1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_CYCLE_CANCELING_H |
---|
20 | #define LEMON_CYCLE_CANCELING_H |
---|
21 | |
---|
22 | /// \ingroup min_cost_flow_algs |
---|
23 | /// \file |
---|
24 | /// \brief Cycle-canceling algorithms for finding a minimum cost flow. |
---|
25 | |
---|
26 | #include <vector> |
---|
27 | #include <limits> |
---|
28 | |
---|
29 | #include <lemon/core.h> |
---|
30 | #include <lemon/maps.h> |
---|
31 | #include <lemon/path.h> |
---|
32 | #include <lemon/math.h> |
---|
33 | #include <lemon/static_graph.h> |
---|
34 | #include <lemon/adaptors.h> |
---|
35 | #include <lemon/circulation.h> |
---|
36 | #include <lemon/bellman_ford.h> |
---|
37 | #include <lemon/howard.h> |
---|
38 | |
---|
39 | namespace lemon { |
---|
40 | |
---|
41 | /// \addtogroup min_cost_flow_algs |
---|
42 | /// @{ |
---|
43 | |
---|
44 | /// \brief Implementation of cycle-canceling algorithms for |
---|
45 | /// finding a \ref min_cost_flow "minimum cost flow". |
---|
46 | /// |
---|
47 | /// \ref CycleCanceling implements three different cycle-canceling |
---|
48 | /// algorithms for finding a \ref min_cost_flow "minimum cost flow" |
---|
49 | /// \ref amo93networkflows, \ref klein67primal, |
---|
50 | /// \ref goldberg89cyclecanceling. |
---|
51 | /// The most efficent one (both theoretically and practically) |
---|
52 | /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, |
---|
53 | /// thus it is the default method. |
---|
54 | /// It is strongly polynomial, but in practice, it is typically much |
---|
55 | /// slower than the scaling algorithms and NetworkSimplex. |
---|
56 | /// |
---|
57 | /// Most of the parameters of the problem (except for the digraph) |
---|
58 | /// can be given using separate functions, and the algorithm can be |
---|
59 | /// executed using the \ref run() function. If some parameters are not |
---|
60 | /// specified, then default values will be used. |
---|
61 | /// |
---|
62 | /// \tparam GR The digraph type the algorithm runs on. |
---|
63 | /// \tparam V The number type used for flow amounts, capacity bounds |
---|
64 | /// and supply values in the algorithm. By default, it is \c int. |
---|
65 | /// \tparam C The number type used for costs and potentials in the |
---|
66 | /// algorithm. By default, it is the same as \c V. |
---|
67 | /// |
---|
68 | /// \warning Both number types must be signed and all input data must |
---|
69 | /// be integer. |
---|
70 | /// \warning This algorithm does not support negative costs for such |
---|
71 | /// arcs that have infinite upper bound. |
---|
72 | /// |
---|
73 | /// \note For more information about the three available methods, |
---|
74 | /// see \ref Method. |
---|
75 | #ifdef DOXYGEN |
---|
76 | template <typename GR, typename V, typename C> |
---|
77 | #else |
---|
78 | template <typename GR, typename V = int, typename C = V> |
---|
79 | #endif |
---|
80 | class CycleCanceling |
---|
81 | { |
---|
82 | public: |
---|
83 | |
---|
84 | /// The type of the digraph |
---|
85 | typedef GR Digraph; |
---|
86 | /// The type of the flow amounts, capacity bounds and supply values |
---|
87 | typedef V Value; |
---|
88 | /// The type of the arc costs |
---|
89 | typedef C Cost; |
---|
90 | |
---|
91 | public: |
---|
92 | |
---|
93 | /// \brief Problem type constants for the \c run() function. |
---|
94 | /// |
---|
95 | /// Enum type containing the problem type constants that can be |
---|
96 | /// returned by the \ref run() function of the algorithm. |
---|
97 | enum ProblemType { |
---|
98 | /// The problem has no feasible solution (flow). |
---|
99 | INFEASIBLE, |
---|
100 | /// The problem has optimal solution (i.e. it is feasible and |
---|
101 | /// bounded), and the algorithm has found optimal flow and node |
---|
102 | /// potentials (primal and dual solutions). |
---|
103 | OPTIMAL, |
---|
104 | /// The digraph contains an arc of negative cost and infinite |
---|
105 | /// upper bound. It means that the objective function is unbounded |
---|
106 | /// on that arc, however, note that it could actually be bounded |
---|
107 | /// over the feasible flows, but this algroithm cannot handle |
---|
108 | /// these cases. |
---|
109 | UNBOUNDED |
---|
110 | }; |
---|
111 | |
---|
112 | /// \brief Constants for selecting the used method. |
---|
113 | /// |
---|
114 | /// Enum type containing constants for selecting the used method |
---|
115 | /// for the \ref run() function. |
---|
116 | /// |
---|
117 | /// \ref CycleCanceling provides three different cycle-canceling |
---|
118 | /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
---|
119 | /// is used, which proved to be the most efficient and the most robust |
---|
120 | /// on various test inputs. |
---|
121 | /// However, the other methods can be selected using the \ref run() |
---|
122 | /// function with the proper parameter. |
---|
123 | enum Method { |
---|
124 | /// A simple cycle-canceling method, which uses the |
---|
125 | /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration |
---|
126 | /// number for detecting negative cycles in the residual network. |
---|
127 | SIMPLE_CYCLE_CANCELING, |
---|
128 | /// The "Minimum Mean Cycle-Canceling" algorithm, which is a |
---|
129 | /// well-known strongly polynomial method |
---|
130 | /// \ref goldberg89cyclecanceling. It improves along a |
---|
131 | /// \ref min_mean_cycle "minimum mean cycle" in each iteration. |
---|
132 | /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)). |
---|
133 | MINIMUM_MEAN_CYCLE_CANCELING, |
---|
134 | /// The "Cancel And Tighten" algorithm, which can be viewed as an |
---|
135 | /// improved version of the previous method |
---|
136 | /// \ref goldberg89cyclecanceling. |
---|
