |
---|
1041 | /// \return The number of components. |
---|
1042 | template <typename Graph> |
---|
1043 | bool biEdgeConnected(const Graph& graph) { |
---|
1044 | return countBiEdgeConnectedComponents(graph) <= 1; |
---|
1045 | } |
---|
1046 | |
---|
1047 | /// \ingroup graph_properties |
---|
1048 | /// |
---|
1049 | /// \brief Count the bi-edge-connected components. |
---|
1050 | /// |
---|
1051 | /// This function count the bi-edge-connected components in an undirected |
---|
1052 | /// graph. The bi-edge-connected components are the classes of an equivalence |
---|
1053 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1054 | /// connected with at least two edge-disjoint paths. |
---|
1055 | /// |
---|
1056 | /// \param graph The undirected graph. |
---|
1057 | /// \return The number of components. |
---|
1058 | template <typename Graph> |
---|
1059 | int countBiEdgeConnectedComponents(const Graph& graph) { |
---|
1060 | checkConcept<concepts::Graph, Graph>(); |
---|
1061 | typedef typename Graph::NodeIt NodeIt; |
---|
1062 | |
---|
1063 | using namespace _connectivity_bits; |
---|
1064 | |
---|
1065 | typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
---|
1066 | |
---|
1067 | int compNum = 0; |
---|
1068 | Visitor visitor(graph, compNum); |
---|
1069 | |
---|
1070 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
1071 | dfs.init(); |
---|
1072 | |
---|
1073 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1074 | if (!dfs.reached(it)) { |
---|
1075 | dfs.addSource(it); |
---|
1076 | dfs.start(); |
---|
1077 | } |
---|
1078 | } |
---|
1079 | return compNum; |
---|
1080 | } |
---|
1081 | |
---|
1082 | /// \ingroup graph_properties |
---|
1083 | /// |
---|
1084 | /// \brief Find the bi-edge-connected components. |
---|
1085 | /// |
---|
1086 | /// This function finds the bi-edge-connected components in an undirected |
---|
1087 | /// graph. The bi-edge-connected components are the classes of an equivalence |
---|
1088 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1089 | /// connected at least two edge-disjoint paths. |
---|
1090 | /// |
---|
1091 | /// \image html edge_biconnected_components.png |
---|
1092 | /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
---|
1093 | /// |
---|
1094 | /// \param graph The graph. |
---|
1095 | /// \retval compMap A writable node map. The values will be set from 0 to |
---|
1096 | /// the number of the biconnected components minus one. Each values |
---|
1097 | /// of the map will be set exactly once, the values of a certain component |
---|
1098 | /// will be set continuously. |
---|
1099 | /// \return The number of components. |
---|
1100 | template <typename Graph, typename NodeMap> |
---|
1101 | int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
---|
1102 | checkConcept<concepts::Graph, Graph>(); |
---|
1103 | typedef typename Graph::NodeIt NodeIt; |
---|
1104 | typedef typename Graph::Node Node; |
---|
1105 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
---|
1106 | |
---|
1107 | using namespace _connectivity_bits; |
---|
1108 | |
---|
1109 | typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
---|
1110 | |
---|
1111 | int compNum = 0; |
---|
1112 | Visitor visitor(graph, compMap, compNum); |
---|
1113 | |
---|
1114 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
1115 | dfs.init(); |
---|
1116 | |
---|
1117 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1118 | if (!dfs.reached(it)) { |
---|
1119 | dfs.addSource(it); |
---|
1120 | dfs.start(); |
---|
1121 | } |
---|
1122 | } |
---|
1123 | return compNum; |
---|
1124 | } |
---|
1125 | |
---|
1126 | /// \ingroup graph_properties |
