1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2013 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_CORE_H |
---|
20 | #define LEMON_CORE_H |
---|
21 | |
---|
22 | ///\file |
---|
23 | ///\brief LEMON core utilities. |
---|
24 | /// |
---|
25 | ///This header file contains core utilities for LEMON. |
---|
26 | ///It is automatically included by all graph types, therefore it usually |
---|
27 | ///do not have to be included directly. |
---|
28 | |
---|
29 | // Disable the following warnings when compiling with MSVC: |
---|
30 | // C4250: 'class1' : inherits 'class2::member' via dominance |
---|
31 | // C4267: conversion from 'size_t' to 'type', possible loss of data |
---|
32 | // C4355: 'this' : used in base member initializer list |
---|
33 | // C4503: 'function' : decorated name length exceeded, name was truncated |
---|
34 | // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
---|
35 | // C4996: 'function': was declared deprecated |
---|
36 | |
---|
37 | #include <lemon/config.h> |
---|
38 | |
---|
39 | #ifdef _MSC_VER |
---|
40 | #pragma warning( disable : 4250 4267 4355 4503 4800 4996 ) |
---|
41 | #endif |
---|
42 | |
---|
43 | #if LEMON_NO_UNUSED_LOCAL_TYPEDEF_WARNINGS |
---|
44 | // Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc >=4.8 and clang |
---|
45 | #pragma GCC diagnostic ignored "-Wunused-local-typedefs" |
---|
46 | #endif |
---|
47 | |
---|
48 | #include <vector> |
---|
49 | #include <algorithm> |
---|
50 | |
---|
51 | #include <lemon/bits/enable_if.h> |
---|
52 | #include <lemon/bits/traits.h> |
---|
53 | #include <lemon/assert.h> |
---|
54 | |
---|
55 | |
---|
56 | |
---|
57 | namespace lemon { |
---|
58 | |
---|
59 | /// \brief Dummy type to make it easier to create invalid iterators. |
---|
60 | /// |
---|
61 | /// Dummy type to make it easier to create invalid iterators. |
---|
62 | /// See \ref INVALID for the usage. |
---|
63 | struct Invalid { |
---|
64 | public: |
---|
65 | bool operator==(Invalid) { return true; } |
---|
66 | bool operator!=(Invalid) { return false; } |
---|
67 | bool operator< (Invalid) { return false; } |
---|
68 | }; |
---|
69 | |
---|
70 | /// \brief Invalid iterators. |
---|
71 | /// |
---|
72 | /// \ref Invalid is a global type that converts to each iterator |
---|
73 | /// in such a way that the value of the target iterator will be invalid. |
---|
74 | #ifdef LEMON_ONLY_TEMPLATES |
---|
75 | const Invalid INVALID = Invalid(); |
---|
76 | #else |
---|
77 | extern const Invalid INVALID; |
---|
78 | #endif |
---|
79 | |
---|
80 | /// \addtogroup gutils |
---|
81 | /// @{ |
---|
82 | |
---|
83 | ///Create convenience typedefs for the digraph types and iterators |
---|
84 | |
---|
85 | ///This \c \#define creates convenient type definitions for the following |
---|
86 | ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
---|
87 | ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
---|
88 | ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
---|
89 | /// |
---|
90 | ///\note If the graph type is a dependent type, ie. the graph type depend |
---|
91 | ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
---|
92 | ///macro. |
---|
93 | #define DIGRAPH_TYPEDEFS(Digraph) \ |
---|
94 | typedef Digraph::Node Node; \ |
---|
95 | typedef Digraph::NodeIt NodeIt; \ |
---|
96 | typedef Digraph::Arc Arc; \ |
---|
97 | typedef Digraph::ArcIt ArcIt; \ |
---|
98 | typedef Digraph::InArcIt InArcIt; \ |
---|
99 | typedef Digraph::OutArcIt OutArcIt; \ |
---|
100 | typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
---|
101 | typedef Digraph::NodeMap<int> IntNodeMap; \ |
---|
102 | typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
---|
103 | typedef Digraph::ArcMap<bool> BoolArcMap; \ |
---|
104 | typedef Digraph::ArcMap<int> IntArcMap; \ |
---|
105 | typedef Digraph::ArcMap<double> DoubleArcMap |
---|
106 | |
---|
107 | ///Create convenience typedefs for the digraph types and iterators |
---|
108 | |
---|
109 | ///\see DIGRAPH_TYPEDEFS |
---|
110 | /// |
---|
111 | ///\note Use this macro, if the graph type is a dependent type, |
---|
112 | ///ie. the graph type depend on a template parameter. |
---|
113 | #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
---|
114 | typedef typename Digraph::Node Node; \ |
---|
115 | typedef typename Digraph::NodeIt NodeIt; \ |
---|
116 | typedef typename Digraph::Arc Arc; \ |
---|
117 | typedef typename Digraph::ArcIt ArcIt; \ |
---|
118 | typedef typename Digraph::InArcIt InArcIt; \ |
---|
119 | typedef typename Digraph::OutArcIt OutArcIt; \ |
---|
120 | typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
---|
121 | typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
---|
122 | typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
---|
123 | typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
---|
124 | typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
---|
125 | typedef typename Digraph::template ArcMap<double> DoubleArcMap |
---|
126 | |
---|
127 | ///Create convenience typedefs for the graph types and iterators |
---|
128 | |
---|
129 | ///This \c \#define creates the same convenient type definitions as defined |
---|
130 | ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
---|
131 | ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
---|
132 | ///\c DoubleEdgeMap. |
---|
133 | /// |
---|
134 | ///\note If the graph type is a dependent type, ie. the graph type depend |
---|
135 | ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
---|
136 | ///macro. |
---|
137 | #define GRAPH_TYPEDEFS(Graph) \ |
---|
138 | DIGRAPH_TYPEDEFS(Graph); \ |
---|
139 | typedef Graph::Edge Edge; \ |
---|
140 | typedef Graph::EdgeIt EdgeIt; \ |
---|
141 | typedef Graph::IncEdgeIt IncEdgeIt; \ |
---|
142 | typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
---|
143 | typedef Graph::EdgeMap<int> IntEdgeMap; \ |
---|
144 | typedef Graph::EdgeMap<double> DoubleEdgeMap |
---|
145 | |
---|
146 | ///Create convenience typedefs for the graph types and iterators |
---|
147 | |
---|
148 | ///\see GRAPH_TYPEDEFS |
---|
149 | /// |
---|
150 | ///\note Use this macro, if the graph type is a dependent type, |
---|
151 | ///ie. the graph type depend on a template parameter. |
---|
152 | #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
---|
153 | TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
---|
154 | typedef typename Graph::Edge Edge; \ |
---|
155 | typedef typename Graph::EdgeIt EdgeIt; \ |
---|
156 | typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
---|
157 | typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
---|
158 | typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
---|
159 | typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
---|
160 | |
---|
161 | ///Create convenience typedefs for the bipartite graph types and iterators |
---|
162 | |
---|
163 | ///This \c \#define creates the same convenient type definitions as |
---|
164 | ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it |
---|
165 | ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap, |
---|
166 | ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt, |
---|
167 | ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap. |
---|
168 | /// |
---|
169 | ///\note If the graph type is a dependent type, ie. the graph type depend |
---|
170 | ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS() |
---|
171 | ///macro. |
---|
172 | #define BPGRAPH_TYPEDEFS(BpGraph) \ |
---|
173 | GRAPH_TYPEDEFS(BpGraph); \ |
---|
174 | typedef BpGraph::RedNode RedNode; \ |
---|
175 | typedef BpGraph::RedNodeIt RedNodeIt; \ |
---|
176 | typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap; \ |
---|
177 | typedef BpGraph::RedNodeMap<int> IntRedNodeMap; \ |
---|
178 | typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap; \ |
---|
179 | typedef BpGraph::BlueNode BlueNode; \ |
---|
180 | typedef BpGraph::BlueNodeIt BlueNodeIt; \ |
---|
181 | typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap; \ |
---|
182 | typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap; \ |
---|
183 | typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap |
---|
184 | |
---|
185 | ///Create convenience typedefs for the bipartite graph types and iterators |
---|
186 | |
---|
187 | ///\see BPGRAPH_TYPEDEFS |
---|
188 | /// |
---|
189 | ///\note Use this macro, if the graph type is a dependent type, |
---|
190 | ///ie. the graph type depend on a template parameter. |
---|
191 | #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph) \ |
---|
192 | TEMPLATE_GRAPH_TYPEDEFS(BpGraph); \ |
---|
193 | typedef typename BpGraph::RedNode RedNode; \ |
---|
194 | typedef typename BpGraph::RedNodeIt RedNodeIt; \ |
---|
195 | typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap; \ |
---|
196 | typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap; \ |
---|
197 | typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap; \ |
---|
198 | typedef typename BpGraph::BlueNode BlueNode; \ |
---|
199 | typedef typename BpGraph::BlueNodeIt BlueNodeIt; \ |
---|
200 | typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap; \ |
---|
201 | typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap; \ |
---|
202 | typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap |
---|
203 | |
---|
204 | /// \brief Function to count the items in a graph. |
---|
205 | /// |
---|
206 | /// This function counts the items (nodes, arcs etc.) in a graph. |
---|
207 | /// The complexity of the function is linear because |
---|
208 | /// it iterates on all of the items. |
---|
209 | template <typename Graph, typename Item> |
---|
210 | inline int countItems(const Graph& g) { |
---|
211 | typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
---|
212 | int num = 0; |
---|
213 | for (ItemIt it(g); it != INVALID; ++it) { |
---|
214 | ++num; |
---|
215 | } |
---|
216 | return num; |
---|
217 | } |
---|
218 | |
---|
219 | // Node counting: |
---|
220 | |
---|
221 | namespace _core_bits { |
---|
222 | |
---|
223 | template <typename Graph, typename Enable = void> |
---|
224 | struct CountNodesSelector { |
---|
225 | static int count(const Graph &g) { |
---|
226 | return countItems<Graph, typename Graph::Node>(g); |
---|
227 | } |
---|
228 | }; |
---|
229 | |
---|
230 | template <typename Graph> |
---|
231 | struct CountNodesSelector< |
---|
232 | Graph, typename |
---|
233 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
234 | { |
---|
235 | static int count(const Graph &g) { |
---|
236 | return g.nodeNum(); |
---|
237 | } |
---|
238 | }; |
---|
239 | } |
---|
240 | |
---|
241 | /// \brief Function to count the nodes in the graph. |
---|
242 | /// |
---|
243 | /// This function counts the nodes in the graph. |
---|
244 | /// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
---|
245 | /// graph structures it is specialized to run in <em>O</em>(1). |
---|
246 | /// |
---|
247 | /// \note If the graph contains a \c nodeNum() member function and a |
---|
248 | /// \c NodeNumTag tag then this function calls directly the member |
---|
249 | /// function to query the cardinality of the node set. |
---|
250 | template <typename Graph> |
---|
251 | inline int countNodes(const Graph& g) { |
---|
252 | return _core_bits::CountNodesSelector<Graph>::count(g); |
---|
253 | } |
---|
254 | |
---|
255 | namespace _graph_utils_bits { |
---|
256 | |
---|
257 | template <typename Graph, typename Enable = void> |
---|
258 | struct CountRedNodesSelector { |
---|
259 | static int count(const Graph &g) { |
---|
260 | return countItems<Graph, typename Graph::RedNode>(g); |
---|
261 | } |
---|
262 | }; |
---|
263 | |
---|
264 | template <typename Graph> |
---|
265 | struct CountRedNodesSelector< |
---|
266 | Graph, typename |
---|
267 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
268 | { |
---|
269 | static int count(const Graph &g) { |
---|
270 | return g.redNum(); |
---|
271 | } |
---|
272 | }; |
---|
273 | } |
---|
274 | |
---|
275 | /// \brief Function to count the red nodes in the graph. |
---|
276 | /// |
---|
277 | /// This function counts the red nodes in the graph. |
---|
278 | /// The complexity of the function is O(n) but for some |
---|
279 | /// graph structures it is specialized to run in O(1). |
---|
280 | /// |
---|
281 | /// If the graph contains a \e redNum() member function and a |
---|
282 | /// \e NodeNumTag tag then this function calls directly the member |
---|
283 | /// function to query the cardinality of the node set. |
---|
284 | template <typename Graph> |
---|
285 | inline int countRedNodes(const Graph& g) { |
---|
286 | return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g); |
---|
287 | } |
---|
288 | |
---|
289 | namespace _graph_utils_bits { |
---|
290 | |
---|
291 | template <typename Graph, typename Enable = void> |
---|
292 | struct CountBlueNodesSelector { |
---|
293 | static int count(const Graph &g) { |
---|
294 | return countItems<Graph, typename Graph::BlueNode>(g); |