137 | /// It is faster both in theory and in practice, its running time |
---|
138 | /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
---|
139 | CANCEL_AND_TIGHTEN |
---|
140 | }; |
---|
141 | |
---|
142 | private: |
---|
143 | |
---|
144 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
---|
145 | |
---|
146 | typedef std::vector<int> IntVector; |
---|
147 | typedef std::vector<char> CharVector; |
---|
148 | typedef std::vector<double> DoubleVector; |
---|
149 | typedef std::vector<Value> ValueVector; |
---|
150 | typedef std::vector<Cost> CostVector; |
---|
151 | |
---|
152 | private: |
---|
153 | |
---|
154 | template <typename KT, typename VT> |
---|
155 | class StaticVectorMap { |
---|
156 | public: |
---|
157 | typedef KT Key; |
---|
158 | typedef VT Value; |
---|
159 | |
---|
160 | StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
---|
161 | |
---|
162 | const Value& operator[](const Key& key) const { |
---|
163 | return _v[StaticDigraph::id(key)]; |
---|
164 | } |
---|
165 | |
---|
166 | Value& operator[](const Key& key) { |
---|
167 | return _v[StaticDigraph::id(key)]; |
---|
168 | } |
---|
169 | |
---|
170 | void set(const Key& key, const Value& val) { |
---|
171 | _v[StaticDigraph::id(key)] = val; |
---|
172 | } |
---|
173 | |
---|
174 | private: |
---|
175 | std::vector<Value>& _v; |
---|
176 | }; |
---|
177 | |
---|
178 | typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap; |
---|
179 | typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap; |
---|
180 | |
---|
181 | private: |
---|
182 | |
---|
183 | |
---|
184 | // Data related to the underlying digraph |
---|
185 | const GR &_graph; |
---|
186 | int _node_num; |
---|
187 | int _arc_num; |
---|
188 | int _res_node_num; |
---|
189 | int _res_arc_num; |
---|
190 | int _root; |
---|
191 | |
---|
192 | // Parameters of the problem |
---|
193 | bool _have_lower; |
---|
194 | Value _sum_supply; |
---|
195 | |
---|
196 | // Data structures for storing the digraph |
---|
197 | IntNodeMap _node_id; |
---|
198 | IntArcMap _arc_idf; |
---|
199 | IntArcMap _arc_idb; |
---|
200 | IntVector _first_out; |
---|
201 | CharVector _forward; |
---|
202 | IntVector _source; |
---|
203 | IntVector _target; |
---|
204 | IntVector _reverse; |
---|
205 | |
---|
206 | // Node and arc data |
---|
207 | ValueVector _lower; |
---|
208 | ValueVector _upper; |
---|
209 | CostVector _cost; |
---|
210 | ValueVector _supply; |
---|
211 | |
---|
212 | ValueVector _res_cap; |
---|
213 | CostVector _pi; |
---|
214 | |
---|
215 | // Data for a StaticDigraph structure |
---|
216 | typedef std::pair<int, int> IntPair; |
---|
217 | StaticDigraph _sgr; |
---|
218 | std::vector<IntPair> _arc_vec; |
---|
219 | std::vector<Cost> _cost_vec; |
---|
220 | IntVector _id_vec; |
---|
221 | CostArcMap _cost_map; |
---|
222 | CostNodeMap _pi_map; |
---|
223 | |
---|
224 | public: |
---|
225 | |
---|
226 | /// \brief Constant for infinite upper bounds (capacities). |
---|
227 | /// |
---|
228 | /// Constant for infinite upper bounds (capacities). |
---|
229 | /// It is \c std::numeric_limits<Value>::infinity() if available, |
---|
230 | /// \c std::numeric_limits<Value>::max() otherwise. |
---|
231 | const Value INF; |
---|
232 | |
---|
233 | public: |
---|
234 | |
---|
235 | /// \brief Constructor. |
---|
236 | /// |
---|
237 | /// The constructor of the class. |
---|
238 | /// |
---|
239 | /// \param graph The digraph the algorithm runs on. |
---|
240 | CycleCanceling(const GR& graph) : |
---|
241 | _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
---|
242 | _cost_map(_cost_vec), _pi_map(_pi), |
---|
243 | INF(std::numeric_limits<Value>::has_infinity ? |
---|
244 | std::numeric_limits<Value>::infinity() : |
---|
245 | std::numeric_limits<Value>::max()) |
---|
246 | { |
---|
247 | // Check the number types |
---|
248 | LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
---|
249 | "The flow type of CycleCanceling must be signed"); |
---|
250 | LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
---|
251 | "The cost type of CycleCanceling must be signed"); |
---|
252 | |
---|
253 | // Reset data structures |
---|
254 | reset(); |
---|
255 | } |
---|
256 | |
---|
257 | /// \name Parameters |
---|
258 | /// The parameters of the algorithm can be specified using these |
---|
259 | /// functions. |
---|
260 | |
---|
261 | /// @{ |
---|
262 | |
---|
263 | /// \brief Set the lower bounds on the arcs. |
---|
264 | /// |
---|
265 | /// This function sets the lower bounds on the arcs. |
---|
266 | /// If it is not used before calling \ref run(), the lower bounds |
---|
267 | /// will be set to zero on all arcs. |
---|
268 | /// |
---|
269 | /// \param map An arc map storing the lower bounds. |
---|
270 | /// Its \c Value type must be convertible to the \c Value type |
---|
271 | /// of the algorithm. |
---|
272 | /// |
---|
273 | /// \return <tt>(*this)</tt> |
---|
274 | template <typename LowerMap> |
---|
275 | CycleCanceling& lowerMap(const LowerMap& map) { |
---|
276 | _have_lower = true; |
---|
277 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
278 | _lower[_arc_idf[a]] = map[a]; |
---|
279 | _lower[_arc_idb[a]] = map[a]; |
---|
280 | } |
---|
281 | return *this; |
---|
282 | } |
---|
283 | |
---|
284 | /// \brief Set the upper bounds (capacities) on the arcs. |
---|
285 | /// |
---|
286 | /// This function sets the upper bounds (capacities) on the arcs. |
---|
287 | /// If it is not used before calling \ref run(), the upper bounds |
---|
288 | /// will be set to \ref INF on all arcs (i.e. the flow value will be |
---|
289 | /// unbounded from above). |
---|
290 | /// |
---|
291 | /// \param map An arc map storing the upper bounds. |
---|
292 | /// Its \c Value type must be convertible to the \c Value type |
