1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_ELEVATOR_H |
---|
20 | #define LEMON_ELEVATOR_H |
---|
21 | |
---|
22 | ///\ingroup auxdat |
---|
23 | ///\file |
---|
24 | ///\brief Elevator class |
---|
25 | /// |
---|
26 | ///Elevator class implements an efficient data structure |
---|
27 | ///for labeling items in push-relabel type algorithms. |
---|
28 | /// |
---|
29 | |
---|
30 | #include <test/test_tools.h> |
---|
31 | namespace lemon { |
---|
32 | |
---|
33 | ///Class for handling "labels" in push-relabel type algorithms. |
---|
34 | |
---|
35 | ///A class for handling "labels" in push-relabel type algorithms. |
---|
36 | /// |
---|
37 | ///\ingroup auxdat |
---|
38 | ///Using this class you can assign "labels" (nonnegative integer numbers) |
---|
39 | ///to the edges or nodes of a graph, manipulate and query them through |
---|
40 | ///operations typically arising in "push-relabel" type algorithms. |
---|
41 | /// |
---|
42 | ///Each item is either \em active or not, and you can also choose a |
---|
43 | ///highest level active item. |
---|
44 | /// |
---|
45 | ///\sa LinkedElevator |
---|
46 | /// |
---|
47 | ///\param Graph the underlying graph type |
---|
48 | ///\param Item Type of the items the data is assigned to (Graph::Node, |
---|
49 | ///Graph::Edge, Graph::UEdge) |
---|
50 | template<class Graph, class Item> |
---|
51 | class Elevator |
---|
52 | { |
---|
53 | public: |
---|
54 | |
---|
55 | typedef Item Key; |
---|
56 | typedef int Value; |
---|
57 | |
---|
58 | private: |
---|
59 | |
---|
60 | typedef Item *Vit; |
---|
61 | typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
---|
62 | typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
---|
63 | |
---|
64 | const Graph &_g; |
---|
65 | int _max_level; |
---|
66 | int _item_num; |
---|
67 | VitMap _where; |
---|
68 | IntMap _level; |
---|
69 | std::vector<Item> _items; |
---|
70 | std::vector<Vit> _first; |
---|
71 | std::vector<Vit> _last_active; |
---|
72 | |
---|
73 | int _highest_active; |
---|
74 | |
---|
75 | void copy(Item i, Vit p) |
---|
76 | { |
---|
77 | _where[*p=i]=p; |
---|
78 | } |
---|
79 | void copy(Vit s, Vit p) |
---|
80 | { |
---|
81 | if(s!=p) |
---|
82 | { |
---|
83 | Item i=*s; |
---|
84 | *p=i; |
---|
85 | _where[i]=p; |
---|
86 | } |
---|
87 | } |
---|
88 | void swap(Vit i, Vit j) |
---|
89 | { |
---|
90 | Item ti=*i; |
---|
91 | Vit ct = _where[ti]; |
---|
92 | _where[ti]=_where[*i=*j]; |
---|
93 | _where[*j]=ct; |
---|
94 | *j=ti; |
---|
95 | } |
---|
96 | |
---|
97 | public: |
---|
98 | |
---|
99 | ///Constructor with given maximum level. |
---|
100 | |
---|
101 | ///Constructor with given maximum level. |
---|
102 | /// |
---|
103 | ///\param g The underlying graph |
---|
104 | ///\param max_level Set the range of the possible labels to |
---|
105 | ///[0...\c max_level] |
---|
106 | Elevator(const Graph &g,int max_level) : |
---|
107 | _g(g), |
---|
108 | _max_level(max_level), |
---|
109 | _item_num(_max_level), |
---|
110 | _where(g), |
---|
111 | _level(g,0), |
---|
112 | _items(_max_level), |
---|
113 | _first(_max_level+2), |
---|
114 | _last_active(_max_level+2), |
---|
115 | _highest_active(-1) {} |
---|
116 | ///Constructor. |
---|
117 | |
---|
118 | ///Constructor. |
---|
119 | /// |
---|
120 | ///\param g The underlying graph |
---|
121 | ///The range of the possible labels is [0...\c max_level], |