---|
295 | } |
---|
296 | }; |
---|
297 | |
---|
298 | template <typename Graph> |
---|
299 | struct CountBlueNodesSelector< |
---|
300 | Graph, typename |
---|
301 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
302 | { |
---|
303 | static int count(const Graph &g) { |
---|
304 | return g.blueNum(); |
---|
305 | } |
---|
306 | }; |
---|
307 | } |
---|
308 | |
---|
309 | /// \brief Function to count the blue nodes in the graph. |
---|
310 | /// |
---|
311 | /// This function counts the blue nodes in the graph. |
---|
312 | /// The complexity of the function is O(n) but for some |
---|
313 | /// graph structures it is specialized to run in O(1). |
---|
314 | /// |
---|
315 | /// If the graph contains a \e blueNum() member function and a |
---|
316 | /// \e NodeNumTag tag then this function calls directly the member |
---|
317 | /// function to query the cardinality of the node set. |
---|
318 | template <typename Graph> |
---|
319 | inline int countBlueNodes(const Graph& g) { |
---|
320 | return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g); |
---|
321 | } |
---|
322 | |
---|
323 | // Arc counting: |
---|
324 | |
---|
325 | namespace _core_bits { |
---|
326 | |
---|
327 | template <typename Graph, typename Enable = void> |
---|
328 | struct CountArcsSelector { |
---|
329 | static int count(const Graph &g) { |
---|
330 | return countItems<Graph, typename Graph::Arc>(g); |
---|
331 | } |
---|
332 | }; |
---|
333 | |
---|
334 | template <typename Graph> |
---|
335 | struct CountArcsSelector< |
---|
336 | Graph, |
---|
337 | typename enable_if<typename Graph::ArcNumTag, void>::type> |
---|
338 | { |
---|
339 | static int count(const Graph &g) { |
---|
340 | return g.arcNum(); |
---|
341 | } |
---|
342 | }; |
---|
343 | } |
---|
344 | |
---|
345 | /// \brief Function to count the arcs in the graph. |
---|
346 | /// |
---|
347 | /// This function counts the arcs in the graph. |
---|
348 | /// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
---|
349 | /// graph structures it is specialized to run in <em>O</em>(1). |
---|
350 | /// |
---|
351 | /// \note If the graph contains a \c arcNum() member function and a |
---|
352 | /// \c ArcNumTag tag then this function calls directly the member |
---|
353 | /// function to query the cardinality of the arc set. |
---|
354 | template <typename Graph> |
---|
355 | inline int countArcs(const Graph& g) { |
---|
356 | return _core_bits::CountArcsSelector<Graph>::count(g); |
---|
357 | } |
---|
358 | |
---|
359 | // Edge counting: |
---|
360 | |
---|
361 | namespace _core_bits { |
---|
362 | |
---|
363 | template <typename Graph, typename Enable = void> |
---|
364 | struct CountEdgesSelector { |
---|
365 | static int count(const Graph &g) { |
---|
366 | return countItems<Graph, typename Graph::Edge>(g); |
---|
367 | } |
---|
368 | }; |
---|
369 | |
---|
370 | template <typename Graph> |
---|
371 | struct CountEdgesSelector< |
---|
372 | Graph, |
---|
373 | typename enable_if<typename Graph::EdgeNumTag, void>::type> |
---|
374 | { |
---|
375 | static int count(const Graph &g) { |
---|
376 | return g.edgeNum(); |
---|
377 | } |
---|
378 | }; |
---|
379 | } |
---|
380 | |
---|
381 | /// \brief Function to count the edges in the graph. |
---|
382 | /// |
---|
383 | /// This function counts the edges in the graph. |
---|
384 | /// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
---|
385 | /// graph structures it is specialized to run in <em>O</em>(1). |
---|
386 | /// |
---|
387 | /// \note If the graph contains a \c edgeNum() member function and a |
---|
388 | /// \c EdgeNumTag tag then this function calls directly the member |
---|
389 | /// function to query the cardinality of the edge set. |
---|
390 | template <typename Graph> |
---|
391 | inline int countEdges(const Graph& g) { |
---|
392 | return _core_bits::CountEdgesSelector<Graph>::count(g); |
---|
393 | |
---|
394 | } |
---|
395 | |
---|
396 | |
---|
397 | template <typename Graph, typename DegIt> |
---|
398 | inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
---|
399 | int num = 0; |
---|
400 | for (DegIt it(_g, _n); it != INVALID; ++it) { |
---|
401 | ++num; |
---|
402 | } |
---|
403 | return num; |
---|
404 | } |
---|
405 | |
---|
406 | /// \brief Function to count the number of the out-arcs from node \c n. |
---|
407 | /// |
---|
408 | /// This function counts the number of the out-arcs from node \c n |
---|
409 | /// in the graph \c g. |
---|
410 | template <typename Graph> |
---|
411 | inline int countOutArcs(const Graph& g, const typename Graph::Node& n) { |
---|
412 | return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n); |
---|
413 | } |
---|
414 | |
---|
415 | /// \brief Function to count the number of the in-arcs to node \c n. |
---|
416 | /// |
---|
417 | /// This function counts the number of the in-arcs to node \c n |
---|
418 | /// in the graph \c g. |
---|
419 | template <typename Graph> |
---|
420 | inline int countInArcs(const Graph& g, const typename Graph::Node& n) { |
---|
421 | return countNodeDegree<Graph, typename Graph::InArcIt>(g, n); |
---|
422 | } |
---|
423 | |
---|
424 | /// \brief Function to count the number of the inc-edges to node \c n. |
---|
425 | /// |
---|
426 | /// This function counts the number of the inc-edges to node \c n |
---|
427 | /// in the undirected graph \c g. |
---|
428 | template <typename Graph> |
---|
429 | inline int countIncEdges(const Graph& g, const typename Graph::Node& n) { |
---|
430 | return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n); |
---|
431 | } |
---|
432 | |
---|
433 | namespace _core_bits { |
---|
434 | |
---|
435 | template <typename Digraph, typename Item, typename RefMap> |
---|
436 | class MapCopyBase { |
---|
437 | public: |
---|
438 | virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
---|
439 | |
---|
440 | virtual ~MapCopyBase() {} |
---|
441 | }; |
---|
442 | |
---|
443 | template <typename Digraph, typename Item, typename RefMap, |
---|
444 | typename FromMap, typename ToMap> |
---|
445 | class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
---|
446 | public: |
---|
447 | |
---|
448 | MapCopy(const FromMap& map, ToMap& tmap) |
---|
449 | : _map(map), _tmap(tmap) {} |
---|
450 | |
---|
451 | virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
---|
452 | typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
---|
453 | for (ItemIt it(digraph); it != INVALID; ++it) { |
---|
454 | _tmap.set(refMap[it], _map[it]); |
---|
455 | } |
---|
456 | } |
---|
457 | |
---|
458 | private: |
---|
459 | const FromMap& _map; |
---|
460 | ToMap& _tmap; |
---|
461 | }; |
---|
462 | |
---|
463 | template <typename Digraph, typename Item, typename RefMap, typename It> |
---|
464 | class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> { |
---|
465 | public: |
---|
466 | |
---|
467 | ItemCopy(const Item& item, It& it) : _item(item), _it(it) {} |
---|
468 | |
---|
469 | virtual void copy(const Digraph&, const RefMap& refMap) { |
---|
470 | _it = refMap[_item]; |
---|
471 | } |
---|
472 | |
---|
473 | private: |
---|
474 | Item _item; |
---|
475 | It& _it; |
---|
476 | }; |
---|
477 | |
---|
478 | template <typename Digraph, typename Item, typename RefMap, typename Ref> |
---|
479 | class RefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
---|
480 | public: |
---|
481 | |
---|
482 | RefCopy(Ref& map) : _map(map) {} |
---|
483 | |
---|
484 | virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
---|
485 | typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
---|
486 | for (ItemIt it(digraph); it != INVALID; ++it) { |
---|
487 | _map.set(it, refMap[it]); |
---|
488 | } |
---|
489 | } |
---|
490 | |
---|
491 | private: |
---|
492 | Ref& _map; |
---|
493 | }; |
---|
494 | |
---|
495 | template <typename Digraph, typename Item, typename RefMap, |
---|
496 | typename CrossRef> |
---|
497 | class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
---|
498 | public: |
---|
499 | |
---|
500 | CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
---|
501 | |
---|
502 | virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
---|
503 | typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
---|
504 | for (ItemIt it(digraph); it != INVALID; ++it) { |
---|
505 | _cmap.set(refMap[it], it); |
---|
506 | } |
---|
507 | } |
---|
508 | |
---|
509 | private: |
---|
510 | CrossRef& _cmap; |
---|
511 | }; |
---|
512 | |
---|
513 | template <typename Digraph, typename Enable = void> |
---|
514 | struct DigraphCopySelector { |
---|
515 | template <typename From, typename NodeRefMap, typename ArcRefMap> |
---|
516 | static void copy(const From& from, Digraph &to, |
---|
517 | NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
---|
518 | to.clear(); |
---|
519 | for (typename From::NodeIt it(from); it != INVALID; ++it) { |
---|
520 | nodeRefMap[it] = to.addNode(); |
---|
521 | } |
---|
522 | for (typename From::ArcIt it(from); it != INVALID; ++it) { |
---|
523 | arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
---|
524 | nodeRefMap[from.target(it)]); |
---|
525 | } |
---|
526 | } |
---|
527 | }; |
---|
528 | |
---|
529 | template <typename Digraph> |
---|
530 | struct DigraphCopySelector< |
---|
531 | Digraph, |
---|
532 | typename enable_if<typename Digraph::BuildTag, void>::type> |
---|
533 | { |
---|
534 | template <typename From, typename NodeRefMap, typename ArcRefMap> |
---|
535 | static void copy(const From& from, Digraph &to, |
---|
536 | NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
---|
537 | to.build(from, nodeRefMap, arcRefMap); |
---|
538 | } |
---|
539 | }; |
---|
540 | |
---|
541 | template <typename Graph, typename Enable = void> |
---|
542 | struct GraphCopySelector { |
---|
543 | template <typename From, typename NodeRefMap, typename EdgeRefMap> |
---|
544 | static void copy(const From& from, Graph &to, |
---|
545 | NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
---|
546 | to.clear(); |
---|
547 | for (typename From::NodeIt it(from); it != INVALID; ++it) { |
---|
548 | nodeRefMap[it] = to.addNode(); |
---|
549 | } |
---|
550 | for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
---|
551 | edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
---|
552 | nodeRefMap[from.v(it)]); |
---|
553 | } |
---|
554 | } |
---|
555 | }; |
---|
556 | |
---|
557 | template <typename Graph> |
---|
558 | struct GraphCopySelector< |
---|
559 | Graph, |
---|
560 | typename enable_if<typename Graph::BuildTag, void>::type> |
---|
561 | { |
---|
562 | template <typename From, typename NodeRefMap, typename EdgeRefMap> |
---|
563 | static void copy(const From& from, Graph &to, |
---|
564 | NodeRefMap& nodeRefMap, |
---|
565 | EdgeRefMap& edgeRefMap) { |
---|
566 | to.build(from, nodeRefMap, edgeRefMap); |
---|
567 | } |
---|
568 | }; |
---|
569 | |
---|
570 | template <typename BpGraph, typename Enable = void> |
---|
571 | struct BpGraphCopySelector { |
---|
572 | template <typename From, typename RedNodeRefMap, |
---|
573 | typename BlueNodeRefMap, typename EdgeRefMap> |
---|
574 | static void copy(const From& from, BpGraph &to, |
---|
575 | RedNodeRefMap& redNodeRefMap, |
---|
576 | BlueNodeRefMap& blueNodeRefMap, |
---|
577 | EdgeRefMap& edgeRefMap) { |
---|
578 | to.clear(); |
---|
579 | for (typename From::RedNodeIt it(from); it != INVALID; ++it) { |
---|
580 | redNodeRefMap[it] = to.addRedNode(); |
---|
581 | } |
---|
582 | for (typename From::BlueNodeIt it(from); it != INVALID; ++it) { |
---|
583 | blueNodeRefMap[it] = to.addBlueNode(); |
---|
584 | } |
---|
585 | for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
---|
586 | edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)], |
---|
587 | blueNodeRefMap[from.blueNode(it)]); |
---|
588 | } |
---|
589 | } |
---|
590 | }; |
---|
591 | |
---|
592 | template <typename BpGraph> |
---|
593 | struct BpGraphCopySelector< |
---|
594 | BpGraph, |
---|
595 | typename enable_if<typename BpGraph::BuildTag, void>::type> |
---|
596 | { |
---|
597 | template <typename From, typename RedNodeRefMap, |
---|
598 | typename BlueNodeRefMap, typename EdgeRefMap> |
---|
599 | static void copy(const From& from, BpGraph &to, |
---|
600 | RedNodeRefMap& redNodeRefMap, |
---|
601 | BlueNodeRefMap& blueNodeRefMap, |
---|
602 | EdgeRefMap& edgeRefMap) { |
---|
603 | to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap); |
---|
604 | } |
---|
605 | }; |
---|
606 | |
---|
607 | } |
---|
608 | |
---|
609 | /// \brief Check whether a graph is undirected. |
---|
610 | /// |
---|
611 | /// This function returns \c true if the given graph is undirected. |
---|
612 | #ifdef DOXYGEN |
---|
613 | template <typename GR> |
---|
614 | bool undirected(const GR& g) { return false; } |
---|
615 | #else |
---|
616 | template <typename GR> |
---|
617 | typename enable_if<UndirectedTagIndicator<GR>, bool>::type |
---|
618 | undirected(const GR&) { |
---|
619 | return true; |