---|
1127 | /// |
---|
1128 | /// \brief Find the bi-edge-connected cut edges. |
---|
1129 | /// |
---|
1130 | /// This function finds the bi-edge-connected components in an undirected |
---|
1131 | /// graph. The bi-edge-connected components are the classes of an equivalence |
---|
1132 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1133 | /// connected with at least two edge-disjoint paths. The bi-edge-connected |
---|
1134 | /// components are separted by edges which are the cut edges of the |
---|
1135 | /// components. |
---|
1136 | /// |
---|
1137 | /// \param graph The graph. |
---|
1138 | /// \retval cutMap A writable node map. The values will be set true when the |
---|
1139 | /// edge is a cut edge. |
---|
1140 | /// \return The number of cut edges. |
---|
1141 | template <typename Graph, typename EdgeMap> |
---|
1142 | int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
---|
1143 | checkConcept<concepts::Graph, Graph>(); |
---|
1144 | typedef typename Graph::NodeIt NodeIt; |
---|
1145 | typedef typename Graph::Edge Edge; |
---|
1146 | checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
---|
1147 | |
---|
1148 | using namespace _connectivity_bits; |
---|
1149 | |
---|
1150 | typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
---|
1151 | |
---|
1152 | int cutNum = 0; |
---|
1153 | Visitor visitor(graph, cutMap, cutNum); |
---|
1154 | |
---|
1155 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
1156 | dfs.init(); |
---|
1157 | |
---|
1158 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1159 | if (!dfs.reached(it)) { |
---|
1160 | dfs.addSource(it); |
---|
1161 | dfs.start(); |
---|
1162 | } |
---|
1163 | } |
---|
1164 | return cutNum; |
---|
1165 | } |
---|
1166 | |
---|
1167 | |
---|
1168 | namespace _connectivity_bits { |
---|
1169 | |
---|
1170 | template <typename Digraph, typename IntNodeMap> |
---|
1171 | class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
---|
1172 | public: |
---|
1173 | typedef typename Digraph::Node Node; |
---|
1174 | typedef typename Digraph::Arc edge; |
---|
1175 | |
---|
1176 | TopologicalSortVisitor(IntNodeMap& order, int num) |
---|
1177 | : _order(order), _num(num) {} |
---|
1178 | |
---|
1179 | void leave(const Node& node) { |
---|
1180 | _order.set(node, --_num); |
---|
1181 | } |
---|
1182 | |
---|
1183 | private: |
---|
1184 | IntNodeMap& _order; |
---|
1185 | int _num; |
---|
1186 | }; |
---|
1187 | |
---|
1188 | } |
---|
1189 | |
---|
1190 | /// \ingroup graph_properties |
---|
1191 | /// |
---|
1192 | /// \brief Sort the nodes of a DAG into topolgical order. |
---|
1193 | /// |
---|
1194 | /// Sort the nodes of a DAG into topolgical order. |
---|
1195 | /// |
---|
1196 | /// \param graph The graph. It must be directed and acyclic. |
---|
1197 | /// \retval order A writable node map. The values will be set from 0 to |
---|
1198 | /// the number of the nodes in the graph minus one. Each values of the map |
---|
1199 | /// will be set exactly once, the values will be set descending order. |
---|
1200 | /// |
---|
1201 | /// \see checkedTopologicalSort |
---|
1202 | /// \see dag |
---|
1203 | template <typename Digraph, typename NodeMap> |
---|
1204 | void topologicalSort(const Digraph& graph, NodeMap& order) { |
---|
1205 | using namespace _connectivity_bits; |
---|
1206 | |
---|
1207 | checkConcept<concepts::Digraph, Digraph>(); |
---|
1208 | checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
---|
1209 | |
---|
1210 | typedef typename Digraph::Node Node; |
---|
1211 | typedef typename Digraph::NodeIt NodeIt; |
---|
1212 | typedef typename Digraph::Arc Arc; |
---|
1213 | |
---|