---|
122 | ///where \c max_level is equal to the number of labeled items in the graph. |
---|
123 | Elevator(const Graph &g) : |
---|
124 | _g(g), |
---|
125 | _max_level(countItems<Graph, Item>(g)), |
---|
126 | _item_num(_max_level), |
---|
127 | _where(g), |
---|
128 | _level(g,0), |
---|
129 | _items(_max_level), |
---|
130 | _first(_max_level+2), |
---|
131 | _last_active(_max_level+2), |
---|
132 | _highest_active(-1) |
---|
133 | { |
---|
134 | } |
---|
135 | |
---|
136 | ///Activate item \c i. |
---|
137 | |
---|
138 | ///Activate item \c i. |
---|
139 | ///\pre Item \c i shouldn't be active before. |
---|
140 | void activate(Item i) |
---|
141 | { |
---|
142 | const int l=_level[i]; |
---|
143 | swap(_where[i],++_last_active[l]); |
---|
144 | if(l>_highest_active) _highest_active=l; |
---|
145 | } |
---|
146 | |
---|
147 | ///Deactivate item \c i. |
---|
148 | |
---|
149 | ///Deactivate item \c i. |
---|
150 | ///\pre Item \c i must be active before. |
---|
151 | void deactivate(Item i) |
---|
152 | { |
---|
153 | swap(_where[i],_last_active[_level[i]]--); |
---|
154 | while(_highest_active>=0 && |
---|
155 | _last_active[_highest_active]<_first[_highest_active]) |
---|
156 | _highest_active--; |
---|
157 | } |
---|
158 | |
---|
159 | ///Query whether item \c i is active |
---|
160 | bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; } |
---|
161 | |
---|
162 | ///Return the level of item \c i. |
---|
163 | int operator[](Item i) const { return _level[i]; } |
---|
164 | |
---|
165 | ///Return the number of items on level \c l. |
---|
166 | int onLevel(int l) const |
---|
167 | { |
---|
168 | return _first[l+1]-_first[l]; |
---|
169 | } |
---|
170 | ///Return true if the level is empty. |
---|
171 | bool emptyLevel(int l) const |
---|
172 | { |
---|
173 | return _first[l+1]-_first[l]==0; |
---|
174 | } |
---|
175 | ///Return the number of items above level \c l. |
---|
176 | int aboveLevel(int l) const |
---|
177 | { |
---|
178 | return _first[_max_level+1]-_first[l+1]; |
---|
179 | } |
---|
180 | ///Return the number of active items on level \c l. |
---|
181 | int activesOnLevel(int l) const |
---|
182 | { |
---|
183 | return _last_active[l]-_first[l]+1; |
---|
184 | } |
---|
185 | ///Return true if there is not active item on level \c l. |
---|
186 | bool activeFree(int l) const |
---|
187 | { |
---|
188 | return _last_active[l]<_first[l]; |
---|
189 | } |
---|
190 | ///Return the maximum allowed level. |
---|
191 | int maxLevel() const |
---|
192 | { |
---|
193 | return _max_level; |
---|
194 | } |
---|
195 | |
---|
196 | ///\name Highest Active Item |
---|
197 | ///Functions for working with the highest level |
---|
198 | ///active item. |
---|
199 | |
---|
200 | ///@{ |
---|
201 | |
---|
202 | ///Return a highest level active item. |
---|
203 | |
---|
204 | ///Return a highest level active item. |
---|
205 | /// |
---|
206 | ///\return the highest level active item or INVALID if there is no active |
---|
207 | ///item. |
---|
208 | Item highestActive() const |
---|
209 | { |
---|
210 | return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
---|
211 | } |
---|
212 | |
---|
213 | ///Return a highest active level. |
---|
214 | |
---|
215 | ///Return a highest active level. |
---|
216 | /// |
---|
217 | ///\return the level of the highest active item or -1 if there is no active |