---|
620 | } |
---|
621 | template <typename GR> |
---|
622 | typename disable_if<UndirectedTagIndicator<GR>, bool>::type |
---|
623 | undirected(const GR&) { |
---|
624 | return false; |
---|
625 | } |
---|
626 | #endif |
---|
627 | |
---|
628 | /// \brief Class to copy a digraph. |
---|
629 | /// |
---|
630 | /// Class to copy a digraph to another digraph (duplicate a digraph). The |
---|
631 | /// simplest way of using it is through the \c digraphCopy() function. |
---|
632 | /// |
---|
633 | /// This class not only make a copy of a digraph, but it can create |
---|
634 | /// references and cross references between the nodes and arcs of |
---|
635 | /// the two digraphs, and it can copy maps to use with the newly created |
---|
636 | /// digraph. |
---|
637 | /// |
---|
638 | /// To make a copy from a digraph, first an instance of DigraphCopy |
---|
639 | /// should be created, then the data belongs to the digraph should |
---|
640 | /// assigned to copy. In the end, the \c run() member should be |
---|
641 | /// called. |
---|
642 | /// |
---|
643 | /// The next code copies a digraph with several data: |
---|
644 | ///\code |
---|
645 | /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
---|
646 | /// // Create references for the nodes |
---|
647 | /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
---|
648 | /// cg.nodeRef(nr); |
---|
649 | /// // Create cross references (inverse) for the arcs |
---|
650 | /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
---|
651 | /// cg.arcCrossRef(acr); |
---|
652 | /// // Copy an arc map |
---|
653 | /// OrigGraph::ArcMap<double> oamap(orig_graph); |
---|
654 | /// NewGraph::ArcMap<double> namap(new_graph); |
---|
655 | /// cg.arcMap(oamap, namap); |
---|
656 | /// // Copy a node |
---|
657 | /// OrigGraph::Node on; |
---|
658 | /// NewGraph::Node nn; |
---|
659 | /// cg.node(on, nn); |
---|
660 | /// // Execute copying |
---|
661 | /// cg.run(); |
---|
662 | ///\endcode |
---|
663 | template <typename From, typename To> |
---|
664 | class DigraphCopy { |
---|
665 | private: |
---|
666 | |
---|
667 | typedef typename From::Node Node; |
---|
668 | typedef typename From::NodeIt NodeIt; |
---|
669 | typedef typename From::Arc Arc; |
---|
670 | typedef typename From::ArcIt ArcIt; |
---|
671 | |
---|
672 | typedef typename To::Node TNode; |
---|
673 | typedef typename To::Arc TArc; |
---|
674 | |
---|
675 | typedef typename From::template NodeMap<TNode> NodeRefMap; |
---|
676 | typedef typename From::template ArcMap<TArc> ArcRefMap; |
---|
677 | |
---|
678 | public: |
---|
679 | |
---|
680 | /// \brief Constructor of DigraphCopy. |
---|
681 | /// |
---|
682 | /// Constructor of DigraphCopy for copying the content of the |
---|
683 | /// \c from digraph into the \c to digraph. |
---|
684 | DigraphCopy(const From& from, To& to) |
---|
685 | : _from(from), _to(to) {} |
---|
686 | |
---|
687 | /// \brief Destructor of DigraphCopy |
---|
688 | /// |
---|
689 | /// Destructor of DigraphCopy. |
---|
690 | ~DigraphCopy() { |
---|
691 | for (int i = 0; i < int(_node_maps.size()); ++i) { |
---|
692 | delete _node_maps[i]; |
---|
693 | } |
---|
694 | for (int i = 0; i < int(_arc_maps.size()); ++i) { |
---|
695 | delete _arc_maps[i]; |
---|
696 | } |
---|
697 | |
---|
698 | } |
---|
699 | |
---|
700 | /// \brief Copy the node references into the given map. |
---|
701 | /// |
---|
702 | /// This function copies the node references into the given map. |
---|
703 | /// The parameter should be a map, whose key type is the Node type of |
---|
704 | /// the source digraph, while the value type is the Node type of the |
---|
705 | /// destination digraph. |
---|
706 | template <typename NodeRef> |
---|
707 | DigraphCopy& nodeRef(NodeRef& map) { |
---|
708 | _node_maps.push_back(new _core_bits::RefCopy<From, Node, |
---|
709 | NodeRefMap, NodeRef>(map)); |
---|
710 | return *this; |
---|
711 | } |
---|
712 | |
---|
713 | /// \brief Copy the node cross references into the given map. |
---|
714 | /// |
---|
715 | /// This function copies the node cross references (reverse references) |
---|
716 | /// into the given map. The parameter should be a map, whose key type |
---|
717 | /// is the Node type of the destination digraph, while the value type is |
---|
718 | /// the Node type of the source digraph. |
---|
719 | template <typename NodeCrossRef> |
---|
720 | DigraphCopy& nodeCrossRef(NodeCrossRef& map) { |
---|
721 | _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
---|
722 | NodeRefMap, NodeCrossRef>(map)); |
---|
723 | return *this; |
---|
724 | } |
---|
725 | |
---|
726 | /// \brief Make a copy of the given node map. |
---|
727 | /// |
---|
728 | /// This function makes a copy of the given node map for the newly |
---|
729 | /// created digraph. |
---|
730 | /// The key type of the new map \c tmap should be the Node type of the |
---|
731 | /// destination digraph, and the key type of the original map \c map |
---|
732 | /// should be the Node type of the source digraph. |
---|
733 | template <typename FromMap, typename ToMap> |
---|
734 | DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
---|
735 | _node_maps.push_back(new _core_bits::MapCopy<From, Node, |
---|
736 | NodeRefMap, FromMap, ToMap>(map, tmap)); |
---|
737 | return *this; |
---|
738 | } |
---|
739 | |
---|
740 | /// \brief Make a copy of the given node. |
---|
741 | /// |
---|
742 | /// This function makes a copy of the given node. |
---|
743 | DigraphCopy& node(const Node& node, TNode& tnode) { |
---|
744 | _node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
---|
745 | NodeRefMap, TNode>(node, tnode)); |
---|
746 | return *this; |
---|
747 | } |
---|
748 | |
---|
749 | /// \brief Copy the arc references into the given map. |
---|
750 | /// |
---|
751 | /// This function copies the arc references into the given map. |
---|
752 | /// The parameter should be a map, whose key type is the Arc type of |
---|
753 | /// the source digraph, while the value type is the Arc type of the |
---|
754 | /// destination digraph. |
---|
755 | template <typename ArcRef> |
---|
756 | DigraphCopy& arcRef(ArcRef& map) { |
---|
757 | _arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
---|
758 | ArcRefMap, ArcRef>(map)); |
---|
759 | return *this; |
---|
760 | } |
---|
761 | |
---|
762 | /// \brief Copy the arc cross references into the given map. |
---|
763 | /// |
---|
764 | /// This function copies the arc cross references (reverse references) |
---|
765 | /// into the given map. The parameter should be a map, whose key type |
---|
766 | /// is the Arc type of the destination digraph, while the value type is |
---|
767 | /// the Arc type of the source digraph. |
---|
768 | template <typename ArcCrossRef> |
---|
769 | DigraphCopy& arcCrossRef(ArcCrossRef& map) { |
---|
770 | _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
---|
771 | ArcRefMap, ArcCrossRef>(map)); |
---|
772 | return *this; |
---|
773 | } |
---|
774 | |
---|
775 | /// \brief Make a copy of the given arc map. |
---|
776 | /// |
---|
777 | /// This function makes a copy of the given arc map for the newly |
---|
778 | /// created digraph. |
---|
779 | /// The key type of the new map \c tmap should be the Arc type of the |
---|
780 | /// destination digraph, and the key type of the original map \c map |
---|
781 | /// should be the Arc type of the source digraph. |
---|
782 | template <typename FromMap, typename ToMap> |
---|
783 | DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
---|
784 | _arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
---|
785 | ArcRefMap, FromMap, ToMap>(map, tmap)); |
---|
786 | return *this; |
---|
787 | } |
---|
788 | |
---|
789 | /// \brief Make a copy of the given arc. |
---|
790 | /// |
---|
791 | /// This function makes a copy of the given arc. |
---|
792 | DigraphCopy& arc(const Arc& arc, TArc& tarc) { |
---|
793 | _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
---|
794 | ArcRefMap, TArc>(arc, tarc)); |
---|
795 | return *this; |
---|
796 | } |
---|
797 | |
---|
798 | /// \brief Execute copying. |
---|
799 | /// |
---|
800 | /// This function executes the copying of the digraph along with the |
---|
801 | /// copying of the assigned data. |
---|
802 | void run() { |
---|
803 | NodeRefMap nodeRefMap(_from); |
---|
804 | ArcRefMap arcRefMap(_from); |
---|
805 | _core_bits::DigraphCopySelector<To>:: |
---|
806 | copy(_from, _to, nodeRefMap, arcRefMap); |
---|
807 | for (int i = 0; i < int(_node_maps.size()); ++i) { |
---|
808 | _node_maps[i]->copy(_from, nodeRefMap); |
---|
809 | } |
---|
810 | for (int i = 0; i < int(_arc_maps.size()); ++i) { |
---|
811 | _arc_maps[i]->copy(_from, arcRefMap); |
---|
812 | } |
---|
813 | } |
---|
814 | |
---|
815 | protected: |
---|
816 | |
---|
817 | const From& _from; |
---|
818 | To& _to; |
---|
819 | |
---|
820 | std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
---|
821 | _node_maps; |
---|
822 | |
---|
823 | std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
---|
824 | _arc_maps; |
---|
825 | |
---|
826 | }; |
---|
827 | |
---|
828 | /// \brief Copy a digraph to another digraph. |
---|
829 | /// |
---|
830 | /// This function copies a digraph to another digraph. |
---|
831 | /// The complete usage of it is detailed in the DigraphCopy class, but |
---|
832 | /// a short example shows a basic work: |
---|
833 | ///\code |
---|
834 | /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run(); |
---|
835 | ///\endcode |
---|
836 | /// |
---|
837 | /// After the copy the \c nr map will contain the mapping from the |
---|
838 | /// nodes of the \c from digraph to the nodes of the \c to digraph and |
---|
839 | /// \c acr will contain the mapping from the arcs of the \c to digraph |
---|
840 | /// to the arcs of the \c from digraph. |
---|
841 | /// |
---|
842 | /// \see DigraphCopy |
---|
843 | template <typename From, typename To> |
---|
844 | DigraphCopy<From, To> digraphCopy(const From& from, To& to) { |
---|
845 | return DigraphCopy<From, To>(from, to); |
---|
846 | } |
---|
847 | |
---|
848 | /// \brief Class to copy a graph. |
---|
849 | /// |
---|
850 | /// Class to copy a graph to another graph (duplicate a graph). The |
---|
851 | /// simplest way of using it is through the \c graphCopy() function. |
---|
852 | /// |
---|
853 | /// This class not only make a copy of a graph, but it can create |
---|
854 | /// references and cross references between the nodes, edges and arcs of |
---|
855 | /// the two graphs, and it can copy maps for using with the newly created |
---|
856 | /// graph. |
---|
857 | /// |
---|
858 | /// To make a copy from a graph, first an instance of GraphCopy |
---|
859 | /// should be created, then the data belongs to the graph should |
---|
860 | /// assigned to copy. In the end, the \c run() member should be |
---|
861 | /// called. |
---|
862 | /// |
---|
863 | /// The next code copies a graph with several data: |
---|
864 | ///\code |
---|
865 | /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
---|
866 | /// // Create references for the nodes |
---|
867 | /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
---|
868 | /// cg.nodeRef(nr); |
---|
869 | /// // Create cross references (inverse) for the edges |
---|
870 | /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph); |
---|
871 | /// cg.edgeCrossRef(ecr); |
---|
872 | /// // Copy an edge map |
---|
873 | /// OrigGraph::EdgeMap<double> oemap(orig_graph); |
---|
874 | /// NewGraph::EdgeMap<double> nemap(new_graph); |
---|
875 | /// cg.edgeMap(oemap, nemap); |
---|
876 | /// // Copy a node |
---|
877 | /// OrigGraph::Node on; |
---|
878 | /// NewGraph::Node nn; |
---|
879 | /// cg.node(on, nn); |
---|
880 | /// // Execute copying |
---|
881 | /// cg.run(); |
---|
882 | ///\endcode |
---|
883 | template <typename From, typename To> |
---|
884 | class GraphCopy { |
---|
885 | private: |
---|
886 | |
---|
887 | typedef typename From::Node Node; |
---|
888 | typedef typename From::NodeIt NodeIt; |
---|
889 | typedef typename From::Arc Arc; |
---|
890 | typedef typename From::ArcIt ArcIt; |
---|
891 | typedef typename From::Edge Edge; |
---|
892 | typedef typename From::EdgeIt EdgeIt; |
---|
893 | |
---|
894 | typedef typename To::Node TNode; |
---|
895 | typedef typename To::Arc TArc; |
---|
896 | typedef typename To::Edge TEdge; |
---|
897 | |
---|
898 | typedef typename From::template NodeMap<TNode> NodeRefMap; |
---|
899 | typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
---|
900 | |
---|
901 | struct ArcRefMap { |
---|
902 | ArcRefMap(const From& from, const To& to, |
---|
903 | const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
---|
904 | : _from(from), _to(to), |
---|
905 | _edge_ref(edge_ref), _node_ref(node_ref) {} |
---|
906 | |
---|
907 | typedef typename From::Arc Key; |
---|
908 | typedef typename To::Arc Value; |
---|
909 | |
---|
910 | Value operator[](const Key& key) const { |