1214 | TopologicalSortVisitor<Digraph, NodeMap> |
---|
1215 | visitor(order, countNodes(graph)); |
---|
1216 | |
---|
1217 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
---|
1218 | dfs(graph, visitor); |
---|
1219 | |
---|
1220 | dfs.init(); |
---|
1221 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1222 | if (!dfs.reached(it)) { |
---|
1223 | dfs.addSource(it); |
---|
1224 | dfs.start(); |
---|
1225 | } |
---|
1226 | } |
---|
1227 | } |
---|
1228 | |
---|
1229 | /// \ingroup graph_properties |
---|
1230 | /// |
---|
1231 | /// \brief Sort the nodes of a DAG into topolgical order. |
---|
1232 | /// |
---|
1233 | /// Sort the nodes of a DAG into topolgical order. It also checks |
---|
1234 | /// that the given graph is DAG. |
---|
1235 | /// |
---|
1236 | /// \param digraph The graph. It must be directed and acyclic. |
---|
1237 | /// \retval order A readable - writable node map. The values will be set |
---|
1238 | /// from 0 to the number of the nodes in the graph minus one. Each values |
---|
1239 | /// of the map will be set exactly once, the values will be set descending |
---|
1240 | /// order. |
---|
1241 | /// \return \c false when the graph is not DAG. |
---|
1242 | /// |
---|
1243 | /// \see topologicalSort |
---|
1244 | /// \see dag |
---|
1245 | template <typename Digraph, typename NodeMap> |
---|
1246 | bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
---|
1247 | using namespace _connectivity_bits; |
---|
1248 | |
---|
1249 | checkConcept<concepts::Digraph, Digraph>(); |
---|
1250 | checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
---|
1251 | NodeMap>(); |
---|
1252 | |
---|
1253 | typedef typename Digraph::Node Node; |
---|
1254 | typedef typename Digraph::NodeIt NodeIt; |
---|
1255 | typedef typename Digraph::Arc Arc; |
---|
1256 | |
---|
1257 | for (NodeIt it(digraph); it != INVALID; ++it) { |
---|
1258 | order.set(it, -1); |
---|
1259 | } |
---|
1260 | |
---|
1261 | TopologicalSortVisitor<Digraph, NodeMap> |
---|
1262 | visitor(order, countNodes(digraph)); |
---|
1263 | |
---|
1264 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
---|
1265 | dfs(digraph, visitor); |
---|
1266 | |
---|
1267 | dfs.init(); |
---|
1268 | for (NodeIt it(digraph); it != INVALID; ++it) { |
---|
1269 | if (!dfs.reached(it)) { |
---|
1270 | dfs.addSource(it); |
---|
1271 | while (!dfs.emptyQueue()) { |
---|
1272 | Arc arc = dfs.nextArc(); |
---|
1273 | Node target = digraph.target(arc); |
---|
1274 | if (dfs.reached(target) && order[target] == -1) { |
---|
1275 | return false; |
---|
1276 | } |
---|
1277 | dfs.processNextArc(); |
---|
1278 | } |
---|
1279 | } |
---|
1280 | } |
---|
1281 | return true; |
---|
1282 | } |
---|
1283 | |
---|
1284 | /// \ingroup graph_properties |
---|
1285 | /// |
---|
1286 | /// \brief Check that the given directed graph is a DAG. |
---|
1287 | /// |
---|
1288 | /// Check that the given directed graph is a DAG. The DAG is |
---|
1289 | /// an Directed Acyclic Digraph. |
---|
1290 | /// \return \c false when the graph is not DAG. |
---|
1291 | /// \see acyclic |
---|
1292 | template <typename Digraph> |
---|
1293 | bool dag(const Digraph& digraph) { |
---|
1294 | |
---|
1295 | checkConcept<concepts::Digraph, Digraph>(); |
---|
1296 | |
---|
1297 | typedef typename Digraph::Node Node; |
---|
1298 | typedef typename Digraph::NodeIt NodeIt; |
---|
1299 | typedef typename Digraph::Arc Arc; |
---|
1300 | |
---|
1301 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
---|
1302 | |
---|
1303 | typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
---|
1304 | Create dfs(digraph); |
---|
1305 | |
---|
1306 | ProcessedMap processed(digraph); |