---|
218 | ///item. |
---|
219 | int highestActiveLevel() const |
---|
220 | { |
---|
221 | return _highest_active; |
---|
222 | } |
---|
223 | |
---|
224 | ///Lift the highest active item by one. |
---|
225 | |
---|
226 | ///Lift the item returned by highestActive() by one. |
---|
227 | /// |
---|
228 | void liftHighestActive() |
---|
229 | { |
---|
230 | ++_level[*_last_active[_highest_active]]; |
---|
231 | swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
---|
232 | --_first[++_highest_active]; |
---|
233 | } |
---|
234 | |
---|
235 | ///Lift the highest active item. |
---|
236 | |
---|
237 | ///Lift the item returned by highestActive() to level \c new_level. |
---|
238 | /// |
---|
239 | ///\warning \c new_level must be strictly higher |
---|
240 | ///than the current level. |
---|
241 | /// |
---|
242 | void liftHighestActive(int new_level) |
---|
243 | { |
---|
244 | const Item li = *_last_active[_highest_active]; |
---|
245 | |
---|
246 | copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
---|
247 | for(int l=_highest_active+1;l<new_level;l++) |
---|
248 | { |
---|
249 | copy(--_first[l+1],_first[l]); |
---|
250 | --_last_active[l]; |
---|
251 | } |
---|
252 | copy(li,_first[new_level]); |
---|
253 | _level[li]=new_level; |
---|
254 | _highest_active=new_level; |
---|
255 | } |
---|
256 | |
---|
257 | ///Lift the highest active item. |
---|
258 | |
---|
259 | ///Lift the item returned by highestActive() to the top level and |
---|
260 | ///deactivates it. |
---|
261 | /// |
---|
262 | ///\warning \c new_level must be strictly higher |
---|
263 | ///than the current level. |
---|
264 | /// |
---|
265 | void liftHighestActiveToTop() |
---|
266 | { |
---|
267 | const Item li = *_last_active[_highest_active]; |
---|
268 | |
---|
269 | copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
---|
270 | for(int l=_highest_active+1;l<_max_level;l++) |
---|
271 | { |
---|
272 | copy(--_first[l+1],_first[l]); |
---|
273 | --_last_active[l]; |
---|
274 | } |
---|
275 | copy(li,_first[_max_level]); |
---|
276 | --_last_active[_max_level]; |
---|
277 | _level[li]=_max_level; |
---|
278 | |
---|
279 | while(_highest_active>=0 && |
---|
280 | _last_active[_highest_active]<_first[_highest_active]) |
---|
281 | _highest_active--; |
---|
282 | } |
---|
283 | |
---|
284 | ///@} |
---|
285 | |
---|
286 | ///\name Active Item on Certain Level |
---|
287 | ///Functions for working with the active items. |
---|
288 | |
---|
289 | ///@{ |
---|
290 | |
---|
291 | ///Returns an active item on level \c l. |
---|
292 | |
---|
293 | ///Returns an active item on level \c l. |
---|
294 | /// |
---|
295 | ///Returns an active item on level \c l or \ref INVALID if there is no such |
---|
296 | ///an item. (\c l must be from the range [0...\c max_level]. |
---|
297 | Item activeOn(int l) const |
---|
298 | { |
---|
299 | return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
---|
300 | } |
---|
301 | |
---|
302 | ///Lifts the active item returned by \c activeOn() member function. |
---|
303 | |
---|
304 | ///Lifts the active item returned by \c activeOn() member function |
---|
305 | ///by one. |
---|
306 | Item liftActiveOn(int level) |
---|
307 | { |
---|
308 | ++_level[*_last_active[level]]; |
---|
309 | swap(_last_active[level]--, --_first[level+1]); |
---|