---|
911 | bool forward = _from.u(key) != _from.v(key) ? |
---|
912 | _node_ref[_from.source(key)] == |
---|
913 | _to.source(_to.direct(_edge_ref[key], true)) : |
---|
914 | _from.direction(key); |
---|
915 | return _to.direct(_edge_ref[key], forward); |
---|
916 | } |
---|
917 | |
---|
918 | const From& _from; |
---|
919 | const To& _to; |
---|
920 | const EdgeRefMap& _edge_ref; |
---|
921 | const NodeRefMap& _node_ref; |
---|
922 | }; |
---|
923 | |
---|
924 | public: |
---|
925 | |
---|
926 | /// \brief Constructor of GraphCopy. |
---|
927 | /// |
---|
928 | /// Constructor of GraphCopy for copying the content of the |
---|
929 | /// \c from graph into the \c to graph. |
---|
930 | GraphCopy(const From& from, To& to) |
---|
931 | : _from(from), _to(to) {} |
---|
932 | |
---|
933 | /// \brief Destructor of GraphCopy |
---|
934 | /// |
---|
935 | /// Destructor of GraphCopy. |
---|
936 | ~GraphCopy() { |
---|
937 | for (int i = 0; i < int(_node_maps.size()); ++i) { |
---|
938 | delete _node_maps[i]; |
---|
939 | } |
---|
940 | for (int i = 0; i < int(_arc_maps.size()); ++i) { |
---|
941 | delete _arc_maps[i]; |
---|
942 | } |
---|
943 | for (int i = 0; i < int(_edge_maps.size()); ++i) { |
---|
944 | delete _edge_maps[i]; |
---|
945 | } |
---|
946 | } |
---|
947 | |
---|
948 | /// \brief Copy the node references into the given map. |
---|
949 | /// |
---|
950 | /// This function copies the node references into the given map. |
---|
951 | /// The parameter should be a map, whose key type is the Node type of |
---|
952 | /// the source graph, while the value type is the Node type of the |
---|
953 | /// destination graph. |
---|
954 | template <typename NodeRef> |
---|
955 | GraphCopy& nodeRef(NodeRef& map) { |
---|
956 | _node_maps.push_back(new _core_bits::RefCopy<From, Node, |
---|
957 | NodeRefMap, NodeRef>(map)); |
---|
958 | return *this; |
---|
959 | } |
---|
960 | |
---|
961 | /// \brief Copy the node cross references into the given map. |
---|
962 | /// |
---|
963 | /// This function copies the node cross references (reverse references) |
---|
964 | /// into the given map. The parameter should be a map, whose key type |
---|
965 | /// is the Node type of the destination graph, while the value type is |
---|
966 | /// the Node type of the source graph. |
---|
967 | template <typename NodeCrossRef> |
---|
968 | GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
---|
969 | _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
---|
970 | NodeRefMap, NodeCrossRef>(map)); |
---|
971 | return *this; |
---|
972 | } |
---|
973 | |
---|
974 | /// \brief Make a copy of the given node map. |
---|
975 | /// |
---|
976 | /// This function makes a copy of the given node map for the newly |
---|
977 | /// created graph. |
---|
978 | /// The key type of the new map \c tmap should be the Node type of the |
---|
979 | /// destination graph, and the key type of the original map \c map |
---|
980 | /// should be the Node type of the source graph. |
---|
981 | template <typename FromMap, typename ToMap> |
---|
982 | GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
---|
983 | _node_maps.push_back(new _core_bits::MapCopy<From, Node, |
---|
984 | NodeRefMap, FromMap, ToMap>(map, tmap)); |
---|
985 | return *this; |
---|
986 | } |
---|
987 | |
---|
988 | /// \brief Make a copy of the given node. |
---|
989 | /// |
---|
990 | /// This function makes a copy of the given node. |
---|
991 | GraphCopy& node(const Node& node, TNode& tnode) { |
---|
992 | _node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
---|
993 | NodeRefMap, TNode>(node, tnode)); |
---|
994 | return *this; |
---|
995 | } |
---|
996 | |
---|
997 | /// \brief Copy the arc references into the given map. |
---|
998 | /// |
---|
999 | /// This function copies the arc references into the given map. |
---|
1000 | /// The parameter should be a map, whose key type is the Arc type of |
---|
1001 | /// the source graph, while the value type is the Arc type of the |
---|
1002 | /// destination graph. |
---|
1003 | template <typename ArcRef> |
---|
1004 | GraphCopy& arcRef(ArcRef& map) { |
---|
1005 | _arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
---|
1006 | ArcRefMap, ArcRef>(map)); |
---|
1007 | return *this; |
---|
1008 | } |
---|
1009 | |
---|
1010 | /// \brief Copy the arc cross references into the given map. |
---|
1011 | /// |
---|
1012 | /// This function copies the arc cross references (reverse references) |
---|
1013 | /// into the given map. The parameter should be a map, whose key type |
---|
1014 | /// is the Arc type of the destination graph, while the value type is |
---|
1015 | /// the Arc type of the source graph. |
---|
1016 | template <typename ArcCrossRef> |
---|
1017 | GraphCopy& arcCrossRef(ArcCrossRef& map) { |
---|
1018 | _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
---|
1019 | ArcRefMap, ArcCrossRef>(map)); |
---|
1020 | return *this; |
---|
1021 | } |
---|
1022 | |
---|
1023 | /// \brief Make a copy of the given arc map. |
---|
1024 | /// |
---|
1025 | /// This function makes a copy of the given arc map for the newly |
---|
1026 | /// created graph. |
---|
1027 | /// The key type of the new map \c tmap should be the Arc type of the |
---|
1028 | /// destination graph, and the key type of the original map \c map |
---|
1029 | /// should be the Arc type of the source graph. |
---|
1030 | template <typename FromMap, typename ToMap> |
---|
1031 | GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
---|
1032 | _arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
---|
1033 | ArcRefMap, FromMap, ToMap>(map, tmap)); |
---|
1034 | return *this; |
---|
1035 | } |
---|
1036 | |
---|
1037 | /// \brief Make a copy of the given arc. |
---|
1038 | /// |
---|
1039 | /// This function makes a copy of the given arc. |
---|
1040 | GraphCopy& arc(const Arc& arc, TArc& tarc) { |
---|
1041 | _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
---|
1042 | ArcRefMap, TArc>(arc, tarc)); |
---|
1043 | return *this; |
---|
1044 | } |
---|
1045 | |
---|
1046 | /// \brief Copy the edge references into the given map. |
---|
1047 | /// |
---|
1048 | /// This function copies the edge references into the given map. |
---|
1049 | /// The parameter should be a map, whose key type is the Edge type of |
---|
1050 | /// the source graph, while the value type is the Edge type of the |
---|
1051 | /// destination graph. |
---|
1052 | template <typename EdgeRef> |
---|
1053 | GraphCopy& edgeRef(EdgeRef& map) { |
---|
1054 | _edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
---|
1055 | EdgeRefMap, EdgeRef>(map)); |
---|
1056 | return *this; |
---|
1057 | } |
---|
1058 | |
---|
1059 | /// \brief Copy the edge cross references into the given map. |
---|
1060 | /// |
---|
1061 | /// This function copies the edge cross references (reverse references) |
---|
1062 | /// into the given map. The parameter should be a map, whose key type |
---|
1063 | /// is the Edge type of the destination graph, while the value type is |
---|
1064 | /// the Edge type of the source graph. |
---|
1065 | template <typename EdgeCrossRef> |
---|
1066 | GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
---|
1067 | _edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
---|
1068 | Edge, EdgeRefMap, EdgeCrossRef>(map)); |
---|
1069 | return *this; |
---|
1070 | } |
---|
1071 | |
---|
1072 | /// \brief Make a copy of the given edge map. |
---|
1073 | /// |
---|
1074 | /// This function makes a copy of the given edge map for the newly |
---|
1075 | /// created graph. |
---|
1076 | /// The key type of the new map \c tmap should be the Edge type of the |
---|
1077 | /// destination graph, and the key type of the original map \c map |
---|
1078 | /// should be the Edge type of the source graph. |
---|
1079 | template <typename FromMap, typename ToMap> |
---|
1080 | GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
---|
1081 | _edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
---|
1082 | EdgeRefMap, FromMap, ToMap>(map, tmap)); |
---|
1083 | return *this; |
---|
1084 | } |
---|
1085 | |
---|
1086 | /// \brief Make a copy of the given edge. |
---|
1087 | /// |
---|
1088 | /// This function makes a copy of the given edge. |
---|
1089 | GraphCopy& edge(const Edge& edge, TEdge& tedge) { |
---|
1090 | _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
---|
1091 | EdgeRefMap, TEdge>(edge, tedge)); |
---|
1092 | return *this; |
---|
1093 | } |
---|
1094 | |
---|
1095 | /// \brief Execute copying. |
---|
1096 | /// |
---|
1097 | /// This function executes the copying of the graph along with the |
---|
1098 | /// copying of the assigned data. |
---|
1099 | void run() { |
---|
1100 | NodeRefMap nodeRefMap(_from); |
---|
1101 | EdgeRefMap edgeRefMap(_from); |
---|
1102 | ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
---|
1103 | _core_bits::GraphCopySelector<To>:: |
---|
1104 | copy(_from, _to, nodeRefMap, edgeRefMap); |
---|
1105 | for (int i = 0; i < int(_node_maps.size()); ++i) { |
---|
1106 | _node_maps[i]->copy(_from, nodeRefMap); |
---|
1107 | } |
---|
1108 | for (int i = 0; i < int(_edge_maps.size()); ++i) { |
---|
1109 | _edge_maps[i]->copy(_from, edgeRefMap); |
---|
1110 | } |
---|
1111 | for (int i = 0; i < int(_arc_maps.size()); ++i) { |
---|
1112 | _arc_maps[i]->copy(_from, arcRefMap); |
---|
1113 | } |
---|
1114 | } |
---|
1115 | |
---|
1116 | private: |
---|
1117 | |
---|
1118 | const From& _from; |
---|
1119 | To& _to; |
---|
1120 | |
---|
1121 | std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
---|
1122 | _node_maps; |
---|
1123 | |
---|
1124 | std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
---|
1125 | _arc_maps; |
---|
1126 | |
---|
1127 | std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
---|
1128 | _edge_maps; |
---|
1129 | |
---|
1130 | }; |
---|
1131 | |
---|
1132 | /// \brief Copy a graph to another graph. |
---|
1133 | /// |
---|
1134 | /// This function copies a graph to another graph. |
---|
1135 | /// The complete usage of it is detailed in the GraphCopy class, |
---|
1136 | /// but a short example shows a basic work: |
---|
1137 | ///\code |
---|
1138 | /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
---|
1139 | ///\endcode |
---|
1140 | /// |
---|
1141 | /// After the copy the \c nr map will contain the mapping from the |
---|
1142 | /// nodes of the \c from graph to the nodes of the \c to graph and |
---|
1143 | /// \c ecr will contain the mapping from the edges of the \c to graph |
---|
1144 | /// to the edges of the \c from graph. |
---|
1145 | /// |
---|
1146 | /// \see GraphCopy |
---|
1147 | template <typename From, typename To> |
---|
1148 | GraphCopy<From, To> |
---|
1149 | graphCopy(const From& from, To& to) { |
---|
1150 | return GraphCopy<From, To>(from, to); |
---|
1151 | } |
---|
1152 | |
---|
1153 | /// \brief Class to copy a bipartite graph. |
---|
1154 | /// |
---|
1155 | /// Class to copy a bipartite graph to another graph (duplicate a |
---|
1156 | /// graph). The simplest way of using it is through the |
---|
1157 | /// \c bpGraphCopy() function. |
---|
1158 | /// |
---|
1159 | /// This class not only make a copy of a bipartite graph, but it can |
---|
1160 | /// create references and cross references between the nodes, edges |
---|
1161 | /// and arcs of the two graphs, and it can copy maps for using with |
---|
1162 | /// the newly created graph. |
---|
1163 | /// |
---|
1164 | /// To make a copy from a graph, first an instance of BpGraphCopy |
---|
1165 | /// should be created, then the data belongs to the graph should |
---|
1166 | /// assigned to copy. In the end, the \c run() member should be |
---|
1167 | /// called. |
---|
1168 | /// |
---|
1169 | /// The next code copies a graph with several data: |
---|
1170 | ///\code |
---|
1171 | /// BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph); |
---|
1172 | /// // Create references for the nodes |
---|
1173 | /// OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph); |
---|
1174 | /// cg.nodeRef(nr); |
---|
1175 | /// // Create cross references (inverse) for the edges |
---|
1176 | /// NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph); |
---|
1177 | /// cg.edgeCrossRef(ecr); |
---|
1178 | /// // Copy a red node map |
---|
1179 | /// OrigBpGraph::RedNodeMap<double> ormap(orig_graph); |
---|
1180 | /// NewBpGraph::RedNodeMap<double> nrmap(new_graph); |
---|
1181 | /// cg.redNodeMap(ormap, nrmap); |
---|
1182 | /// // Copy a node |
---|
1183 | /// OrigBpGraph::Node on; |
---|
1184 | /// NewBpGraph::Node nn; |
---|
1185 | /// cg.node(on, nn); |
---|
1186 | /// // Execute copying |
---|
1187 | /// cg.run(); |
---|
1188 | ///\endcode |
---|
1189 | template <typename From, typename To> |
---|
1190 | class BpGraphCopy { |
---|
1191 | private: |
---|
1192 | |
---|
1193 | typedef typename From::Node Node; |
---|
1194 | typedef typename From::RedNode RedNode; |
---|