---|
293 | /// of the algorithm. |
---|
294 | /// |
---|
295 | /// \return <tt>(*this)</tt> |
---|
296 | template<typename UpperMap> |
---|
297 | CycleCanceling& upperMap(const UpperMap& map) { |
---|
298 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
299 | _upper[_arc_idf[a]] = map[a]; |
---|
300 | } |
---|
301 | return *this; |
---|
302 | } |
---|
303 | |
---|
304 | /// \brief Set the costs of the arcs. |
---|
305 | /// |
---|
306 | /// This function sets the costs of the arcs. |
---|
307 | /// If it is not used before calling \ref run(), the costs |
---|
308 | /// will be set to \c 1 on all arcs. |
---|
309 | /// |
---|
310 | /// \param map An arc map storing the costs. |
---|
311 | /// Its \c Value type must be convertible to the \c Cost type |
---|
312 | /// of the algorithm. |
---|
313 | /// |
---|
314 | /// \return <tt>(*this)</tt> |
---|
315 | template<typename CostMap> |
---|
316 | CycleCanceling& costMap(const CostMap& map) { |
---|
317 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
318 | _cost[_arc_idf[a]] = map[a]; |
---|
319 | _cost[_arc_idb[a]] = -map[a]; |
---|
320 | } |
---|
321 | return *this; |
---|
322 | } |
---|
323 | |
---|
324 | /// \brief Set the supply values of the nodes. |
---|
325 | /// |
---|
326 | /// This function sets the supply values of the nodes. |
---|
327 | /// If neither this function nor \ref stSupply() is used before |
---|
328 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
329 | /// |
---|
330 | /// \param map A node map storing the supply values. |
---|
331 | /// Its \c Value type must be convertible to the \c Value type |
---|
332 | /// of the algorithm. |
---|
333 | /// |
---|
334 | /// \return <tt>(*this)</tt> |
---|
335 | template<typename SupplyMap> |
---|
336 | CycleCanceling& supplyMap(const SupplyMap& map) { |
---|
337 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
338 | _supply[_node_id[n]] = map[n]; |
---|
339 | } |
---|
340 | return *this; |
---|
341 | } |
---|
342 | |
---|
343 | /// \brief Set single source and target nodes and a supply value. |
---|
344 | /// |
---|
345 | /// This function sets a single source node and a single target node |
---|
346 | /// and the required flow value. |
---|
347 | /// If neither this function nor \ref supplyMap() is used before |
---|
348 | /// calling \ref run(), the supply of each node will be set to zero. |
---|
349 | /// |
---|
350 | /// Using this function has the same effect as using \ref supplyMap() |
---|
351 | /// with such a map in which \c k is assigned to \c s, \c -k is |
---|
352 | /// assigned to \c t and all other nodes have zero supply value. |
---|
353 | /// |
---|
354 | /// \param s The source node. |
---|
355 | /// \param t The target node. |
---|
356 | /// \param k The required amount of flow from node \c s to node \c t |
---|
357 | /// (i.e. the supply of \c s and the demand of \c t). |
---|
358 | /// |
---|
359 | /// \return <tt>(*this)</tt> |
---|
360 | CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { |
---|
361 | for (int i = 0; i != _res_node_num; ++i) { |
---|
362 | _supply[i] = 0; |
---|
363 | } |
---|
364 | _supply[_node_id[s]] = k; |
---|
365 | _supply[_node_id[t]] = -k; |
---|
366 | return *this; |
---|
367 | } |
---|
368 | |
---|
369 | /// @} |
---|
370 | |
---|
371 | /// \name Execution control |
---|
372 | /// The algorithm can be executed using \ref run(). |
---|
373 | |
---|
374 | /// @{ |
---|
375 | |
---|
376 | /// \brief Run the algorithm. |
---|
377 | /// |
---|
378 | /// This function runs the algorithm. |
---|
379 | /// The paramters can be specified using functions \ref lowerMap(), |
---|
380 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
---|
381 | /// For example, |
---|
382 | /// \code |
---|
383 | /// CycleCanceling<ListDigraph> cc(graph); |
---|
384 | /// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
---|
385 | /// .supplyMap(sup).run(); |
---|
386 | /// \endcode |
---|
387 | /// |
---|
388 | /// This function can be called more than once. All the given parameters |
---|
389 | /// are kept for the next call, unless \ref resetParams() or \ref reset() |
---|
390 | /// is used, thus only the modified parameters have to be set again. |
---|
391 | /// If the underlying digraph was also modified after the construction |
---|
392 | /// of the class (or the last \ref reset() call), then the \ref reset() |
---|
393 | /// function must be called. |
---|
394 | /// |
---|
395 | /// \param method The cycle-canceling method that will be used. |
---|
396 | /// For more information, see \ref Method. |
---|
397 | /// |
---|
398 | /// \return \c INFEASIBLE if no feasible flow exists, |
---|
399 | /// \n \c OPTIMAL if the problem has optimal solution |
---|
400 | /// (i.e. it is feasible and bounded), and the algorithm has found |
---|
401 | /// optimal flow and node potentials (primal and dual solutions), |
---|
402 | /// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
---|
403 | /// and infinite upper bound. It means that the objective function |
---|
404 | /// is unbounded on that arc, however, note that it could actually be |
---|
405 | /// bounded over the feasible flows, but this algroithm cannot handle |
---|
406 | /// these cases. |
---|
407 | /// |
---|
408 | /// \see ProblemType, Method |
---|
409 | /// \see resetParams(), reset() |
---|
410 | ProblemType run(Method method = CANCEL_AND_TIGHTEN) { |
---|
411 | ProblemType pt = init(); |
---|
412 | if (pt != OPTIMAL) return pt; |
---|
413 | start(method); |
---|
414 | return OPTIMAL; |
---|
415 | } |
---|
416 | |
---|
417 | /// \brief Reset all the parameters that have been given before. |
---|
418 | /// |
---|
419 | /// This function resets all the paramaters that have been given |
---|