310 | if (level+1>_highest_active) ++_highest_active; |
---|
311 | } |
---|
312 | |
---|
313 | ///Lifts the active item returned by \c activeOn() member function. |
---|
314 | |
---|
315 | ///Lifts the active item returned by \c activeOn() member function |
---|
316 | ///to the given level. |
---|
317 | void liftActiveOn(int level, int new_level) |
---|
318 | { |
---|
319 | const Item ai = *_last_active[level]; |
---|
320 | |
---|
321 | copy(--_first[level+1], _last_active[level]--); |
---|
322 | for(int l=level+1;l<new_level;l++) |
---|
323 | { |
---|
324 | copy(_last_active[l],_first[l]); |
---|
325 | copy(--_first[l+1], _last_active[l]--); |
---|
326 | } |
---|
327 | copy(ai,_first[new_level]); |
---|
328 | _level[ai]=new_level; |
---|
329 | if (new_level>_highest_active) _highest_active=new_level; |
---|
330 | } |
---|
331 | |
---|
332 | ///Lifts the active item returned by \c activeOn() member function. |
---|
333 | |
---|
334 | ///Lifts the active item returned by \c activeOn() member function |
---|
335 | ///to the top level. |
---|
336 | void liftActiveToTop(int level) |
---|
337 | { |
---|
338 | const Item ai = *_last_active[level]; |
---|
339 | |
---|
340 | copy(--_first[level+1],_last_active[level]--); |
---|
341 | for(int l=level+1;l<_max_level;l++) |
---|
342 | { |
---|
343 | copy(_last_active[l],_first[l]); |
---|
344 | copy(--_first[l+1], _last_active[l]--); |
---|
345 | } |
---|
346 | copy(ai,_first[_max_level]); |
---|
347 | --_last_active[_max_level]; |
---|
348 | _level[ai]=_max_level; |
---|
349 | |
---|
350 | if (_highest_active==level) { |
---|
351 | while(_highest_active>=0 && |
---|
352 | _last_active[_highest_active]<_first[_highest_active]) |
---|
353 | _highest_active--; |
---|
354 | } |
---|
355 | } |
---|
356 | |
---|
357 | ///@} |
---|
358 | |
---|
359 | ///Lift an active item to a higher level. |
---|
360 | |
---|
361 | ///Lift an active item to a higher level. |
---|
362 | ///\param i The item to be lifted. It must be active. |
---|
363 | ///\param new_level The new level of \c i. It must be strictly higher |
---|
364 | ///than the current level. |
---|
365 | /// |
---|
366 | void lift(Item i, int new_level) |
---|
367 | { |
---|
368 | const int lo = _level[i]; |
---|
369 | const Vit w = _where[i]; |
---|
370 | |
---|
371 | copy(_last_active[lo],w); |
---|
372 | copy(--_first[lo+1],_last_active[lo]--); |
---|
373 | for(int l=lo+1;l<new_level;l++) |
---|
374 | { |
---|
375 | copy(_last_active[l],_first[l]); |
---|
376 | copy(--_first[l+1],_last_active[l]--); |
---|
377 | } |
---|
378 | copy(i,_first[new_level]); |
---|
379 | _level[i]=new_level; |
---|
380 | if(new_level>_highest_active) _highest_active=new_level; |
---|
381 | } |
---|
382 | |
---|
383 | ///Move an inactive item to the top but one level (in a dirty way). |
---|
384 | |
---|
385 | ///This function moves an inactive item to the top but one level. |
---|
386 | ///It makes the underlying datastructure corrupt, so use is only if |
---|
387 | ///you really know what it is for. |
---|
388 | ///\pre The item is on the top level. |
---|
389 | void dirtyTopButOne(Item i) { |
---|
390 | _level[i] = _max_level - 1; |
---|
391 | } |
---|
392 | |
---|
393 | ///Lift all items on and above a level to the top (and deactivate them). |
---|
394 | |
---|
395 | ///This function lifts all items on and above level \c l to \c |
---|