1195 | typedef typename From::BlueNode BlueNode; |
---|
1196 | typedef typename From::NodeIt NodeIt; |
---|
1197 | typedef typename From::Arc Arc; |
---|
1198 | typedef typename From::ArcIt ArcIt; |
---|
1199 | typedef typename From::Edge Edge; |
---|
1200 | typedef typename From::EdgeIt EdgeIt; |
---|
1201 | |
---|
1202 | typedef typename To::Node TNode; |
---|
1203 | typedef typename To::RedNode TRedNode; |
---|
1204 | typedef typename To::BlueNode TBlueNode; |
---|
1205 | typedef typename To::Arc TArc; |
---|
1206 | typedef typename To::Edge TEdge; |
---|
1207 | |
---|
1208 | typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap; |
---|
1209 | typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap; |
---|
1210 | typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
---|
1211 | |
---|
1212 | struct NodeRefMap { |
---|
1213 | NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref, |
---|
1214 | const BlueNodeRefMap& blue_node_ref) |
---|
1215 | : _from(from), _red_node_ref(red_node_ref), |
---|
1216 | _blue_node_ref(blue_node_ref) {} |
---|
1217 | |
---|
1218 | typedef typename From::Node Key; |
---|
1219 | typedef typename To::Node Value; |
---|
1220 | |
---|
1221 | Value operator[](const Key& key) const { |
---|
1222 | if (_from.red(key)) { |
---|
1223 | return _red_node_ref[_from.asRedNodeUnsafe(key)]; |
---|
1224 | } else { |
---|
1225 | return _blue_node_ref[_from.asBlueNodeUnsafe(key)]; |
---|
1226 | } |
---|
1227 | } |
---|
1228 | |
---|
1229 | const From& _from; |
---|
1230 | const RedNodeRefMap& _red_node_ref; |
---|
1231 | const BlueNodeRefMap& _blue_node_ref; |
---|
1232 | }; |
---|
1233 | |
---|
1234 | struct ArcRefMap { |
---|
1235 | ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref) |
---|
1236 | : _from(from), _to(to), _edge_ref(edge_ref) {} |
---|
1237 | |
---|
1238 | typedef typename From::Arc Key; |
---|
1239 | typedef typename To::Arc Value; |
---|
1240 | |
---|
1241 | Value operator[](const Key& key) const { |
---|
1242 | return _to.direct(_edge_ref[key], _from.direction(key)); |
---|
1243 | } |
---|
1244 | |
---|
1245 | const From& _from; |
---|
1246 | const To& _to; |
---|
1247 | const EdgeRefMap& _edge_ref; |
---|
1248 | }; |
---|
1249 | |
---|
1250 | public: |
---|
1251 | |
---|
1252 | /// \brief Constructor of BpGraphCopy. |
---|
1253 | /// |
---|
1254 | /// Constructor of BpGraphCopy for copying the content of the |
---|
1255 | /// \c from graph into the \c to graph. |
---|
1256 | BpGraphCopy(const From& from, To& to) |
---|
1257 | : _from(from), _to(to) {} |
---|
1258 | |
---|
1259 | /// \brief Destructor of BpGraphCopy |
---|
1260 | /// |
---|
1261 | /// Destructor of BpGraphCopy. |
---|
1262 | ~BpGraphCopy() { |
---|
1263 | for (int i = 0; i < int(_node_maps.size()); ++i) { |
---|
1264 | delete _node_maps[i]; |
---|
1265 | } |
---|
1266 | for (int i = 0; i < int(_red_maps.size()); ++i) { |
---|
1267 | delete _red_maps[i]; |
---|
1268 | } |
---|
1269 | for (int i = 0; i < int(_blue_maps.size()); ++i) { |
---|
1270 | delete _blue_maps[i]; |
---|
1271 | } |
---|
1272 | for (int i = 0; i < int(_arc_maps.size()); ++i) { |
---|
1273 | delete _arc_maps[i]; |
---|
1274 | } |
---|
1275 | for (int i = 0; i < int(_edge_maps.size()); ++i) { |
---|
1276 | delete _edge_maps[i]; |
---|
1277 | } |
---|
1278 | } |
---|
1279 | |
---|
1280 | /// \brief Copy the node references into the given map. |
---|
1281 | /// |
---|
1282 | /// This function copies the node references into the given map. |
---|
1283 | /// The parameter should be a map, whose key type is the Node type of |
---|
1284 | /// the source graph, while the value type is the Node type of the |
---|
1285 | /// destination graph. |
---|
1286 | template <typename NodeRef> |
---|
1287 | BpGraphCopy& nodeRef(NodeRef& map) { |
---|
1288 | _node_maps.push_back(new _core_bits::RefCopy<From, Node, |
---|
1289 | NodeRefMap, NodeRef>(map)); |
---|
1290 | return *this; |
---|
1291 | } |
---|
1292 | |
---|
1293 | /// \brief Copy the node cross references into the given map. |
---|
1294 | /// |
---|
1295 | /// This function copies the node cross references (reverse references) |
---|
1296 | /// into the given map. The parameter should be a map, whose key type |
---|
1297 | /// is the Node type of the destination graph, while the value type is |
---|
1298 | /// the Node type of the source graph. |
---|
1299 | template <typename NodeCrossRef> |
---|
1300 | BpGraphCopy& nodeCrossRef(NodeCrossRef& map) { |
---|
1301 | _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
---|
1302 | NodeRefMap, NodeCrossRef>(map)); |
---|
1303 | return *this; |
---|
1304 | } |
---|
1305 | |
---|
1306 | /// \brief Make a copy of the given node map. |
---|
1307 | /// |
---|
1308 | /// This function makes a copy of the given node map for the newly |
---|
1309 | /// created graph. |
---|
1310 | /// The key type of the new map \c tmap should be the Node type of the |
---|
1311 | /// destination graph, and the key type of the original map \c map |
---|
1312 | /// should be the Node type of the source graph. |
---|
1313 | template <typename FromMap, typename ToMap> |
---|
1314 | BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
---|
1315 | _node_maps.push_back(new _core_bits::MapCopy<From, Node, |
---|
1316 | NodeRefMap, FromMap, ToMap>(map, tmap)); |
---|
1317 | return *this; |
---|
1318 | } |
---|
1319 | |
---|
1320 | /// \brief Make a copy of the given node. |
---|
1321 | /// |
---|
1322 | /// This function makes a copy of the given node. |
---|
1323 | BpGraphCopy& node(const Node& node, TNode& tnode) { |
---|
1324 | _node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
---|
1325 | NodeRefMap, TNode>(node, tnode)); |
---|
1326 | return *this; |
---|
1327 | } |
---|
1328 | |
---|
1329 | /// \brief Copy the red node references into the given map. |
---|
1330 | /// |
---|
1331 | /// This function copies the red node references into the given |
---|
1332 | /// map. The parameter should be a map, whose key type is the |
---|
1333 | /// Node type of the source graph with the red item set, while the |
---|
1334 | /// value type is the Node type of the destination graph. |
---|
1335 | template <typename RedRef> |
---|
1336 | BpGraphCopy& redRef(RedRef& map) { |
---|
1337 | _red_maps.push_back(new _core_bits::RefCopy<From, RedNode, |
---|
1338 | RedNodeRefMap, RedRef>(map)); |
---|
1339 | return *this; |
---|
1340 | } |
---|
1341 | |
---|
1342 | /// \brief Copy the red node cross references into the given map. |
---|
1343 | /// |
---|
1344 | /// This function copies the red node cross references (reverse |
---|
1345 | /// references) into the given map. The parameter should be a map, |
---|
1346 | /// whose key type is the Node type of the destination graph with |
---|
1347 | /// the red item set, while the value type is the Node type of the |
---|
1348 | /// source graph. |
---|
1349 | template <typename RedCrossRef> |
---|
1350 | BpGraphCopy& redCrossRef(RedCrossRef& map) { |
---|
1351 | _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode, |
---|
1352 | RedNodeRefMap, RedCrossRef>(map)); |
---|
1353 | return *this; |
---|
1354 | } |
---|
1355 | |
---|
1356 | /// \brief Make a copy of the given red node map. |
---|
1357 | /// |
---|
1358 | /// This function makes a copy of the given red node map for the newly |
---|
1359 | /// created graph. |
---|
1360 | /// The key type of the new map \c tmap should be the Node type of |
---|
1361 | /// the destination graph with the red items, and the key type of |
---|
1362 | /// the original map \c map should be the Node type of the source |
---|
1363 | /// graph. |
---|
1364 | template <typename FromMap, typename ToMap> |
---|
1365 | BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) { |
---|
1366 | _red_maps.push_back(new _core_bits::MapCopy<From, RedNode, |
---|
1367 | RedNodeRefMap, FromMap, ToMap>(map, tmap)); |
---|
1368 | return *this; |
---|
1369 | } |
---|
1370 | |
---|
1371 | /// \brief Make a copy of the given red node. |
---|
1372 | /// |
---|
1373 | /// This function makes a copy of the given red node. |
---|
1374 | BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) { |
---|
1375 | _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode, |
---|
1376 | RedNodeRefMap, TRedNode>(node, tnode)); |
---|
1377 | return *this; |
---|
1378 | } |
---|
1379 | |
---|
1380 | /// \brief Copy the blue node references into the given map. |
---|
1381 | /// |
---|
1382 | /// This function copies the blue node references into the given |
---|
1383 | /// map. The parameter should be a map, whose key type is the |
---|
1384 | /// Node type of the source graph with the blue item set, while the |
---|
1385 | /// value type is the Node type of the destination graph. |
---|
1386 | template <typename BlueRef> |
---|
1387 | BpGraphCopy& blueRef(BlueRef& map) { |
---|
1388 | _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode, |
---|
1389 | BlueNodeRefMap, BlueRef>(map)); |
---|
1390 | return *this; |
---|
1391 | } |
---|
1392 | |
---|
1393 | /// \brief Copy the blue node cross references into the given map. |
---|
1394 | /// |
---|
1395 | /// This function copies the blue node cross references (reverse |
---|
1396 | /// references) into the given map. The parameter should be a map, |
---|
1397 | /// whose key type is the Node type of the destination graph with |
---|
1398 | /// the blue item set, while the value type is the Node type of the |
---|
1399 | /// source graph. |
---|
1400 | template <typename BlueCrossRef> |
---|
1401 | BpGraphCopy& blueCrossRef(BlueCrossRef& map) { |
---|
1402 | _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode, |
---|
1403 | BlueNodeRefMap, BlueCrossRef>(map)); |
---|
1404 | return *this; |
---|
1405 | } |
---|
1406 | |
---|
1407 | /// \brief Make a copy of the given blue node map. |
---|
1408 | /// |
---|
1409 | /// This function makes a copy of the given blue node map for the newly |
---|
1410 | /// created graph. |
---|
1411 | /// The key type of the new map \c tmap should be the Node type of |
---|
1412 | /// the destination graph with the blue items, and the key type of |
---|
1413 | /// the original map \c map should be the Node type of the source |
---|
1414 | /// graph. |
---|
1415 | template <typename FromMap, typename ToMap> |
---|
1416 | BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) { |
---|
1417 | _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode, |
---|
1418 | BlueNodeRefMap, FromMap, ToMap>(map, tmap)); |
---|
1419 | return *this; |
---|
1420 | } |
---|
1421 | |
---|
1422 | /// \brief Make a copy of the given blue node. |
---|
1423 | /// |
---|
1424 | /// This function makes a copy of the given blue node. |
---|
1425 | BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) { |
---|
1426 | _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode, |
---|
1427 | BlueNodeRefMap, TBlueNode>(node, tnode)); |
---|
1428 | return *this; |
---|
1429 | } |
---|
1430 | |
---|
1431 | /// \brief Copy the arc references into the given map. |
---|
1432 | /// |
---|
1433 | /// This function copies the arc references into the given map. |
---|
1434 | /// The parameter should be a map, whose key type is the Arc type of |
---|
1435 | /// the source graph, while the value type is the Arc type of the |
---|
1436 | /// destination graph. |
---|
1437 | template <typename ArcRef> |
---|
1438 | BpGraphCopy& arcRef(ArcRef& map) { |
---|
1439 | _arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
---|
1440 | ArcRefMap, ArcRef>(map)); |
---|
1441 | return *this; |
---|
1442 | } |
---|
1443 | |
---|
1444 | /// \brief Copy the arc cross references into the given map. |
---|
1445 | /// |
---|
1446 | /// This function copies the arc cross references (reverse references) |
---|
1447 | /// into the given map. The parameter should be a map, whose key type |
---|
1448 | /// is the Arc type of the destination graph, while the value type is |
---|
1449 | /// the Arc type of the source graph. |
---|
1450 | template <typename ArcCrossRef> |
---|
1451 | BpGraphCopy& arcCrossRef(ArcCrossRef& map) { |
---|
1452 | _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
---|
1453 | ArcRefMap, ArcCrossRef>(map)); |
---|
1454 | return *this; |
---|
1455 | } |
---|
1456 | |
---|
1457 | /// \brief Make a copy of the given arc map. |
---|
1458 | /// |
---|
1459 | /// This function makes a copy of the given arc map for the newly |
---|
1460 | /// created graph. |
---|
1461 | /// The key type of the new map \c tmap should be the Arc type of the |
---|
1462 | /// destination graph, and the key type of the original map \c map |
---|
1463 | /// should be the Arc type of the source graph. |
---|
1464 | template <typename FromMap, typename ToMap> |
---|
1465 | BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
---|
1466 | _arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
---|
1467 | ArcRefMap, FromMap, ToMap>(map, tmap)); |