420 | /// before using functions \ref lowerMap(), \ref upperMap(), |
---|
421 | /// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
---|
422 | /// |
---|
423 | /// It is useful for multiple \ref run() calls. Basically, all the given |
---|
424 | /// parameters are kept for the next \ref run() call, unless |
---|
425 | /// \ref resetParams() or \ref reset() is used. |
---|
426 | /// If the underlying digraph was also modified after the construction |
---|
427 | /// of the class or the last \ref reset() call, then the \ref reset() |
---|
428 | /// function must be used, otherwise \ref resetParams() is sufficient. |
---|
429 | /// |
---|
430 | /// For example, |
---|
431 | /// \code |
---|
432 | /// CycleCanceling<ListDigraph> cs(graph); |
---|
433 | /// |
---|
434 | /// // First run |
---|
435 | /// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
---|
436 | /// .supplyMap(sup).run(); |
---|
437 | /// |
---|
438 | /// // Run again with modified cost map (resetParams() is not called, |
---|
439 | /// // so only the cost map have to be set again) |
---|
440 | /// cost[e] += 100; |
---|
441 | /// cc.costMap(cost).run(); |
---|
442 | /// |
---|
443 | /// // Run again from scratch using resetParams() |
---|
444 | /// // (the lower bounds will be set to zero on all arcs) |
---|
445 | /// cc.resetParams(); |
---|
446 | /// cc.upperMap(capacity).costMap(cost) |
---|
447 | /// .supplyMap(sup).run(); |
---|
448 | /// \endcode |
---|
449 | /// |
---|
450 | /// \return <tt>(*this)</tt> |
---|
451 | /// |
---|
452 | /// \see reset(), run() |
---|
453 | CycleCanceling& resetParams() { |
---|
454 | for (int i = 0; i != _res_node_num; ++i) { |
---|
455 | _supply[i] = 0; |
---|
456 | } |
---|
457 | int limit = _first_out[_root]; |
---|
458 | for (int j = 0; j != limit; ++j) { |
---|
459 | _lower[j] = 0; |
---|
460 | _upper[j] = INF; |
---|
461 | _cost[j] = _forward[j] ? 1 : -1; |
---|
462 | } |
---|
463 | for (int j = limit; j != _res_arc_num; ++j) { |
---|
464 | _lower[j] = 0; |
---|
465 | _upper[j] = INF; |
---|
466 | _cost[j] = 0; |
---|
467 | _cost[_reverse[j]] = 0; |
---|
468 | } |
---|
469 | _have_lower = false; |
---|
470 | return *this; |
---|
471 | } |
---|
472 | |
---|
473 | /// \brief Reset the internal data structures and all the parameters |
---|
474 | /// that have been given before. |
---|
475 | /// |
---|
476 | /// This function resets the internal data structures and all the |
---|
477 | /// paramaters that have been given before using functions \ref lowerMap(), |
---|
478 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
---|
479 | /// |
---|
480 | /// It is useful for multiple \ref run() calls. Basically, all the given |
---|
481 | /// parameters are kept for the next \ref run() call, unless |
---|
482 | /// \ref resetParams() or \ref reset() is used. |
---|
483 | /// If the underlying digraph was also modified after the construction |
---|
484 | /// of the class or the last \ref reset() call, then the \ref reset() |
---|
485 | /// function must be used, otherwise \ref resetParams() is sufficient. |
---|
486 | /// |
---|
487 | /// See \ref resetParams() for examples. |
---|
488 | /// |
---|
489 | /// \return <tt>(*this)</tt> |
---|
490 | /// |
---|
491 | /// \see resetParams(), run() |
---|
492 | CycleCanceling& reset() { |
---|
493 | // Resize vectors |
---|
494 | _node_num = countNodes(_graph); |
---|
495 | _arc_num = countArcs(_graph); |
---|
496 | _res_node_num = _node_num + 1; |
---|
497 | _res_arc_num = 2 * (_arc_num + _node_num); |
---|
498 | _root = _node_num; |
---|
499 | |
---|
500 | _first_out.resize(_res_node_num + 1); |
---|
501 | _forward.resize(_res_arc_num); |
---|
502 | _source.resize(_res_arc_num); |
---|
503 | _target.resize(_res_arc_num); |
---|
504 | _reverse.resize(_res_arc_num); |
---|
505 | |
---|
506 | _lower.resize(_res_arc_num); |
---|
507 | _upper.resize(_res_arc_num); |
---|
508 | _cost.resize(_res_arc_num); |
---|
509 | _supply.resize(_res_node_num); |
---|
510 | |
---|
511 | _res_cap.resize(_res_arc_num); |
---|
512 | _pi.resize(_res_node_num); |
---|
513 | |
---|
514 | _arc_vec.reserve(_res_arc_num); |
---|
515 | _cost_vec.reserve(_res_arc_num); |
---|
516 | _id_vec.reserve(_res_arc_num); |
---|
517 | |
---|
518 | // Copy the graph |
---|
519 | int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
---|
520 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
---|
521 | _node_id[n] = i; |
---|
522 | } |
---|
523 | i = 0; |
---|
524 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
---|
525 | _first_out[i] = j; |
---|
526 | for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
---|
527 | _arc_idf[a] = j; |
---|
528 | _forward[j] = true; |
---|
529 | _source[j] = i; |
---|
530 | _target[j] = _node_id[_graph.runningNode(a)]; |
---|
531 | } |
---|
532 | for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
---|
533 | _arc_idb[a] = j; |
---|
534 | _forward[j] = false; |
---|
535 | _source[j] = i; |
---|
536 | _target[j] = _node_id[_graph.runningNode(a)]; |
---|
537 | } |
---|
538 | _forward[j] = false; |
---|
539 | _source[j] = i; |
---|
540 | _target[j] = _root; |
---|
541 | _reverse[j] = k; |
---|
542 | _forward[k] = true; |
---|
543 | _source[k] = _root; |
---|
544 | _target[k] = i; |
---|
545 | _reverse[k] = j; |
---|
546 | ++j; ++k; |
---|
547 | } |
---|
548 | _first_out[i] = j; |
---|
549 | _first_out[_res_node_num] = k; |
---|
550 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
551 | int fi = _arc_idf[a]; |
---|
552 | int bi = _arc_idb[a]; |
---|
553 | _reverse[fi] = bi; |
---|
554 | _reverse[bi] = fi; |
---|
555 | } |
---|
556 | |
---|
557 | // Reset parameters |
---|
558 | resetParams(); |
---|
559 | return *this; |
---|
560 | } |
---|
561 | |
---|
562 | /// @} |