396 | ///maxLevel(), and also deactivates them. |
---|
397 | void liftToTop(int l) |
---|
398 | { |
---|
399 | const Vit f=_first[l]; |
---|
400 | const Vit tl=_first[_max_level]; |
---|
401 | for(Vit i=f;i!=tl;++i) |
---|
402 | _level[*i]=_max_level; |
---|
403 | for(int i=l;i<=_max_level;i++) |
---|
404 | { |
---|
405 | _first[i]=f; |
---|
406 | _last_active[i]=f-1; |
---|
407 | } |
---|
408 | for(_highest_active=l-1; |
---|
409 | _highest_active>=0 && |
---|
410 | _last_active[_highest_active]<_first[_highest_active]; |
---|
411 | _highest_active--) ; |
---|
412 | } |
---|
413 | |
---|
414 | private: |
---|
415 | int _init_lev; |
---|
416 | Vit _init_num; |
---|
417 | |
---|
418 | public: |
---|
419 | |
---|
420 | ///\name Initialization |
---|
421 | ///Using this function you can initialize the levels of the item. |
---|
422 | ///\n |
---|
423 | ///This initializatios is started with calling \c initStart(). |
---|
424 | ///Then the |
---|
425 | ///items should be listed levels by levels statring with the lowest one |
---|
426 | ///(with level 0). This is done by using \c initAddItem() |
---|
427 | ///and \c initNewLevel(). Finally \c initFinish() must be called. |
---|
428 | ///The items not listed will be put on the highest level. |
---|
429 | ///@{ |
---|
430 | |
---|
431 | ///Start the initialization process. |
---|
432 | |
---|
433 | void initStart() |
---|
434 | { |
---|
435 | _init_lev=0; |
---|
436 | _init_num=&_items[0]; |
---|
437 | _first[0]=&_items[0]; |
---|
438 | _last_active[0]=&_items[0]-1; |
---|
439 | Vit n=&_items[0]; |
---|
440 | for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
---|
441 | { |
---|
442 | *n=i; |
---|
443 | _where[i]=n; |
---|
444 | _level[i]=_max_level; |
---|
445 | ++n; |
---|
446 | } |
---|
447 | } |
---|
448 | |
---|
449 | ///Add an item to the current level. |
---|
450 | |
---|
451 | void initAddItem(Item i) |
---|
452 | { |
---|
453 | swap(_where[i],_init_num); |
---|
454 | _level[i]=_init_lev; |
---|
455 | ++_init_num; |
---|
456 | } |
---|
457 | |
---|
458 | ///Start a new level. |
---|
459 | |
---|
460 | ///Start a new level. |
---|
461 | ///It shouldn't be used before the items on level 0 are listed. |
---|
462 | void initNewLevel() |
---|
463 | { |
---|
464 | _init_lev++; |
---|
465 | _first[_init_lev]=_init_num; |
---|
466 | _last_active[_init_lev]=_init_num-1; |
---|
467 | } |
---|
468 | |
---|
469 | ///Finalize the initialization process. |
---|
470 | |
---|
471 | void initFinish() |
---|
472 | { |
---|
473 | for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
---|
474 | { |
---|
475 | _first[_init_lev]=_init_num; |
---|
476 | _last_active[_init_lev]=_init_num-1; |
---|
477 | } |
---|
478 | _first[_max_level+1]=&_items[0]+_item_num; |
---|
479 | _last_active[_max_level+1]=&_items[0]+_item_num-1; |
---|
480 | _highest_active = -1; |
---|
481 | } |
---|
482 | |
---|
483 | ///@} |
---|
484 | |
---|
485 | }; |
---|
486 | |
---|
487 | ///Class for handling "labels" in push-relabel type algorithms. |
---|
488 | |
---|
489 | ///A class for handling "labels" in push-relabel type algorithms. |
---|
490 | /// |
---|
491 | ///\ingroup auxdat |
---|
492 | ///Using this class you can assign "labels" (nonnegative integer numbers) |
---|
493 | ///to the edges or nodes of a graph, manipulate and query them through |
---|
494 | ///operations typically arising in "push-relabel" type algorithms. |