---|
1307 | dfs.processedMap(processed); |
---|
1308 | |
---|
1309 | dfs.init(); |
---|
1310 | for (NodeIt it(digraph); it != INVALID; ++it) { |
---|
1311 | if (!dfs.reached(it)) { |
---|
1312 | dfs.addSource(it); |
---|
1313 | while (!dfs.emptyQueue()) { |
---|
1314 | Arc edge = dfs.nextArc(); |
---|
1315 | Node target = digraph.target(edge); |
---|
1316 | if (dfs.reached(target) && !processed[target]) { |
---|
1317 | return false; |
---|
1318 | } |
---|
1319 | dfs.processNextArc(); |
---|
1320 | } |
---|
1321 | } |
---|
1322 | } |
---|
1323 | return true; |
---|
1324 | } |
---|
1325 | |
---|
1326 | /// \ingroup graph_properties |
---|
1327 | /// |
---|
1328 | /// \brief Check that the given undirected graph is acyclic. |
---|
1329 | /// |
---|
1330 | /// Check that the given undirected graph acyclic. |
---|
1331 | /// \param graph The undirected graph. |
---|
1332 | /// \return \c true when there is no circle in the graph. |
---|
1333 | /// \see dag |
---|
1334 | template <typename Graph> |
---|
1335 | bool acyclic(const Graph& graph) { |
---|
1336 | checkConcept<concepts::Graph, Graph>(); |
---|
1337 | typedef typename Graph::Node Node; |
---|
1338 | typedef typename Graph::NodeIt NodeIt; |
---|
1339 | typedef typename Graph::Arc Arc; |
---|
1340 | Dfs<Graph> dfs(graph); |
---|
1341 | dfs.init(); |
---|
1342 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1343 | if (!dfs.reached(it)) { |
---|
1344 | dfs.addSource(it); |
---|
1345 | while (!dfs.emptyQueue()) { |
---|
1346 | Arc edge = dfs.nextArc(); |
---|
1347 | Node source = graph.source(edge); |
---|
1348 | Node target = graph.target(edge); |
---|
1349 | if (dfs.reached(target) && |
---|
1350 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
---|
1351 | return false; |
---|
1352 | } |
---|
1353 | dfs.processNextArc(); |
---|
1354 | } |
---|
1355 | } |
---|
1356 | } |
---|
1357 | return true; |
---|
1358 | } |
---|
1359 | |
---|
1360 | /// \ingroup graph_properties |
---|
1361 | /// |
---|
1362 | /// \brief Check that the given undirected graph is tree. |
---|
1363 | /// |
---|
1364 | /// Check that the given undirected graph is tree. |
---|
1365 | /// \param graph The undirected graph. |
---|
1366 | /// \return \c true when the graph is acyclic and connected. |
---|
1367 | template <typename Graph> |
---|
1368 | bool tree(const Graph& graph) { |
---|
1369 | checkConcept<concepts::Graph, Graph>(); |
---|
1370 | typedef typename Graph::Node Node; |
---|
1371 | typedef typename Graph::NodeIt NodeIt; |
---|
1372 | typedef typename Graph::Arc Arc; |
---|
1373 | if (NodeIt(graph) == INVALID) return true; |
---|
1374 | Dfs<Graph> dfs(graph); |
---|
1375 | dfs.init(); |
---|
1376 | dfs.addSource(NodeIt(graph)); |
---|
1377 | while (!dfs.emptyQueue()) { |
---|
1378 | Arc edge = dfs.nextArc(); |
---|
1379 | Node source = graph.source(edge); |
---|
1380 | Node target = graph.target(edge); |
---|
1381 | if (dfs.reached(target) && |
---|
1382 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
---|
1383 | return false; |
---|
1384 | } |
---|
1385 | dfs.processNextArc(); |
---|
1386 | } |
---|
1387 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1388 | if (!dfs.reached(it)) { |
---|
1389 | return false; |
---|
1390 | } |
---|
1391 | } |
---|
1392 | return true; |
---|
1393 | } |
---|
1394 | |
---|
1395 | namespace _connectivity_bits { |
---|
1396 | |
---|
1397 | template <typename Digraph> |
---|
1398 | class BipartiteVisitor : public BfsVisitor<Digraph> { |
---|
1399 | public: |
---|
1400 | typedef typename Digraph::Arc Arc; |
---|
1401 | typedef typename Digraph::Node Node; |
---|
1402 | |
---|