---|
563 | |
---|
564 | /// \name Query Functions |
---|
565 | /// The results of the algorithm can be obtained using these |
---|
566 | /// functions.\n |
---|
567 | /// The \ref run() function must be called before using them. |
---|
568 | |
---|
569 | /// @{ |
---|
570 | |
---|
571 | /// \brief Return the total cost of the found flow. |
---|
572 | /// |
---|
573 | /// This function returns the total cost of the found flow. |
---|
574 | /// Its complexity is O(e). |
---|
575 | /// |
---|
576 | /// \note The return type of the function can be specified as a |
---|
577 | /// template parameter. For example, |
---|
578 | /// \code |
---|
579 | /// cc.totalCost<double>(); |
---|
580 | /// \endcode |
---|
581 | /// It is useful if the total cost cannot be stored in the \c Cost |
---|
582 | /// type of the algorithm, which is the default return type of the |
---|
583 | /// function. |
---|
584 | /// |
---|
585 | /// \pre \ref run() must be called before using this function. |
---|
586 | template <typename Number> |
---|
587 | Number totalCost() const { |
---|
588 | Number c = 0; |
---|
589 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
590 | int i = _arc_idb[a]; |
---|
591 | c += static_cast<Number>(_res_cap[i]) * |
---|
592 | (-static_cast<Number>(_cost[i])); |
---|
593 | } |
---|
594 | return c; |
---|
595 | } |
---|
596 | |
---|
597 | #ifndef DOXYGEN |
---|
598 | Cost totalCost() const { |
---|
599 | return totalCost<Cost>(); |
---|
600 | } |
---|
601 | #endif |
---|
602 | |
---|
603 | /// \brief Return the flow on the given arc. |
---|
604 | /// |
---|
605 | /// This function returns the flow on the given arc. |
---|
606 | /// |
---|
607 | /// \pre \ref run() must be called before using this function. |
---|
608 | Value flow(const Arc& a) const { |
---|
609 | return _res_cap[_arc_idb[a]]; |
---|
610 | } |
---|
611 | |
---|
612 | /// \brief Return the flow map (the primal solution). |
---|
613 | /// |
---|
614 | /// This function copies the flow value on each arc into the given |
---|
615 | /// map. The \c Value type of the algorithm must be convertible to |
---|
616 | /// the \c Value type of the map. |
---|
617 | /// |
---|
618 | /// \pre \ref run() must be called before using this function. |
---|
619 | template <typename FlowMap> |
---|
620 | void flowMap(FlowMap &map) const { |
---|
621 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
622 | map.set(a, _res_cap[_arc_idb[a]]); |
---|
623 | } |
---|
624 | } |
---|
625 | |
---|
626 | /// \brief Return the potential (dual value) of the given node. |
---|
627 | /// |
---|
628 | /// This function returns the potential (dual value) of the |
---|
629 | /// given node. |
---|
630 | /// |
---|
631 | /// \pre \ref run() must be called before using this function. |
---|
632 | Cost potential(const Node& n) const { |
---|
633 | return static_cast<Cost>(_pi[_node_id[n]]); |
---|
634 | } |
---|
635 | |
---|
636 | /// \brief Return the potential map (the dual solution). |
---|
637 | /// |
---|
638 | /// This function copies the potential (dual value) of each node |
---|
639 | /// into the given map. |
---|
640 | /// The \c Cost type of the algorithm must be convertible to the |
---|
641 | /// \c Value type of the map. |
---|
642 | /// |
---|
643 | /// \pre \ref run() must be called before using this function. |
---|
644 | template <typename PotentialMap> |
---|
645 | void potentialMap(PotentialMap &map) const { |
---|
646 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
647 | map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
---|
648 | } |
---|
649 | } |
---|
650 | |
---|
651 | /// @} |
---|
652 | |
---|
653 | private: |
---|
654 | |
---|
655 | // Initialize the algorithm |
---|
656 | ProblemType init() { |
---|
657 | if (_res_node_num <= 1) return INFEASIBLE; |
---|
658 | |
---|
659 | // Check the sum of supply values |
---|
660 | _sum_supply = 0; |
---|
661 | for (int i = 0; i != _root; ++i) { |
---|
662 | _sum_supply += _supply[i]; |
---|
663 | } |
---|
664 | if (_sum_supply > 0) return INFEASIBLE; |
---|
665 | |
---|
666 | |
---|
667 | // Initialize vectors |
---|
668 | for (int i = 0; i != _res_node_num; ++i) { |
---|
669 | _pi[i] = 0; |
---|
670 | } |
---|
671 | ValueVector excess(_supply); |
---|
672 | |
---|
673 | // Remove infinite upper bounds and check negative arcs |
---|
674 | const Value MAX = std::numeric_limits<Value>::max(); |
---|
675 | int last_out; |
---|
676 | if (_have_lower) { |
---|
677 | for (int i = 0; i != _root; ++i) { |
---|
678 | last_out = _first_out[i+1]; |
---|
679 | for (int j = _first_out[i]; j != last_out; ++j) { |
---|
680 | if (_forward[j]) { |
---|
681 | Value c = _cost[j] < 0 ? _upper[j] : _lower[j]; |
---|
682 | if (c >= MAX) return UNBOUNDED; |
---|
683 | excess[i] -= c; |
---|
684 | excess[_target[j]] += c; |
---|
685 | } |
---|
686 | } |
---|
687 | } |
---|
688 | } else { |
---|
689 | for (int i = 0; i != _root; ++i) { |
---|
690 | last_out = _first_out[i+1]; |
---|
691 | for (int j = _first_out[i]; j != last_out; ++j) { |
---|
692 | if (_forward[j] && _cost[j] < 0) { |
---|
693 | Value c = _upper[j]; |
---|
694 | if (c >= MAX) return UNBOUNDED; |
---|
695 | excess[i] -= c; |
---|
696 | excess[_target[j]] += c; |
---|
697 | } |
---|
698 | } |
---|
699 | } |
---|
700 | } |
---|
701 | Value ex, max_cap = 0; |
---|
702 | for (int i = 0; i != _res_node_num; ++i) { |
---|
703 | ex = excess[i]; |
---|
704 | if (ex < 0) max_cap -= ex; |
---|
705 | } |
---|
706 | for (int j = 0; j != _res_arc_num; ++j) { |
---|
707 | if (_upper[j] >= MAX) _upper[j] = max_cap; |
---|
708 | } |
---|
709 | |
---|
710 | // Initialize maps for Circulation and remove non-zero lower bounds |
---|
711 | ConstMap<Arc, Value> low(0); |
---|