---|
1468 | return *this; |
---|
1469 | } |
---|
1470 | |
---|
1471 | /// \brief Make a copy of the given arc. |
---|
1472 | /// |
---|
1473 | /// This function makes a copy of the given arc. |
---|
1474 | BpGraphCopy& arc(const Arc& arc, TArc& tarc) { |
---|
1475 | _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
---|
1476 | ArcRefMap, TArc>(arc, tarc)); |
---|
1477 | return *this; |
---|
1478 | } |
---|
1479 | |
---|
1480 | /// \brief Copy the edge references into the given map. |
---|
1481 | /// |
---|
1482 | /// This function copies the edge references into the given map. |
---|
1483 | /// The parameter should be a map, whose key type is the Edge type of |
---|
1484 | /// the source graph, while the value type is the Edge type of the |
---|
1485 | /// destination graph. |
---|
1486 | template <typename EdgeRef> |
---|
1487 | BpGraphCopy& edgeRef(EdgeRef& map) { |
---|
1488 | _edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
---|
1489 | EdgeRefMap, EdgeRef>(map)); |
---|
1490 | return *this; |
---|
1491 | } |
---|
1492 | |
---|
1493 | /// \brief Copy the edge cross references into the given map. |
---|
1494 | /// |
---|
1495 | /// This function copies the edge cross references (reverse references) |
---|
1496 | /// into the given map. The parameter should be a map, whose key type |
---|
1497 | /// is the Edge type of the destination graph, while the value type is |
---|
1498 | /// the Edge type of the source graph. |
---|
1499 | template <typename EdgeCrossRef> |
---|
1500 | BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
---|
1501 | _edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
---|
1502 | Edge, EdgeRefMap, EdgeCrossRef>(map)); |
---|
1503 | return *this; |
---|
1504 | } |
---|
1505 | |
---|
1506 | /// \brief Make a copy of the given edge map. |
---|
1507 | /// |
---|
1508 | /// This function makes a copy of the given edge map for the newly |
---|
1509 | /// created graph. |
---|
1510 | /// The key type of the new map \c tmap should be the Edge type of the |
---|
1511 | /// destination graph, and the key type of the original map \c map |
---|
1512 | /// should be the Edge type of the source graph. |
---|
1513 | template <typename FromMap, typename ToMap> |
---|
1514 | BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
---|
1515 | _edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
---|
1516 | EdgeRefMap, FromMap, ToMap>(map, tmap)); |
---|
1517 | return *this; |
---|
1518 | } |
---|
1519 | |
---|
1520 | /// \brief Make a copy of the given edge. |
---|
1521 | /// |
---|
1522 | /// This function makes a copy of the given edge. |
---|
1523 | BpGraphCopy& edge(const Edge& edge, TEdge& tedge) { |
---|
1524 | _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
---|
1525 | EdgeRefMap, TEdge>(edge, tedge)); |
---|
1526 | return *this; |
---|
1527 | } |
---|
1528 | |
---|
1529 | /// \brief Execute copying. |
---|
1530 | /// |
---|
1531 | /// This function executes the copying of the graph along with the |
---|
1532 | /// copying of the assigned data. |
---|
1533 | void run() { |
---|
1534 | RedNodeRefMap redNodeRefMap(_from); |
---|
1535 | BlueNodeRefMap blueNodeRefMap(_from); |
---|
1536 | NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap); |
---|
1537 | EdgeRefMap edgeRefMap(_from); |
---|
1538 | ArcRefMap arcRefMap(_from, _to, edgeRefMap); |
---|
1539 | _core_bits::BpGraphCopySelector<To>:: |
---|
1540 | copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap); |
---|
1541 | for (int i = 0; i < int(_node_maps.size()); ++i) { |
---|
1542 | _node_maps[i]->copy(_from, nodeRefMap); |
---|
1543 | } |
---|
1544 | for (int i = 0; i < int(_red_maps.size()); ++i) { |
---|
1545 | _red_maps[i]->copy(_from, redNodeRefMap); |
---|
1546 | } |
---|
1547 | for (int i = 0; i < int(_blue_maps.size()); ++i) { |
---|
1548 | _blue_maps[i]->copy(_from, blueNodeRefMap); |
---|
1549 | } |
---|
1550 | for (int i = 0; i < int(_edge_maps.size()); ++i) { |
---|
1551 | _edge_maps[i]->copy(_from, edgeRefMap); |
---|
1552 | } |
---|
1553 | for (int i = 0; i < int(_arc_maps.size()); ++i) { |
---|
1554 | _arc_maps[i]->copy(_from, arcRefMap); |
---|
1555 | } |
---|
1556 | } |
---|
1557 | |
---|
1558 | private: |
---|
1559 | |
---|
1560 | const From& _from; |
---|
1561 | To& _to; |
---|
1562 | |
---|
1563 | std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
---|
1564 | _node_maps; |
---|
1565 | |
---|
1566 | std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* > |
---|
1567 | _red_maps; |
---|
1568 | |
---|
1569 | std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* > |
---|
1570 | _blue_maps; |
---|
1571 | |
---|
1572 | std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
---|
1573 | _arc_maps; |
---|
1574 | |
---|
1575 | std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
---|
1576 | _edge_maps; |
---|
1577 | |
---|
1578 | }; |
---|
1579 | |
---|
1580 | /// \brief Copy a graph to another graph. |
---|
1581 | /// |
---|
1582 | /// This function copies a graph to another graph. |
---|
1583 | /// The complete usage of it is detailed in the BpGraphCopy class, |
---|
1584 | /// but a short example shows a basic work: |
---|
1585 | ///\code |
---|
1586 | /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
---|
1587 | ///\endcode |
---|
1588 | /// |
---|
1589 | /// After the copy the \c nr map will contain the mapping from the |
---|
1590 | /// nodes of the \c from graph to the nodes of the \c to graph and |
---|
1591 | /// \c ecr will contain the mapping from the edges of the \c to graph |
---|
1592 | /// to the edges of the \c from graph. |
---|
1593 | /// |
---|
1594 | /// \see BpGraphCopy |
---|
1595 | template <typename From, typename To> |
---|
1596 | BpGraphCopy<From, To> |
---|
1597 | bpGraphCopy(const From& from, To& to) { |
---|
1598 | return BpGraphCopy<From, To>(from, to); |
---|
1599 | } |
---|
1600 | |
---|
1601 | namespace _core_bits { |
---|
1602 | |
---|
1603 | template <typename Graph, typename Enable = void> |
---|
1604 | struct FindArcSelector { |
---|
1605 | typedef typename Graph::Node Node; |
---|
1606 | typedef typename Graph::Arc Arc; |
---|
1607 | static Arc find(const Graph &g, Node u, Node v, Arc e) { |
---|
1608 | if (e == INVALID) { |
---|
1609 | g.firstOut(e, u); |
---|
1610 | } else { |
---|
1611 | g.nextOut(e); |
---|
1612 | } |
---|
1613 | while (e != INVALID && g.target(e) != v) { |
---|
1614 | g.nextOut(e); |
---|
1615 | } |
---|
1616 | return e; |
---|
1617 | } |
---|
1618 | }; |
---|
1619 | |
---|
1620 | template <typename Graph> |
---|
1621 | struct FindArcSelector< |
---|
1622 | Graph, |
---|
1623 | typename enable_if<typename Graph::FindArcTag, void>::type> |
---|
1624 | { |
---|
1625 | typedef typename Graph::Node Node; |
---|
1626 | typedef typename Graph::Arc Arc; |
---|
1627 | static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
---|
1628 | return g.findArc(u, v, prev); |
---|
1629 | } |
---|
1630 | }; |
---|
1631 | } |
---|
1632 | |
---|
1633 | /// \brief Find an arc between two nodes of a digraph. |
---|
1634 | /// |
---|
1635 | /// This function finds an arc from node \c u to node \c v in the |
---|
1636 | /// digraph \c g. |
---|
1637 | /// |
---|
1638 | /// If \c prev is \ref INVALID (this is the default value), then |
---|
1639 | /// it finds the first arc from \c u to \c v. Otherwise it looks for |
---|
1640 | /// the next arc from \c u to \c v after \c prev. |
---|
1641 | /// \return The found arc or \ref INVALID if there is no such an arc. |
---|
1642 | /// |
---|
1643 | /// Thus you can iterate through each arc from \c u to \c v as it follows. |
---|
1644 | ///\code |
---|
1645 | /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
---|
1646 | /// ... |
---|
1647 | /// } |
---|
1648 | ///\endcode |
---|
1649 | /// |
---|
1650 | /// \note \ref ConArcIt provides iterator interface for the same |
---|
1651 | /// functionality. |
---|
1652 | /// |
---|
1653 | ///\sa ConArcIt |
---|
1654 | ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
---|
1655 | template <typename Graph> |
---|
1656 | inline typename Graph::Arc |
---|
1657 | findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
---|
1658 | typename Graph::Arc prev = INVALID) { |
---|
1659 | return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
---|
1660 | } |
---|
1661 | |
---|
1662 | /// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
---|
1663 | /// |
---|
1664 | /// Iterator for iterating on parallel arcs connecting the same nodes. It is |
---|
1665 | /// a higher level interface for the \ref findArc() function. You can |
---|
1666 | /// use it the following way: |
---|
1667 | ///\code |
---|
1668 | /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
---|
1669 | /// ... |
---|
1670 | /// } |
---|
1671 | ///\endcode |
---|
1672 | /// |
---|
1673 | ///\sa findArc() |
---|
1674 | ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
---|
1675 | template <typename GR> |
---|
1676 | class ConArcIt : public GR::Arc { |
---|
1677 | typedef typename GR::Arc Parent; |
---|
1678 | |
---|
1679 | public: |
---|
1680 | |
---|
1681 | typedef typename GR::Arc Arc; |
---|
1682 | typedef typename GR::Node Node; |
---|
1683 | |
---|
1684 | /// \brief Constructor. |
---|
1685 | /// |
---|
1686 | /// Construct a new ConArcIt iterating on the arcs that |
---|
1687 | /// connects nodes \c u and \c v. |
---|
1688 | ConArcIt(const GR& g, Node u, Node v) : _graph(g) { |
---|
1689 | Parent::operator=(findArc(_graph, u, v)); |
---|
1690 | } |
---|
1691 | |
---|
1692 | /// \brief Constructor. |
---|
1693 | /// |
---|
1694 | /// Construct a new ConArcIt that continues the iterating from arc \c a. |
---|
1695 | ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {} |
---|
1696 | |
---|
1697 | /// \brief Increment operator. |
---|
1698 | /// |
---|
1699 | /// It increments the iterator and gives back the next arc. |
---|
1700 | ConArcIt& operator++() { |
---|
1701 | Parent::operator=(findArc(_graph, _graph.source(*this), |
---|
1702 | _graph.target(*this), *this)); |
---|
1703 | return *this; |
---|
1704 | } |
---|
1705 | private: |
---|
1706 | const GR& _graph; |
---|
1707 | }; |
---|
1708 | |
---|
1709 | namespace _core_bits { |
---|
1710 | |
---|
1711 | template <typename Graph, typename Enable = void> |
---|
1712 | struct FindEdgeSelector { |
---|
1713 | typedef typename Graph::Node Node; |
---|
1714 | typedef typename Graph::Edge Edge; |
---|
1715 | static Edge find(const Graph &g, Node u, Node v, Edge e) { |
---|
1716 | bool b; |
---|
1717 | if (u != v) { |
---|
1718 | if (e == INVALID) { |
---|
1719 | g.firstInc(e, b, u); |
---|
1720 | } else { |
---|
1721 | b = g.u(e) == u; |
---|
1722 | g.nextInc(e, b); |
---|
1723 | } |
---|
1724 | while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
---|
1725 | g.nextInc(e, b); |
---|
1726 | } |
---|
1727 | } else { |
---|
1728 | if (e == INVALID) { |
---|
1729 | g.firstInc(e, b, u); |
---|
1730 | } else { |
---|
1731 | b = true; |
---|
1732 | g.nextInc(e, b); |
---|
1733 | } |
---|
1734 | while (e != INVALID && (!b || g.v(e) != v)) { |
---|
1735 | g.nextInc(e, b); |
---|
1736 | } |
---|
1737 | } |
---|
1738 | return e; |
---|
1739 | } |
---|
1740 | }; |
---|
1741 | |
---|
1742 | template <typename Graph> |
---|
1743 | struct FindEdgeSelector< |
---|
1744 | Graph, |
---|
1745 | typename enable_if<typename Graph::FindEdgeTag, void>::type> |
---|
1746 | { |
---|
1747 | typedef typename Graph::Node Node; |
---|
1748 | typedef typename Graph::Edge Edge; |
---|
1749 | static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
---|
1750 | return g.findEdge(u, v, prev); |
---|
1751 | } |
---|
1752 | }; |
---|
1753 | } |
---|
1754 | |
---|
1755 | /// \brief Find an edge between two nodes of a graph. |
---|
1756 | /// |
---|
1757 | /// This function finds an edge from node \c u to node \c v in graph \c g. |
---|
1758 | /// If node \c u and node \c v is equal then each loop edge |
---|
1759 | /// will be enumerated once. |
---|
1760 | /// |
---|
1761 | /// If \c prev is \ref INVALID (this is the default value), then |
---|
1762 | /// it finds the first edge from \c u to \c v. Otherwise it looks for |
---|
1763 | /// the next edge from \c u to \c v after \c prev. |
---|
1764 | /// \return The found edge or \ref INVALID if there is no such an edge. |
---|
1765 | /// |
---|
1766 | /// Thus you can iterate through each edge between \c u and \c v |
---|
1767 | /// as it follows. |
---|
1768 | ///\code |
---|
1769 | /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
---|
1770 | /// ... |
---|
1771 | /// } |
---|
1772 | ///\endcode |
---|
1773 | /// |
---|
1774 | /// \note \ref ConEdgeIt provides iterator interface for the same |
---|
1775 | /// functionality. |
---|
1776 | /// |
---|
1777 | ///\sa ConEdgeIt |
---|
1778 | template <typename Graph> |
---|
1779 | inline typename Graph::Edge |
---|
1780 | findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
---|