1403 | BipartiteVisitor(const Digraph& graph, bool& bipartite) |
---|
1404 | : _graph(graph), _part(graph), _bipartite(bipartite) {} |
---|
1405 | |
---|
1406 | void start(const Node& node) { |
---|
1407 | _part[node] = true; |
---|
1408 | } |
---|
1409 | void discover(const Arc& edge) { |
---|
1410 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
---|
1411 | } |
---|
1412 | void examine(const Arc& edge) { |
---|
1413 | _bipartite = _bipartite && |
---|
1414 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
---|
1415 | } |
---|
1416 | |
---|
1417 | private: |
---|
1418 | |
---|
1419 | const Digraph& _graph; |
---|
1420 | typename Digraph::template NodeMap<bool> _part; |
---|
1421 | bool& _bipartite; |
---|
1422 | }; |
---|
1423 | |
---|
1424 | template <typename Digraph, typename PartMap> |
---|
1425 | class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
---|
1426 | public: |
---|
1427 | typedef typename Digraph::Arc Arc; |
---|
1428 | typedef typename Digraph::Node Node; |
---|
1429 | |
---|
1430 | BipartitePartitionsVisitor(const Digraph& graph, |
---|
1431 | PartMap& part, bool& bipartite) |
---|
1432 | : _graph(graph), _part(part), _bipartite(bipartite) {} |
---|
1433 | |
---|
1434 | void start(const Node& node) { |
---|
1435 | _part.set(node, true); |
---|
1436 | } |
---|
1437 | void discover(const Arc& edge) { |
---|
1438 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
---|
1439 | } |
---|
1440 | void examine(const Arc& edge) { |
---|
1441 | _bipartite = _bipartite && |
---|
1442 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
---|
1443 | } |
---|
1444 | |
---|
1445 | private: |
---|
1446 | |
---|
1447 | const Digraph& _graph; |
---|
1448 | PartMap& _part; |
---|
1449 | bool& _bipartite; |
---|
1450 | }; |
---|
1451 | } |
---|
1452 | |
---|
1453 | /// \ingroup graph_properties |
---|
1454 | /// |
---|
1455 | /// \brief Check if the given undirected graph is bipartite or not |
---|
1456 | /// |
---|
1457 | /// The function checks if the given undirected \c graph graph is bipartite |
---|
1458 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
---|
1459 | /// \param graph The undirected graph. |
---|
1460 | /// \return \c true if \c graph is bipartite, \c false otherwise. |
---|
1461 | /// \sa bipartitePartitions |
---|
1462 | template<typename Graph> |
---|
1463 | inline bool bipartite(const Graph &graph){ |
---|
1464 | using namespace _connectivity_bits; |
---|
1465 | |
---|
1466 | checkConcept<concepts::Graph, Graph>(); |
---|
1467 | |
---|
1468 | typedef typename Graph::NodeIt NodeIt; |
---|
1469 | typedef typename Graph::ArcIt ArcIt; |
---|
1470 | |
---|
1471 | bool bipartite = true; |
---|
1472 | |
---|
1473 | BipartiteVisitor<Graph> |
---|
1474 | visitor(graph, bipartite); |
---|
1475 | BfsVisit<Graph, BipartiteVisitor<Graph> > |
---|
1476 | bfs(graph, visitor); |
---|
1477 | bfs.init(); |
---|
1478 | for(NodeIt it(graph); it != INVALID; ++it) { |
---|
1479 | if(!bfs.reached(it)){ |
---|
1480 | bfs.addSource(it); |
---|
1481 | while (!bfs.emptyQueue()) { |
---|
1482 | bfs.processNextNode(); |
---|
1483 | if (!bipartite) return false; |
---|
1484 | } |
---|
1485 | } |
---|
1486 | } |
---|
1487 | return true; |
---|
1488 | } |
---|
1489 | |
---|
1490 | /// \ingroup graph_properties |
---|
1491 | /// |
---|
1492 | /// \brief Check if the given undirected graph is bipartite or not |
---|
1493 | /// |
---|
1494 | /// The function checks if the given undirected graph is bipartite |
---|
1495 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
---|
1496 | /// During the execution, the \c partMap will be set as the two |
---|
1497 | /// partitions of the graph. |