712 | typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
---|
713 | typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
---|
714 | ValueArcMap cap(_graph), flow(_graph); |
---|
715 | ValueNodeMap sup(_graph); |
---|
716 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
717 | sup[n] = _supply[_node_id[n]]; |
---|
718 | } |
---|
719 | if (_have_lower) { |
---|
720 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
721 | int j = _arc_idf[a]; |
---|
722 | Value c = _lower[j]; |
---|
723 | cap[a] = _upper[j] - c; |
---|
724 | sup[_graph.source(a)] -= c; |
---|
725 | sup[_graph.target(a)] += c; |
---|
726 | } |
---|
727 | } else { |
---|
728 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
729 | cap[a] = _upper[_arc_idf[a]]; |
---|
730 | } |
---|
731 | } |
---|
732 | |
---|
733 | // Find a feasible flow using Circulation |
---|
734 | Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
---|
735 | circ(_graph, low, cap, sup); |
---|
736 | if (!circ.flowMap(flow).run()) return INFEASIBLE; |
---|
737 | |
---|
738 | // Set residual capacities and handle GEQ supply type |
---|
739 | if (_sum_supply < 0) { |
---|
740 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
741 | Value fa = flow[a]; |
---|
742 | _res_cap[_arc_idf[a]] = cap[a] - fa; |
---|
743 | _res_cap[_arc_idb[a]] = fa; |
---|
744 | sup[_graph.source(a)] -= fa; |
---|
745 | sup[_graph.target(a)] += fa; |
---|
746 | } |
---|
747 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
748 | excess[_node_id[n]] = sup[n]; |
---|
749 | } |
---|
750 | for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
---|
751 | int u = _target[a]; |
---|
752 | int ra = _reverse[a]; |
---|
753 | _res_cap[a] = -_sum_supply + 1; |
---|
754 | _res_cap[ra] = -excess[u]; |
---|
755 | _cost[a] = 0; |
---|
756 | _cost[ra] = 0; |
---|
757 | } |
---|
758 | } else { |
---|
759 | for (ArcIt a(_graph); a != INVALID; ++a) { |
---|
760 | Value fa = flow[a]; |
---|
761 | _res_cap[_arc_idf[a]] = cap[a] - fa; |
---|
762 | _res_cap[_arc_idb[a]] = fa; |
---|
763 | } |
---|
764 | for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
---|
765 | int ra = _reverse[a]; |
---|
766 | _res_cap[a] = 1; |
---|
767 | _res_cap[ra] = 0; |
---|
768 | _cost[a] = 0; |
---|
769 | _cost[ra] = 0; |
---|
770 | } |
---|
771 | } |
---|
772 | |
---|
773 | return OPTIMAL; |
---|
774 | } |
---|
775 | |
---|
776 | // Build a StaticDigraph structure containing the current |
---|
777 | // residual network |
---|
778 | void buildResidualNetwork() { |
---|
779 | _arc_vec.clear(); |
---|
780 | _cost_vec.clear(); |
---|
781 | _id_vec.clear(); |
---|
782 | for (int j = 0; j != _res_arc_num; ++j) { |
---|
783 | if (_res_cap[j] > 0) { |
---|
784 | _arc_vec.push_back(IntPair(_source[j], _target[j])); |
---|
785 | _cost_vec.push_back(_cost[j]); |
---|
786 | _id_vec.push_back(j); |
---|
787 | } |
---|
788 | } |
---|
789 | _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
---|
790 | } |
---|
791 | |
---|
792 | // Execute the algorithm and transform the results |
---|
793 | void start(Method method) { |
---|
794 | // Execute the algorithm |
---|
795 | switch (method) { |
---|
796 | case SIMPLE_CYCLE_CANCELING: |
---|
797 | startSimpleCycleCanceling(); |
---|
798 | break; |
---|
799 | case MINIMUM_MEAN_CYCLE_CANCELING: |
---|
800 | startMinMeanCycleCanceling(); |
---|
801 | break; |
---|
802 | case CANCEL_AND_TIGHTEN: |
---|
803 | startCancelAndTighten(); |
---|
804 | break; |
---|
805 | } |
---|
806 | |
---|
807 | // Compute node potentials |
---|
808 | if (method != SIMPLE_CYCLE_CANCELING) { |
---|
809 | buildResidualNetwork(); |
---|
810 | typename BellmanFord<StaticDigraph, CostArcMap> |
---|
811 | ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map); |
---|
812 | bf.distMap(_pi_map); |
---|
813 | bf.init(0); |
---|
814 | bf.start(); |
---|
815 | } |
---|
816 | |
---|
817 | // Handle non-zero lower bounds |
---|
818 | if (_have_lower) { |
---|
819 | int limit = _first_out[_root]; |
---|
820 | for (int j = 0; j != limit; ++j) { |
---|
821 | if (!_forward[j]) _res_cap[j] += _lower[j]; |
---|
822 | } |
---|
823 | } |
---|
824 | } |
---|
825 | |
---|
826 | // Execute the "Simple Cycle Canceling" method |
---|
827 | void startSimpleCycleCanceling() { |
---|
828 | // Constants for computing the iteration limits |
---|
829 | const int BF_FIRST_LIMIT = 2; |
---|
830 | const double BF_LIMIT_FACTOR = 1.5; |
---|
831 | |
---|
832 | typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap; |
---|
833 | typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph; |
---|
834 | typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap; |
---|
835 | typedef typename BellmanFord<ResDigraph, CostArcMap> |
---|
836 | ::template SetDistMap<CostNodeMap> |
---|
837 | ::template SetPredMap<PredMap>::Create BF; |
---|
838 | |
---|
839 | // Build the residual network |
---|
840 | _arc_vec.clear(); |
---|
841 | _cost_vec.clear(); |
---|
842 | for (int j = 0; j != _res_arc_num; ++j) { |
---|
843 | _arc_vec.push_back(IntPair(_source[j], _target[j])); |
---|
844 | _cost_vec.push_back(_cost[j]); |
---|
845 | } |
---|
846 | _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
---|
847 | |
---|
848 | FilterMap filter_map(_res_cap); |
---|
849 | ResDigraph rgr(_sgr, filter_map); |
---|
850 | std::vector<int> cycle; |
---|
851 | std::vector<StaticDigraph::Arc> pred(_res_arc_num); |
---|
852 | PredMap pred_map(pred); |
---|
853 | BF bf(rgr, _cost_map); |
---|
854 | bf.distMap(_pi_map).predMap(pred_map); |
---|
855 | |
---|
856 | int length_bound = BF_FIRST_LIMIT; |
---|
857 | bool optimal = false; |
---|
858 | while (!optimal) { |
---|
859 | bf.init(0); |
---|
860 | int iter_num = 0; |
---|
861 | bool cycle_found = false; |
---|
862 | while (!cycle_found) { |
---|