1781 | typename Graph::Edge p = INVALID) { |
---|
1782 | return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
---|
1783 | } |
---|
1784 | |
---|
1785 | /// \brief Iterator for iterating on parallel edges connecting the same nodes. |
---|
1786 | /// |
---|
1787 | /// Iterator for iterating on parallel edges connecting the same nodes. |
---|
1788 | /// It is a higher level interface for the findEdge() function. You can |
---|
1789 | /// use it the following way: |
---|
1790 | ///\code |
---|
1791 | /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
---|
1792 | /// ... |
---|
1793 | /// } |
---|
1794 | ///\endcode |
---|
1795 | /// |
---|
1796 | ///\sa findEdge() |
---|
1797 | template <typename GR> |
---|
1798 | class ConEdgeIt : public GR::Edge { |
---|
1799 | typedef typename GR::Edge Parent; |
---|
1800 | |
---|
1801 | public: |
---|
1802 | |
---|
1803 | typedef typename GR::Edge Edge; |
---|
1804 | typedef typename GR::Node Node; |
---|
1805 | |
---|
1806 | /// \brief Constructor. |
---|
1807 | /// |
---|
1808 | /// Construct a new ConEdgeIt iterating on the edges that |
---|
1809 | /// connects nodes \c u and \c v. |
---|
1810 | ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
---|
1811 | Parent::operator=(findEdge(_graph, _u, _v)); |
---|
1812 | } |
---|
1813 | |
---|
1814 | /// \brief Constructor. |
---|
1815 | /// |
---|
1816 | /// Construct a new ConEdgeIt that continues iterating from edge \c e. |
---|
1817 | ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {} |
---|
1818 | |
---|
1819 | /// \brief Increment operator. |
---|
1820 | /// |
---|
1821 | /// It increments the iterator and gives back the next edge. |
---|
1822 | ConEdgeIt& operator++() { |
---|
1823 | Parent::operator=(findEdge(_graph, _u, _v, *this)); |
---|
1824 | return *this; |
---|
1825 | } |
---|
1826 | private: |
---|
1827 | const GR& _graph; |
---|
1828 | Node _u, _v; |
---|
1829 | }; |
---|
1830 | |
---|
1831 | |
---|
1832 | ///Dynamic arc look-up between given endpoints. |
---|
1833 | |
---|
1834 | ///Using this class, you can find an arc in a digraph from a given |
---|
1835 | ///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
---|
1836 | ///where <em>d</em> is the out-degree of the source node. |
---|
1837 | /// |
---|
1838 | ///It is possible to find \e all parallel arcs between two nodes with |
---|
1839 | ///the \c operator() member. |
---|
1840 | /// |
---|
1841 | ///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
---|
1842 | ///\ref AllArcLookUp if your digraph is not changed so frequently. |
---|
1843 | /// |
---|
1844 | ///This class uses a self-adjusting binary search tree, the Splay tree |
---|
1845 | ///of Sleator and Tarjan to guarantee the logarithmic amortized |
---|
1846 | ///time bound for arc look-ups. This class also guarantees the |
---|
1847 | ///optimal time bound in a constant factor for any distribution of |
---|
1848 | ///queries. |
---|
1849 | /// |
---|
1850 | ///\tparam GR The type of the underlying digraph. |
---|
1851 | /// |
---|
1852 | ///\sa ArcLookUp |
---|
1853 | ///\sa AllArcLookUp |
---|
1854 | template <typename GR> |
---|
1855 | class DynArcLookUp |
---|
1856 | : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase |
---|
1857 | { |
---|
1858 | typedef typename ItemSetTraits<GR, typename GR::Arc> |
---|
1859 | ::ItemNotifier::ObserverBase Parent; |
---|
1860 | |
---|
1861 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
1862 | |
---|
1863 | public: |
---|
1864 | |
---|
1865 | /// The Digraph type |
---|
1866 | typedef GR Digraph; |
---|
1867 | |
---|
1868 | protected: |
---|
1869 | |
---|
1870 | class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
---|
1871 | { |
---|
1872 | typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
---|
1873 | |
---|
1874 | public: |
---|
1875 | |
---|
1876 | AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} |
---|
1877 | |
---|
1878 | virtual void add(const Node& node) { |
---|
1879 | Parent::add(node); |
---|
1880 | Parent::set(node, INVALID); |
---|
1881 | } |
---|
1882 | |
---|
1883 | virtual void add(const std::vector<Node>& nodes) { |
---|
1884 | Parent::add(nodes); |
---|
1885 | for (int i = 0; i < int(nodes.size()); ++i) { |
---|
1886 | Parent::set(nodes[i], INVALID); |
---|
1887 | } |
---|
1888 | } |
---|
1889 | |
---|
1890 | virtual void build() { |
---|
1891 | Parent::build(); |
---|
1892 | Node it; |
---|
1893 | typename Parent::Notifier* nf = Parent::notifier(); |
---|
1894 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
1895 | Parent::set(it, INVALID); |
---|
1896 | } |
---|
1897 | } |
---|
1898 | }; |
---|
1899 | |
---|
1900 | class ArcLess { |
---|
1901 | const Digraph &g; |
---|
1902 | public: |
---|
1903 | ArcLess(const Digraph &_g) : g(_g) {} |
---|
1904 | bool operator()(Arc a,Arc b) const |
---|
1905 | { |
---|
1906 | return g.target(a)<g.target(b); |
---|
1907 | } |
---|
1908 | }; |
---|
1909 | |
---|
1910 | protected: |
---|
1911 | |
---|
1912 | const Digraph &_g; |
---|
1913 | AutoNodeMap _head; |
---|
1914 | typename Digraph::template ArcMap<Arc> _parent; |
---|
1915 | typename Digraph::template ArcMap<Arc> _left; |
---|
1916 | typename Digraph::template ArcMap<Arc> _right; |
---|
1917 | |
---|
1918 | public: |
---|
1919 | |
---|
1920 | ///Constructor |
---|
1921 | |
---|
1922 | ///Constructor. |
---|
1923 | /// |
---|
1924 | ///It builds up the search database. |
---|
1925 | DynArcLookUp(const Digraph &g) |
---|
1926 | : _g(g),_head(g),_parent(g),_left(g),_right(g) |
---|
1927 | { |
---|
1928 | Parent::attach(_g.notifier(typename Digraph::Arc())); |
---|
1929 | refresh(); |
---|
1930 | } |
---|
1931 | |
---|
1932 | protected: |
---|
1933 | |
---|
1934 | virtual void add(const Arc& arc) { |
---|
1935 | insert(arc); |
---|
1936 | } |
---|
1937 | |
---|
1938 | virtual void add(const std::vector<Arc>& arcs) { |
---|
1939 | for (int i = 0; i < int(arcs.size()); ++i) { |
---|
1940 | insert(arcs[i]); |
---|
1941 | } |
---|
1942 | } |
---|
1943 | |
---|
1944 | virtual void erase(const Arc& arc) { |
---|
1945 | remove(arc); |
---|
1946 | } |
---|
1947 | |
---|
1948 | virtual void erase(const std::vector<Arc>& arcs) { |
---|
1949 | for (int i = 0; i < int(arcs.size()); ++i) { |
---|
1950 | remove(arcs[i]); |
---|
1951 | } |
---|
1952 | } |
---|
1953 | |
---|
1954 | virtual void build() { |
---|
1955 | refresh(); |
---|
1956 | } |
---|
1957 | |
---|
1958 | virtual void clear() { |
---|
1959 | for(NodeIt n(_g);n!=INVALID;++n) { |
---|
1960 | _head[n] = INVALID; |
---|
1961 | } |
---|
1962 | } |
---|
1963 | |
---|
1964 | void insert(Arc arc) { |
---|
1965 | Node s = _g.source(arc); |
---|
1966 | Node t = _g.target(arc); |
---|
1967 | _left[arc] = INVALID; |
---|
1968 | _right[arc] = INVALID; |
---|
1969 | |
---|
1970 | Arc e = _head[s]; |
---|
1971 | if (e == INVALID) { |
---|
1972 | _head[s] = arc; |
---|
1973 | _parent[arc] = INVALID; |
---|
1974 | return; |
---|
1975 | } |
---|
1976 | while (true) { |
---|
1977 | if (t < _g.target(e)) { |
---|
1978 | if (_left[e] == INVALID) { |
---|
1979 | _left[e] = arc; |
---|
1980 | _parent[arc] = e; |
---|
1981 | splay(arc); |
---|
1982 | return; |
---|
1983 | } else { |
---|
1984 | e = _left[e]; |
---|
1985 | } |
---|
1986 | } else { |
---|
1987 | if (_right[e] == INVALID) { |
---|
1988 | _right[e] = arc; |
---|
1989 | _parent[arc] = e; |
---|
1990 | splay(arc); |
---|
1991 | return; |
---|
1992 | } else { |
---|
1993 | e = _right[e]; |
---|
1994 | } |
---|
1995 | } |
---|
1996 | } |
---|
1997 | } |
---|
1998 | |
---|
1999 | void remove(Arc arc) { |
---|
2000 | if (_left[arc] == INVALID) { |
---|
2001 | if (_right[arc] != INVALID) { |
---|
2002 | _parent[_right[arc]] = _parent[arc]; |
---|
2003 | } |
---|
2004 | if (_parent[arc] != INVALID) { |
---|
2005 | if (_left[_parent[arc]] == arc) { |
---|
2006 | _left[_parent[arc]] = _right[arc]; |
---|
2007 | } else { |
---|
2008 | _right[_parent[arc]] = _right[arc]; |
---|
2009 | } |
---|
2010 | } else { |
---|
2011 | _head[_g.source(arc)] = _right[arc]; |
---|
2012 | } |
---|
2013 | } else if (_right[arc] == INVALID) { |
---|
2014 | _parent[_left[arc]] = _parent[arc]; |
---|
2015 | if (_parent[arc] != INVALID) { |
---|
2016 | if (_left[_parent[arc]] == arc) { |
---|
2017 | _left[_parent[arc]] = _left[arc]; |
---|
2018 | } else { |
---|
2019 | _right[_parent[arc]] = _left[arc]; |
---|
2020 | } |
---|
2021 | } else { |
---|
2022 | _head[_g.source(arc)] = _left[arc]; |
---|
2023 | } |
---|
2024 | } else { |
---|
2025 | Arc e = _left[arc]; |
---|
2026 | if (_right[e] != INVALID) { |
---|
2027 | e = _right[e]; |
---|
2028 | while (_right[e] != INVALID) { |
---|
2029 | e = _right[e]; |
---|
2030 | } |
---|
2031 | Arc s = _parent[e]; |
---|
2032 | _right[_parent[e]] = _left[e]; |
---|
2033 | if (_left[e] != INVALID) { |
---|
2034 | _parent[_left[e]] = _parent[e]; |
---|
2035 | } |
---|
2036 | |
---|
2037 | _left[e] = _left[arc]; |
---|
2038 | _parent[_left[arc]] = e; |
---|
2039 | _right[e] = _right[arc]; |
---|
2040 | _parent[_right[arc]] = e; |
---|
2041 | |
---|
2042 | _parent[e] = _parent[arc]; |
---|
2043 | if (_parent[arc] != INVALID) { |
---|
2044 | if (_left[_parent[arc]] == arc) { |
---|
2045 | _left[_parent[arc]] = e; |
---|
2046 | } else { |
---|
2047 | _right[_parent[arc]] = e; |
---|
2048 | } |
---|
2049 | } |
---|
2050 | splay(s); |
---|
2051 | } else { |
---|
2052 | _right[e] = _right[arc]; |
---|
2053 | _parent[_right[arc]] = e; |
---|
2054 | _parent[e] = _parent[arc]; |
---|
2055 | |
---|
2056 | if (_parent[arc] != INVALID) { |
---|
2057 | if (_left[_parent[arc]] == arc) { |
---|
2058 | _left[_parent[arc]] = e; |
---|
2059 | } else { |
---|
2060 | _right[_parent[arc]] = e; |
---|
2061 | } |
---|
2062 | } else { |
---|
2063 | _head[_g.source(arc)] = e; |
---|
2064 | } |
---|
2065 | } |
---|
2066 | } |
---|
2067 | } |
---|
2068 | |
---|
2069 | Arc refreshRec(std::vector<Arc> &v,int a,int b) |
---|
2070 | { |
---|
2071 | int m=(a+b)/2; |
---|
2072 | Arc me=v[m]; |
---|
2073 | if (a < m) { |
---|
2074 | Arc left = refreshRec(v,a,m-1); |
---|
2075 | _left[me] = left; |
---|
2076 | _parent[left] = me; |
---|
2077 | } else { |
---|
2078 | _left[me] = INVALID; |
---|
2079 | } |
---|
2080 | if (m < b) { |
---|
2081 | Arc right = refreshRec(v,m+1,b); |
---|
2082 | _right[me] = right; |
---|
2083 | _parent[right] = me; |
---|
2084 | } else { |
---|
2085 | _right[me] = INVALID; |
---|
2086 | } |
---|
2087 | return me; |
---|
2088 | } |
---|
2089 | |
---|
2090 | void refresh() { |
---|
2091 | for(NodeIt n(_g);n!=INVALID;++n) { |
---|
2092 | std::vector<Arc> v; |
---|
2093 | for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
---|
2094 | if (!v.empty()) { |
---|
2095 | std::sort(v.begin(),v.end(),ArcLess(_g)); |
---|
2096 | Arc head = refreshRec(v,0,v.size()-1); |
---|
2097 | _head[n] = head; |
---|
2098 | _parent[head] = INVALID; |
---|
2099 | } |
---|
2100 | else _head[n] = INVALID; |
---|
2101 | } |
---|
2102 | } |
---|
2103 | |
---|
2104 | void zig(Arc v) { |
---|
2105 | Arc w = _parent[v]; |
---|
2106 | _parent[v] = _parent[w]; |
---|
2107 | _parent[w] = v; |
---|
2108 | _left[w] = _right[v]; |
---|
2109 | _right[v] = w; |
---|
2110 | if (_parent[v] != INVALID) { |
---|
2111 | if (_right[_parent[v]] == w) { |
---|
2112 | _right[_parent[v]] = v; |
---|
2113 | } else { |
---|
2114 | _left[_parent[v]] = v; |
---|
2115 | } |
---|
2116 | } |
---|
2117 | if (_left[w] != INVALID){ |
---|
2118 | _parent[_left[w]] = w; |
---|
2119 | } |
---|
2120 | } |
---|
2121 | |
---|
2122 | void zag(Arc v) { |
---|
2123 | Arc w = _parent[v]; |
---|
2124 | _parent[v] = _parent[w]; |
---|
2125 | _parent[w] = v; |
---|
2126 | _right[w] = _left[v]; |
---|
2127 | _left[v] = w; |
---|
2128 | if (_parent[v] != INVALID){ |
---|
2129 | if (_left[_parent[v]] == w) { |
---|
2130 | _left[_parent[v]] = v; |
---|
2131 | } else { |
---|
2132 | _right[_parent[v]] = v; |
---|
2133 | } |
---|
2134 | } |
---|
2135 | if (_right[w] != INVALID){ |
---|
2136 | _parent[_right[w]] = w; |
---|
2137 | } |
---|
2138 | } |
---|
2139 | |
---|
2140 | void splay(Arc v) { |
---|
2141 | while (_parent[v] != INVALID) { |
---|
2142 | if (v == _left[_parent[v]]) { |
---|
2143 | if (_parent[_parent[v]] == INVALID) { |
---|
2144 | zig(v); |
---|
2145 | } else { |
---|
2146 | if (_parent[v] == _left[_parent[_parent[v]]]) { |
---|
2147 | zig(_parent[v]); |
---|
2148 | zig(v); |
---|
2149 | } else { |
---|
2150 | zig(v); |
---|
2151 | zag(v); |
---|
2152 | } |
---|
2153 | } |
---|
2154 | } else { |
---|
2155 | if (_parent[_parent[v]] == INVALID) { |
---|
2156 | zag(v); |
---|
2157 | } else { |
---|
2158 | if (_parent[v] == _left[_parent[_parent[v]]]) { |
---|
2159 | zag(v); |
---|
2160 | zig(v); |
---|
2161 | } else { |
---|
2162 | zag(_parent[v]); |
---|
2163 | zag(v); |
---|
2164 | } |
---|
2165 | } |
---|
2166 | } |
---|
2167 | } |
---|
2168 | _head[_g.source(v)] = v; |
---|
2169 | } |
---|
2170 | |
---|
2171 | |
---|