---|
1498 | /// |
---|
1499 | /// \image html bipartite_partitions.png |
---|
1500 | /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
---|
1501 | /// |
---|
1502 | /// \param graph The undirected graph. |
---|
1503 | /// \retval partMap A writable bool map of nodes. It will be set as the |
---|
1504 | /// two partitions of the graph. |
---|
1505 | /// \return \c true if \c graph is bipartite, \c false otherwise. |
---|
1506 | template<typename Graph, typename NodeMap> |
---|
1507 | inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
---|
1508 | using namespace _connectivity_bits; |
---|
1509 | |
---|
1510 | checkConcept<concepts::Graph, Graph>(); |
---|
1511 | |
---|
1512 | typedef typename Graph::Node Node; |
---|
1513 | typedef typename Graph::NodeIt NodeIt; |
---|
1514 | typedef typename Graph::ArcIt ArcIt; |
---|
1515 | |
---|
1516 | bool bipartite = true; |
---|
1517 | |
---|
1518 | BipartitePartitionsVisitor<Graph, NodeMap> |
---|
1519 | visitor(graph, partMap, bipartite); |
---|
1520 | BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
---|
1521 | bfs(graph, visitor); |
---|
1522 | bfs.init(); |
---|
1523 | for(NodeIt it(graph); it != INVALID; ++it) { |
---|
1524 | if(!bfs.reached(it)){ |
---|
1525 | bfs.addSource(it); |
---|
1526 | while (!bfs.emptyQueue()) { |
---|
1527 | bfs.processNextNode(); |
---|
1528 | if (!bipartite) return false; |
---|
1529 | } |
---|
1530 | } |
---|
1531 | } |
---|
1532 | return true; |
---|
1533 | } |
---|
1534 | |
---|
1535 | /// \brief Returns true when there are not loop edges in the graph. |
---|
1536 | /// |
---|
1537 | /// Returns true when there are not loop edges in the graph. |
---|
1538 | template <typename Digraph> |
---|
1539 | bool loopFree(const Digraph& digraph) { |
---|
1540 | for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
---|
1541 | if (digraph.source(it) == digraph.target(it)) return false; |
---|
1542 | } |
---|
1543 | return true; |
---|
1544 | } |
---|
1545 | |
---|
1546 | /// \brief Returns true when there are not parallel edges in the graph. |
---|
1547 | /// |
---|
1548 | /// Returns true when there are not parallel edges in the graph. |
---|
1549 | template <typename Graph> |
---|
1550 | bool parallelFree(const Graph& graph) { |
---|
1551 | typename Graph::template NodeMap<int> reached(graph, 0); |
---|
1552 | int cnt = 1; |
---|
1553 | for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
---|
1554 | for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
---|
1555 | if (reached[graph.target(a)] == cnt) return false; |
---|
1556 | reached[graph.target(a)] = cnt; |
---|
1557 | } |
---|
1558 | ++cnt; |
---|
1559 | } |
---|
1560 | return true; |
---|
1561 | } |
---|
1562 | |
---|
1563 | /// \brief Returns true when there are not loop edges and parallel |
---|
1564 | /// edges in the graph. |
---|
1565 | /// |
---|
1566 | /// Returns true when there are not loop edges and parallel edges in |
---|
1567 | /// the graph. |
---|
1568 | template <typename Graph> |
---|
1569 | bool simpleGraph(const Graph& graph) { |
---|
1570 | typename Graph::template NodeMap<int> reached(graph, 0); |
---|
1571 | int cnt = 1; |
---|
1572 | for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
---|
1573 | reached[n] = cnt; |
---|
1574 | for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
---|
1575 | if (reached[graph.target(a)] == cnt) return false; |
---|
1576 | reached[graph.target(a)] = cnt; |
---|
1577 | } |
---|
1578 | ++cnt; |
---|
1579 | } |
---|
1580 | return true; |
---|
1581 | } |
---|
1582 | |
---|
1583 | } //namespace lemon |
---|
1584 | |
---|
1585 | #endif //LEMON_CONNECTIVITY_H |
---|