863 | // Perform some iterations of the Bellman-Ford algorithm |
---|
864 | int curr_iter_num = iter_num + length_bound <= _node_num ? |
---|
865 | length_bound : _node_num - iter_num; |
---|
866 | iter_num += curr_iter_num; |
---|
867 | int real_iter_num = curr_iter_num; |
---|
868 | for (int i = 0; i < curr_iter_num; ++i) { |
---|
869 | if (bf.processNextWeakRound()) { |
---|
870 | real_iter_num = i; |
---|
871 | break; |
---|
872 | } |
---|
873 | } |
---|
874 | if (real_iter_num < curr_iter_num) { |
---|
875 | // Optimal flow is found |
---|
876 | optimal = true; |
---|
877 | break; |
---|
878 | } else { |
---|
879 | // Search for node disjoint negative cycles |
---|
880 | std::vector<int> state(_res_node_num, 0); |
---|
881 | int id = 0; |
---|
882 | for (int u = 0; u != _res_node_num; ++u) { |
---|
883 | if (state[u] != 0) continue; |
---|
884 | ++id; |
---|
885 | int v = u; |
---|
886 | for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ? |
---|
887 | -1 : rgr.id(rgr.source(pred[v]))) { |
---|
888 | state[v] = id; |
---|
889 | } |
---|
890 | if (v != -1 && state[v] == id) { |
---|
891 | // A negative cycle is found |
---|
892 | cycle_found = true; |
---|
893 | cycle.clear(); |
---|
894 | StaticDigraph::Arc a = pred[v]; |
---|
895 | Value d, delta = _res_cap[rgr.id(a)]; |
---|
896 | cycle.push_back(rgr.id(a)); |
---|
897 | while (rgr.id(rgr.source(a)) != v) { |
---|
898 | a = pred_map[rgr.source(a)]; |
---|
899 | d = _res_cap[rgr.id(a)]; |
---|
900 | if (d < delta) delta = d; |
---|
901 | cycle.push_back(rgr.id(a)); |
---|
902 | } |
---|
903 | |
---|
904 | // Augment along the cycle |
---|
905 | for (int i = 0; i < int(cycle.size()); ++i) { |
---|
906 | int j = cycle[i]; |
---|
907 | _res_cap[j] -= delta; |
---|
908 | _res_cap[_reverse[j]] += delta; |
---|
909 | } |
---|
910 | } |
---|
911 | } |
---|
912 | } |
---|
913 | |
---|
914 | // Increase iteration limit if no cycle is found |
---|
915 | if (!cycle_found) { |
---|
916 | length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR); |
---|
917 | } |
---|
918 | } |
---|
919 | } |
---|
920 | } |
---|
921 | |
---|
922 | // Execute the "Minimum Mean Cycle Canceling" method |
---|
923 | void startMinMeanCycleCanceling() { |
---|
924 | typedef SimplePath<StaticDigraph> SPath; |
---|
925 | typedef typename SPath::ArcIt SPathArcIt; |
---|
926 | typedef typename Howard<StaticDigraph, CostArcMap> |
---|
927 | ::template SetPath<SPath>::Create MMC; |
---|
928 | |
---|
929 | SPath cycle; |
---|
930 | MMC mmc(_sgr, _cost_map); |
---|
931 | mmc.cycle(cycle); |
---|
932 | buildResidualNetwork(); |
---|
933 | while (mmc.findMinMean() && mmc.cycleLength() < 0) { |
---|
934 | // Find the cycle |
---|
935 | mmc.findCycle(); |
---|
936 | |
---|
937 | // Compute delta value |
---|
938 | Value delta = INF; |
---|
939 | for (SPathArcIt a(cycle); a != INVALID; ++a) { |
---|
940 | Value d = _res_cap[_id_vec[_sgr.id(a)]]; |
---|
941 | if (d < delta) delta = d; |
---|
942 | } |
---|
943 | |
---|
944 | // Augment along the cycle |
---|
945 | for (SPathArcIt a(cycle); a != INVALID; ++a) { |
---|
946 | int j = _id_vec[_sgr.id(a)]; |
---|
947 | _res_cap[j] -= delta; |
---|
948 | _res_cap[_reverse[j]] += delta; |
---|
949 | } |
---|
950 | |
---|
951 | // Rebuild the residual network |
---|
952 | buildResidualNetwork(); |
---|
953 | } |
---|
954 | } |
---|
955 | |
---|
956 | // Execute the "Cancel And Tighten" method |
---|
957 | void startCancelAndTighten() { |
---|
958 | // Constants for the min mean cycle computations |
---|
959 | const double LIMIT_FACTOR = 1.0; |
---|
960 | const int MIN_LIMIT = 5; |
---|
961 | |
---|
962 | // Contruct auxiliary data vectors |
---|
963 | DoubleVector pi(_res_node_num, 0.0); |
---|
964 | IntVector level(_res_node_num); |
---|
965 | CharVector reached(_res_node_num); |
---|
966 | CharVector processed(_res_node_num); |
---|
967 | IntVector pred_node(_res_node_num); |
---|
968 | IntVector pred_arc(_res_node_num); |
---|
969 | std::vector<int> stack(_res_node_num); |
---|
970 | std::vector<int> proc_vector(_res_node_num); |
---|
971 | |
---|
972 | // Initialize epsilon |
---|
973 | double epsilon = 0; |
---|
974 | for (int a = 0; a != _res_arc_num; ++a) { |
---|
975 | if (_res_cap[a] > 0 && -_cost[a] > epsilon) |
---|
976 | epsilon = -_cost[a]; |
---|
977 | } |
---|
978 | |
---|
979 | // Start phases |
---|
980 | Tolerance<double> tol; |
---|
981 | tol.epsilon(1e-6); |
---|
982 | int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num))); |
---|
983 | if (limit < MIN_LIMIT) limit = MIN_LIMIT; |
---|
984 | int iter = limit; |
---|
985 | while (epsilon * _res_node_num >= 1) { |
---|
986 | // Find and cancel cycles in the admissible network using DFS |
---|
987 | for (int u = 0; u != _res_node_num; ++u) { |
---|
988 | reached[u] = false; |
---|
989 | processed[u] = false; |
---|
990 | } |
---|
991 | int stack_head = -1; |
---|
992 | int proc_head = -1; |
---|
993 | for (int start = 0; start != _res_node_num; ++start) { |
---|
994 | if (reached[start]) continue; |
---|
995 | |
---|
996 | // New start node |
---|
997 | reached[start] = true; |
---|
998 | pred_arc[start] = -1; |
---|
999 | pred_node[start] = -1; |
---|
1000 | |
---|
1001 | // Find the first admissible outgoing arc |
---|
1002 | double p = pi[start]; |
---|
1003 | int a = _first_out[start]; |
---|
1004 | int last_out = _first_out[start+1]; |
---|
1005 | for (; a != last_out && (_res_cap[a] == 0 || |
---|
1006 | !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
---|
1007 | if (a == last_out) { |
---|
1008 | processed[start] = true; |
---|
1009 | proc_vector[++proc_head] = start; |
---|
1010 | continue; |
---|
1011 | } |
---|
1012 | stack[++stack_head] = a; |
---|
1013 | |
---|
1014 | while (stack_head >= 0) { |