---|
495 | /// |
---|
496 | ///Each item is either \em active or not, and you can also choose a |
---|
497 | ///highest level active item. |
---|
498 | /// |
---|
499 | ///\sa Elevator |
---|
500 | /// |
---|
501 | ///\param Graph the underlying graph type |
---|
502 | ///\param Item Type of the items the data is assigned to (Graph::Node, |
---|
503 | ///Graph::Edge, Graph::UEdge) |
---|
504 | template <class Graph, class Item> |
---|
505 | class LinkedElevator { |
---|
506 | public: |
---|
507 | |
---|
508 | typedef Item Key; |
---|
509 | typedef int Value; |
---|
510 | |
---|
511 | private: |
---|
512 | |
---|
513 | typedef typename ItemSetTraits<Graph,Item>:: |
---|
514 | template Map<Item>::Type ItemMap; |
---|
515 | typedef typename ItemSetTraits<Graph,Item>:: |
---|
516 | template Map<int>::Type IntMap; |
---|
517 | typedef typename ItemSetTraits<Graph,Item>:: |
---|
518 | template Map<bool>::Type BoolMap; |
---|
519 | |
---|
520 | const Graph &_graph; |
---|
521 | int _max_level; |
---|
522 | int _item_num; |
---|
523 | std::vector<Item> _first, _last; |
---|
524 | ItemMap _prev, _next; |
---|
525 | int _highest_active; |
---|
526 | IntMap _level; |
---|
527 | BoolMap _active; |
---|
528 | |
---|
529 | public: |
---|
530 | ///Constructor with given maximum level. |
---|
531 | |
---|
532 | ///Constructor with given maximum level. |
---|
533 | /// |
---|
534 | ///\param g The underlying graph |
---|
535 | ///\param max_level Set the range of the possible labels to |
---|
536 | ///[0...\c max_level] |
---|
537 | LinkedElevator(const Graph& graph, int max_level) |
---|
538 | : _graph(graph), _max_level(max_level), _item_num(_max_level), |
---|
539 | _first(_max_level + 1), _last(_max_level + 1), |
---|
540 | _prev(graph), _next(graph), |
---|
541 | _highest_active(-1), _level(graph), _active(graph) {} |
---|
542 | |
---|
543 | ///Constructor. |
---|
544 | |
---|
545 | ///Constructor. |
---|
546 | /// |
---|
547 | ///\param g The underlying graph |
---|
548 | ///The range of the possible labels is [0...\c max_level], |
---|
549 | ///where \c max_level is equal to the number of labeled items in the graph. |
---|
550 | LinkedElevator(const Graph& graph) |
---|
551 | : _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
---|
552 | _item_num(_max_level), |
---|
553 | _first(_max_level + 1), _last(_max_level + 1), |
---|
554 | _prev(graph, INVALID), _next(graph, INVALID), |
---|
555 | _highest_active(-1), _level(graph), _active(graph) {} |
---|
556 | |
---|
557 | |
---|
558 | ///Activate item \c i. |
---|
559 | |
---|
560 | ///Activate item \c i. |
---|
561 | ///\pre Item \c i shouldn't be active before. |
---|
562 | void activate(Item i) { |
---|
563 | _active.set(i, true); |
---|
564 | |
---|
565 | int level = _level[i]; |
---|
566 | if (level > _highest_active) { |
---|
567 | _highest_active = level; |
---|
568 | } |
---|
569 | |
---|
570 | if (_prev[i] == INVALID || _active[_prev[i]]) return; |
---|
571 | //unlace |
---|
572 | _next.set(_prev[i], _next[i]); |
---|
573 | if (_next[i] != INVALID) { |
---|
574 | _prev.set(_next[i], _prev[i]); |
---|
575 | } else { |
---|
576 | _last[level] = _prev[i]; |
---|
577 | } |
---|
578 | //lace |
---|
579 | _next.set(i, _first[level]); |
---|
580 | _prev.set(_first[level], i); |
---|
581 | _prev.set(i, INVALID); |
---|
582 | _first[level] = i; |