2172 | public: |
---|
2173 | |
---|
2174 | ///Find an arc between two nodes. |
---|
2175 | |
---|
2176 | ///Find an arc between two nodes. |
---|
2177 | ///\param s The source node. |
---|
2178 | ///\param t The target node. |
---|
2179 | ///\param p The previous arc between \c s and \c t. It it is INVALID or |
---|
2180 | ///not given, the operator finds the first appropriate arc. |
---|
2181 | ///\return An arc from \c s to \c t after \c p or |
---|
2182 | ///\ref INVALID if there is no more. |
---|
2183 | /// |
---|
2184 | ///For example, you can count the number of arcs from \c u to \c v in the |
---|
2185 | ///following way. |
---|
2186 | ///\code |
---|
2187 | ///DynArcLookUp<ListDigraph> ae(g); |
---|
2188 | ///... |
---|
2189 | ///int n = 0; |
---|
2190 | ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
---|
2191 | ///\endcode |
---|
2192 | /// |
---|
2193 | ///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
---|
2194 | ///amortized time, specifically, the time complexity of the lookups |
---|
2195 | ///is equal to the optimal search tree implementation for the |
---|
2196 | ///current query distribution in a constant factor. |
---|
2197 | /// |
---|
2198 | ///\note This is a dynamic data structure, therefore the data |
---|
2199 | ///structure is updated after each graph alteration. Thus although |
---|
2200 | ///this data structure is theoretically faster than \ref ArcLookUp |
---|
2201 | ///and \ref AllArcLookUp, it often provides worse performance than |
---|
2202 | ///them. |
---|
2203 | Arc operator()(Node s, Node t, Arc p = INVALID) const { |
---|
2204 | if (p == INVALID) { |
---|
2205 | Arc a = _head[s]; |
---|
2206 | if (a == INVALID) return INVALID; |
---|
2207 | Arc r = INVALID; |
---|
2208 | while (true) { |
---|
2209 | if (_g.target(a) < t) { |
---|
2210 | if (_right[a] == INVALID) { |
---|
2211 | const_cast<DynArcLookUp&>(*this).splay(a); |
---|
2212 | return r; |
---|
2213 | } else { |
---|
2214 | a = _right[a]; |
---|
2215 | } |
---|
2216 | } else { |
---|
2217 | if (_g.target(a) == t) { |
---|
2218 | r = a; |
---|
2219 | } |
---|
2220 | if (_left[a] == INVALID) { |
---|
2221 | const_cast<DynArcLookUp&>(*this).splay(a); |
---|
2222 | return r; |
---|
2223 | } else { |
---|
2224 | a = _left[a]; |
---|
2225 | } |
---|
2226 | } |
---|
2227 | } |
---|
2228 | } else { |
---|
2229 | Arc a = p; |
---|
2230 | if (_right[a] != INVALID) { |
---|
2231 | a = _right[a]; |
---|
2232 | while (_left[a] != INVALID) { |
---|
2233 | a = _left[a]; |
---|
2234 | } |
---|
2235 | const_cast<DynArcLookUp&>(*this).splay(a); |
---|
2236 | } else { |
---|
2237 | while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
---|
2238 | a = _parent[a]; |
---|
2239 | } |
---|
2240 | if (_parent[a] == INVALID) { |
---|
2241 | return INVALID; |
---|
2242 | } else { |
---|
2243 | a = _parent[a]; |
---|
2244 | const_cast<DynArcLookUp&>(*this).splay(a); |
---|
2245 | } |
---|
2246 | } |
---|
2247 | if (_g.target(a) == t) return a; |
---|
2248 | else return INVALID; |
---|
2249 | } |
---|
2250 | } |
---|
2251 | |
---|
2252 | }; |
---|
2253 | |
---|
2254 | ///Fast arc look-up between given endpoints. |
---|
2255 | |
---|
2256 | ///Using this class, you can find an arc in a digraph from a given |
---|
2257 | ///source to a given target in time <em>O</em>(log<em>d</em>), |
---|
2258 | ///where <em>d</em> is the out-degree of the source node. |
---|
2259 | /// |
---|
2260 | ///It is not possible to find \e all parallel arcs between two nodes. |
---|
2261 | ///Use \ref AllArcLookUp for this purpose. |
---|
2262 | /// |
---|
2263 | ///\warning This class is static, so you should call refresh() (or at |
---|
2264 | ///least refresh(Node)) to refresh this data structure whenever the |
---|
2265 | ///digraph changes. This is a time consuming (superlinearly proportional |
---|
2266 | ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
---|
2267 | /// |
---|
2268 | ///\tparam GR The type of the underlying digraph. |
---|
2269 | /// |
---|
2270 | ///\sa DynArcLookUp |
---|
2271 | ///\sa AllArcLookUp |
---|
2272 | template<class GR> |
---|
2273 | class ArcLookUp |
---|
2274 | { |
---|
2275 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
2276 | |
---|
2277 | public: |
---|
2278 | |
---|
2279 | /// The Digraph type |
---|
2280 | typedef GR Digraph; |
---|
2281 | |
---|
2282 | protected: |
---|
2283 | const Digraph &_g; |
---|
2284 | typename Digraph::template NodeMap<Arc> _head; |
---|
2285 | typename Digraph::template ArcMap<Arc> _left; |
---|
2286 | typename Digraph::template ArcMap<Arc> _right; |
---|
2287 | |
---|
2288 | class ArcLess { |
---|
2289 | const Digraph &g; |
---|
2290 | public: |
---|
2291 | ArcLess(const Digraph &_g) : g(_g) {} |
---|
2292 | bool operator()(Arc a,Arc b) const |
---|
2293 | { |
---|
2294 | return g.target(a)<g.target(b); |
---|
2295 | } |
---|
2296 | }; |
---|
2297 | |
---|
2298 | public: |
---|
2299 | |
---|
2300 | ///Constructor |
---|
2301 | |
---|
2302 | ///Constructor. |
---|
2303 | /// |
---|
2304 | ///It builds up the search database, which remains valid until the digraph |
---|
2305 | ///changes. |
---|
2306 | ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
---|
2307 | |
---|
2308 | private: |
---|
2309 | Arc refreshRec(std::vector<Arc> &v,int a,int b) |
---|
2310 | { |
---|
2311 | int m=(a+b)/2; |
---|
2312 | Arc me=v[m]; |
---|
2313 | _left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
---|
2314 | _right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
---|
2315 | return me; |
---|
2316 | } |
---|
2317 | public: |
---|
2318 | ///Refresh the search data structure at a node. |
---|
2319 | |
---|
2320 | ///Build up the search database of node \c n. |
---|
2321 | /// |
---|
2322 | ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
---|
2323 | ///is the number of the outgoing arcs of \c n. |
---|
2324 | void refresh(Node n) |
---|
2325 | { |
---|
2326 | std::vector<Arc> v; |
---|
2327 | for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
---|
2328 | if(v.size()) { |
---|
2329 | std::sort(v.begin(),v.end(),ArcLess(_g)); |
---|
2330 | _head[n]=refreshRec(v,0,v.size()-1); |
---|
2331 | } |
---|
2332 | else _head[n]=INVALID; |
---|
2333 | } |
---|
2334 | ///Refresh the full data structure. |
---|
2335 | |
---|
2336 | ///Build up the full search database. In fact, it simply calls |
---|
2337 | ///\ref refresh(Node) "refresh(n)" for each node \c n. |
---|
2338 | /// |
---|
2339 | ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
---|
2340 | ///the number of the arcs in the digraph and <em>D</em> is the maximum |
---|
2341 | ///out-degree of the digraph. |
---|
2342 | void refresh() |
---|
2343 | { |
---|
2344 | for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
---|
2345 | } |
---|
2346 | |
---|
2347 | ///Find an arc between two nodes. |
---|
2348 | |
---|
2349 | ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
---|
2350 | ///where <em>d</em> is the number of outgoing arcs of \c s. |
---|
2351 | ///\param s The source node. |
---|
2352 | ///\param t The target node. |
---|
2353 | ///\return An arc from \c s to \c t if there exists, |
---|
2354 | ///\ref INVALID otherwise. |
---|
2355 | /// |
---|
2356 | ///\warning If you change the digraph, refresh() must be called before using |
---|
2357 | ///this operator. If you change the outgoing arcs of |
---|
2358 | ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
---|
2359 | Arc operator()(Node s, Node t) const |
---|
2360 | { |
---|
2361 | Arc e; |
---|
2362 | for(e=_head[s]; |
---|
2363 | e!=INVALID&&_g.target(e)!=t; |
---|
2364 | e = t < _g.target(e)?_left[e]:_right[e]) ; |
---|
2365 | return e; |
---|
2366 | } |
---|
2367 | |
---|
2368 | }; |
---|
2369 | |
---|
2370 | ///Fast look-up of all arcs between given endpoints. |
---|
2371 | |
---|
2372 | ///This class is the same as \ref ArcLookUp, with the addition |
---|
2373 | ///that it makes it possible to find all parallel arcs between given |
---|
2374 | ///endpoints. |
---|
2375 | /// |
---|
2376 | ///\warning This class is static, so you should call refresh() (or at |
---|
2377 | ///least refresh(Node)) to refresh this data structure whenever the |
---|
2378 | ///digraph changes. This is a time consuming (superlinearly proportional |
---|
2379 | ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
---|
2380 | /// |
---|
2381 | ///\tparam GR The type of the underlying digraph. |
---|
2382 | /// |
---|
2383 | ///\sa DynArcLookUp |
---|
2384 | ///\sa ArcLookUp |
---|
2385 | template<class GR> |
---|
2386 | class AllArcLookUp : public ArcLookUp<GR> |
---|
2387 | { |
---|
2388 | using ArcLookUp<GR>::_g; |
---|
2389 | using ArcLookUp<GR>::_right; |
---|
2390 | using ArcLookUp<GR>::_left; |
---|
2391 | using ArcLookUp<GR>::_head; |
---|
2392 | |
---|
2393 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
2394 | |
---|
2395 | typename GR::template ArcMap<Arc> _next; |
---|
2396 | |
---|
2397 | Arc refreshNext(Arc head,Arc next=INVALID) |
---|
2398 | { |
---|
2399 | if(head==INVALID) return next; |
---|
2400 | else { |
---|
2401 | next=refreshNext(_right[head],next); |
---|
2402 | _next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
---|
2403 | ? next : INVALID; |
---|
2404 | return refreshNext(_left[head],head); |
---|
2405 | } |
---|
2406 | } |
---|
2407 | |
---|
2408 | void refreshNext() |
---|
2409 | { |
---|
2410 | for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
---|
2411 | } |
---|
2412 | |
---|
2413 | public: |
---|
2414 | |
---|
2415 | /// The Digraph type |
---|
2416 | typedef GR Digraph; |
---|
2417 | |
---|
2418 | ///Constructor |
---|
2419 | |
---|
2420 | ///Constructor. |
---|
2421 | /// |
---|
2422 | ///It builds up the search database, which remains valid until the digraph |
---|
2423 | ///changes. |
---|
2424 | AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();} |
---|
2425 | |
---|
2426 | ///Refresh the data structure at a node. |
---|
2427 | |
---|
2428 | ///Build up the search database of node \c n. |
---|
2429 | /// |
---|
2430 | ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
---|
2431 | ///the number of the outgoing arcs of \c n. |
---|
2432 | void refresh(Node n) |
---|
2433 | { |
---|
2434 | ArcLookUp<GR>::refresh(n); |
---|
2435 | refreshNext(_head[n]); |
---|
2436 | } |
---|
2437 | |
---|
2438 | ///Refresh the full data structure. |
---|
2439 | |
---|
2440 | ///Build up the full search database. In fact, it simply calls |
---|
2441 | ///\ref refresh(Node) "refresh(n)" for each node \c n. |
---|
2442 | /// |
---|
2443 | ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
---|
2444 | ///the number of the arcs in the digraph and <em>D</em> is the maximum |
---|
2445 | ///out-degree of the digraph. |
---|
2446 | void refresh() |
---|
2447 | { |
---|
2448 | for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
---|
2449 | } |
---|
2450 | |
---|
2451 | ///Find an arc between two nodes. |
---|
2452 | |
---|
2453 | ///Find an arc between two nodes. |
---|
2454 | ///\param s The source node. |
---|
2455 | ///\param t The target node. |
---|
2456 | ///\param prev The previous arc between \c s and \c t. It it is INVALID or |
---|
2457 | ///not given, the operator finds the first appropriate arc. |
---|
2458 | ///\return An arc from \c s to \c t after \c prev or |
---|
2459 | ///\ref INVALID if there is no more. |
---|
2460 | /// |
---|
2461 | ///For example, you can count the number of arcs from \c u to \c v in the |
---|
2462 | ///following way. |
---|
2463 | ///\code |
---|
2464 | ///AllArcLookUp<ListDigraph> ae(g); |
---|
2465 | ///... |
---|
2466 | ///int n = 0; |
---|
2467 | ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
---|
2468 | ///\endcode |
---|
2469 | /// |
---|
2470 | ///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
---|
2471 | ///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
---|
2472 | ///consecutive arcs are found in constant time. |
---|
2473 | /// |
---|
2474 | ///\warning If you change the digraph, refresh() must be called before using |
---|
2475 | ///this operator. If you change the outgoing arcs of |
---|
2476 | ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
---|
2477 | /// |
---|
2478 | Arc operator()(Node s, Node t, Arc prev=INVALID) const |
---|
2479 | { |
---|
2480 | if(prev==INVALID) |
---|
2481 | { |
---|
2482 | Arc f=INVALID; |
---|
2483 | Arc e; |
---|
2484 | for(e=_head[s]; |
---|
2485 | e!=INVALID&&_g.target(e)!=t; |
---|
2486 | e = t < _g.target(e)?_left[e]:_right[e]) ; |
---|
2487 | while(e!=INVALID) |
---|
2488 | if(_g.target(e)==t) |
---|
2489 | { |
---|
2490 | f = e; |
---|
2491 | e = _left[e]; |
---|
2492 | } |
---|
2493 | else e = _right[e]; |
---|
2494 | return f; |
---|
2495 | } |
---|
2496 | else return _next[prev]; |
---|
2497 | } |
---|
2498 | |
---|
2499 | }; |
---|
2500 | |
---|
2501 | /// @} |
---|
2502 | |
---|
2503 | } //namespace lemon |
---|
2504 | |
---|
2505 | #endif |
---|