---|
1015 | int sa = stack[stack_head]; |
---|
1016 | int u = _source[sa]; |
---|
1017 | int v = _target[sa]; |
---|
1018 | |
---|
1019 | if (!reached[v]) { |
---|
1020 | // A new node is reached |
---|
1021 | reached[v] = true; |
---|
1022 | pred_node[v] = u; |
---|
1023 | pred_arc[v] = sa; |
---|
1024 | p = pi[v]; |
---|
1025 | a = _first_out[v]; |
---|
1026 | last_out = _first_out[v+1]; |
---|
1027 | for (; a != last_out && (_res_cap[a] == 0 || |
---|
1028 | !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
---|
1029 | stack[++stack_head] = a == last_out ? -1 : a; |
---|
1030 | } else { |
---|
1031 | if (!processed[v]) { |
---|
1032 | // A cycle is found |
---|
1033 | int n, w = u; |
---|
1034 | Value d, delta = _res_cap[sa]; |
---|
1035 | for (n = u; n != v; n = pred_node[n]) { |
---|
1036 | d = _res_cap[pred_arc[n]]; |
---|
1037 | if (d <= delta) { |
---|
1038 | delta = d; |
---|
1039 | w = pred_node[n]; |
---|
1040 | } |
---|
1041 | } |
---|
1042 | |
---|
1043 | // Augment along the cycle |
---|
1044 | _res_cap[sa] -= delta; |
---|
1045 | _res_cap[_reverse[sa]] += delta; |
---|
1046 | for (n = u; n != v; n = pred_node[n]) { |
---|
1047 | int pa = pred_arc[n]; |
---|
1048 | _res_cap[pa] -= delta; |
---|
1049 | _res_cap[_reverse[pa]] += delta; |
---|
1050 | } |
---|
1051 | for (n = u; stack_head > 0 && n != w; n = pred_node[n]) { |
---|
1052 | --stack_head; |
---|
1053 | reached[n] = false; |
---|
1054 | } |
---|
1055 | u = w; |
---|
1056 | } |
---|
1057 | v = u; |
---|
1058 | |
---|
1059 | // Find the next admissible outgoing arc |
---|
1060 | p = pi[v]; |
---|
1061 | a = stack[stack_head] + 1; |
---|
1062 | last_out = _first_out[v+1]; |
---|
1063 | for (; a != last_out && (_res_cap[a] == 0 || |
---|
1064 | !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
---|
1065 | stack[stack_head] = a == last_out ? -1 : a; |
---|
1066 | } |
---|
1067 | |
---|
1068 | while (stack_head >= 0 && stack[stack_head] == -1) { |
---|
1069 | processed[v] = true; |
---|
1070 | proc_vector[++proc_head] = v; |
---|
1071 | if (--stack_head >= 0) { |
---|
1072 | // Find the next admissible outgoing arc |
---|
1073 | v = _source[stack[stack_head]]; |
---|
1074 | p = pi[v]; |
---|
1075 | a = stack[stack_head] + 1; |
---|
1076 | last_out = _first_out[v+1]; |
---|
1077 | for (; a != last_out && (_res_cap[a] == 0 || |
---|
1078 | !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
---|
1079 | stack[stack_head] = a == last_out ? -1 : a; |
---|
1080 | } |
---|
1081 | } |
---|
1082 | } |
---|
1083 | } |
---|
1084 | |
---|
1085 | // Tighten potentials and epsilon |
---|
1086 | if (--iter > 0) { |
---|
1087 | for (int u = 0; u != _res_node_num; ++u) { |
---|
1088 | level[u] = 0; |
---|
1089 | } |
---|
1090 | for (int i = proc_head; i > 0; --i) { |
---|
1091 | int u = proc_vector[i]; |
---|
1092 | double p = pi[u]; |
---|
1093 | int l = level[u] + 1; |
---|
1094 | int last_out = _first_out[u+1]; |
---|
1095 | for (int a = _first_out[u]; a != last_out; ++a) { |
---|
1096 | int v = _target[a]; |
---|
1097 | if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) && |
---|
1098 | l > level[v]) level[v] = l; |
---|
1099 | } |
---|
1100 | } |
---|
1101 | |
---|
1102 | // Modify potentials |
---|
1103 | double q = std::numeric_limits<double>::max(); |
---|
1104 | for (int u = 0; u != _res_node_num; ++u) { |
---|
1105 | int lu = level[u]; |
---|
1106 | double p, pu = pi[u]; |
---|
1107 | int last_out = _first_out[u+1]; |
---|
1108 | for (int a = _first_out[u]; a != last_out; ++a) { |
---|
1109 | if (_res_cap[a] == 0) continue; |
---|
1110 | int v = _target[a]; |
---|
1111 | int ld = lu - level[v]; |
---|
1112 | if (ld > 0) { |
---|
1113 | p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1); |
---|
1114 | if (p < q) q = p; |
---|
1115 | } |
---|
1116 | } |
---|
1117 | } |
---|
1118 | for (int u = 0; u != _res_node_num; ++u) { |
---|
1119 | pi[u] -= q * level[u]; |
---|
1120 | } |
---|
1121 | |
---|
1122 | // Modify epsilon |
---|
1123 | epsilon = 0; |
---|
1124 | for (int u = 0; u != _res_node_num; ++u) { |
---|
1125 | double curr, pu = pi[u]; |
---|
1126 | int last_out = _first_out[u+1]; |
---|
1127 | for (int a = _first_out[u]; a != last_out; ++a) { |
---|
1128 | if (_res_cap[a] == 0) continue; |
---|
1129 | curr = _cost[a] + pu - pi[_target[a]]; |
---|
1130 | if (-curr > epsilon) epsilon = -curr; |
---|
1131 | } |
---|
1132 | } |
---|
1133 | } else { |
---|
1134 | typedef Howard<StaticDigraph, CostArcMap> MMC; |
---|
1135 | typedef typename BellmanFord<StaticDigraph, CostArcMap> |
---|
1136 | ::template SetDistMap<CostNodeMap>::Create BF; |
---|
1137 | |
---|
1138 | // Set epsilon to the minimum cycle mean |
---|
1139 | buildResidualNetwork(); |
---|
1140 | MMC mmc(_sgr, _cost_map); |
---|
1141 | mmc.findMinMean(); |
---|
1142 | epsilon = -mmc.cycleMean(); |
---|
1143 | Cost cycle_cost = mmc.cycleLength(); |
---|
1144 | int cycle_size = mmc.cycleArcNum(); |
---|
1145 | |
---|
1146 | // Compute feasible potentials for the current epsilon |
---|
1147 | for (int i = 0; i != int(_cost_vec.size()); ++i) { |
---|
1148 | _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost; |
---|
1149 | } |
---|
1150 | BF bf(_sgr, _cost_map); |
---|
1151 | bf.distMap(_pi_map); |
---|
1152 | bf.init(0); |
---|
1153 | bf.start(); |
---|
1154 | for (int u = 0; u != _res_node_num; ++u) { |
---|
1155 | pi[u] = static_cast<double>(_pi[u]) / cycle_size; |
---|
1156 | } |
---|
1157 | |
---|
1158 | iter = limit; |
---|
1159 | } |
---|
1160 | } |
---|
1161 | } |
---|
1162 | |
---|
1163 | }; //class CycleCanceling |
---|
1164 | |
---|
1165 | ///@} |
---|
1166 | |
---|
1167 | } //namespace lemon |
---|
1168 | |
---|
1169 | #endif //LEMON_CYCLE_CANCELING_H |
---|