---|
583 | |
---|
584 | } |
---|
585 | |
---|
586 | ///Deactivate item \c i. |
---|
587 | |
---|
588 | ///Deactivate item \c i. |
---|
589 | ///\pre Item \c i must be active before. |
---|
590 | void deactivate(Item i) { |
---|
591 | _active.set(i, false); |
---|
592 | int level = _level[i]; |
---|
593 | |
---|
594 | if (_next[i] == INVALID || !_active[_next[i]]) |
---|
595 | goto find_highest_level; |
---|
596 | |
---|
597 | //unlace |
---|
598 | _prev.set(_next[i], _prev[i]); |
---|
599 | if (_prev[i] != INVALID) { |
---|
600 | _next.set(_prev[i], _next[i]); |
---|
601 | } else { |
---|
602 | _first[_level[i]] = _next[i]; |
---|
603 | } |
---|
604 | //lace |
---|
605 | _prev.set(i, _last[level]); |
---|
606 | _next.set(_last[level], i); |
---|
607 | _next.set(i, INVALID); |
---|
608 | _last[level] = i; |
---|
609 | |
---|
610 | find_highest_level: |
---|
611 | if (level == _highest_active) { |
---|
612 | while (_highest_active >= 0 && activeFree(_highest_active)) |
---|
613 | --_highest_active; |
---|
614 | } |
---|
615 | } |
---|
616 | |
---|
617 | ///Query whether item \c i is active |
---|
618 | bool active(Item i) const { return _active[i]; } |
---|
619 | |
---|
620 | ///Return the level of item \c i. |
---|
621 | int operator[](Item i) const { return _level[i]; } |
---|
622 | |
---|
623 | ///Return the number of items on level \c l. |
---|
624 | int onLevel(int l) const { |
---|
625 | int num = 0; |
---|
626 | Item n = _first[l]; |
---|
627 | while (n != INVALID) { |
---|
628 | ++num; |
---|
629 | n = _next[n]; |
---|
630 | } |
---|
631 | return num; |
---|
632 | } |
---|
633 | |
---|
634 | ///Return true if the level is empty. |
---|
635 | bool emptyLevel(int l) const { |
---|
636 | return _first[l] == INVALID; |
---|
637 | } |
---|
638 | |
---|
639 | ///Return the number of items above level \c l. |
---|
640 | int aboveLevel(int l) const { |
---|
641 | int num = 0; |
---|
642 | for (int level = l + 1; level < _max_level; ++level) |
---|
643 | num += onLevel(level); |
---|
644 | return num; |
---|
645 | } |
---|
646 | |
---|
647 | ///Return the number of active items on level \c l. |
---|
648 | int activesOnLevel(int l) const { |
---|
649 | int num = 0; |
---|
650 | Item n = _first[l]; |
---|
651 | while (n != INVALID && _active[n]) { |
---|
652 | ++num; |
---|
653 | n = _next[n]; |
---|
654 | } |
---|
655 | return num; |
---|
656 | } |
---|
657 | |
---|
658 | ///Return true if there is not active item on level \c l. |
---|
659 | bool activeFree(int l) const { |
---|
660 | return _first[l] == INVALID || !_active[_first[l]]; |
---|
661 | } |
---|
662 | |
---|
663 | ///Return the maximum allowed level. |
---|
664 | int maxLevel() const { |
---|
665 | return _max_level; |
---|
666 | } |
---|
667 | |
---|
668 | ///\name Highest Active Item |
---|
669 | ///Functions for working with the highest level |
---|
670 | ///active item. |
---|
671 | |
---|
672 | ///@{ |
---|
673 | |
---|
674 | ///Return a highest level active item. |
---|
675 | |
---|
676 | ///Return a highest level active item. |
---|
677 | /// |
---|
678 | ///\return the highest level active item or INVALID if there is no |
---|
679 | ///active item. |
---|
680 | Item highestActive() const { |
---|
681 | return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
---|
682 | } |
---|
683 | |
---|
684 | ///Return a highest active level. |
---|
685 | |
---|
686 | ///Return a highest active level. |
---|
687 | /// |
---|
688 | ///\return the level of the highest active item or -1 if there is |
---|
689 | ///no active item. |
---|
690 | int highestActiveLevel() const { |
---|
691 | return _highest_active; |
---|
692 | } |
---|
693 | |
---|
694 | ///Lift the highest active item by one. |
---|
695 | |
---|
696 | ///Lift the item returned by highestActive() by one. |
---|
697 | /// |
---|
698 | void liftHighestActive() { |
---|
699 | Item i = _first[_highest_active]; |
---|
700 | if (_next[i] != INVALID) { |
---|
701 | _prev.set(_next[i], INVALID); |
---|
702 | _first[_highest_active] = _next[i]; |
---|
703 | } else { |
---|
704 | _first[_highest_active] = INVALID; |
---|
705 | _last[_highest_active] = INVALID; |
---|
706 | } |
---|
707 | _level.set(i, ++_highest_active); |
---|
708 | if (_first[_highest_active] == INVALID) { |
---|
709 | _first[_highest_active] = i; |
---|
710 | _last[_highest_active] = i; |
---|
711 | _prev.set(i, INVALID); |
---|
712 | _next.set(i, INVALID); |
---|
713 | } else { |
---|
714 | _prev.set(_first[_highest_active], i); |
---|
715 | _next.set(i, _first[_highest_active]); |
---|
716 | _first[_highest_active] = i; |
---|
717 | } |
---|
718 | } |
---|
719 | |
---|
720 | ///Lift the highest active item. |
---|
721 | |
---|
722 | ///Lift the item returned by highestActive() to level \c new_level. |
---|
723 | /// |
---|
724 | ///\warning \c new_level must be strictly higher |
---|
725 | ///than the current level. |
---|
726 | /// |
---|
727 | void liftHighestActive(int new_level) { |
---|
728 | Item i = _first[_highest_active]; |
---|
729 | if (_next[i] != INVALID) { |
---|
730 | _prev.set(_next[i], INVALID); |
---|
731 | _first[_highest_active] = _next[i]; |
---|
732 | } else { |
---|
733 | _first[_highest_active] = INVALID; |
---|
734 | _last[_highest_active] = INVALID; |
---|
735 | } |
---|
736 | _level.set(i, _highest_active = new_level); |
---|
737 | if (_first[_highest_active] == INVALID) { |
---|
738 | _first[_highest_active] = _last[_highest_active] = i; |
---|
739 | _prev.set(i, INVALID); |
---|
740 | _next.set(i, INVALID); |
---|
741 | } else { |
---|
742 | _prev.set(_first[_highest_active], i); |
---|
743 | _next.set(i, _first[_highest_active]); |
---|
744 | _first[_highest_active] = i; |
---|
745 | } |
---|
746 | } |
---|
747 | |
---|
748 | ///Lift the highest active to top. |
---|
749 | |
---|
750 | ///Lift the item returned by highestActive() to the top level and |
---|
751 | ///deactivates the item. |
---|
752 | /// |
---|
753 | void liftHighestActiveToTop() { |
---|
754 | Item i = _first[_highest_active]; |
---|
755 | _level.set(i, _max_level); |
---|
756 | if (_next[i] != INVALID) { |
---|
757 | _prev.set(_next[i], INVALID); |
---|
758 | _first[_highest_active] = _next[i]; |
---|
759 | } else { |
---|
760 | _first[_highest_active] = INVALID; |
---|
761 | _last[_highest_active] = INVALID; |
---|
762 | } |
---|
763 | while (_highest_active >= 0 && activeFree(_highest_active)) |
---|
764 | --_highest_active; |
---|
765 | } |
---|
766 | |
---|
767 | ///@} |
---|
768 | |
---|
769 | ///\name Active Item on Certain Level |
---|
770 | ///Functions for working with the active items. |
---|
771 | |
---|
772 | ///@{ |
---|
773 | |
---|
774 | ///Returns an active item on level \c l. |
---|
775 | |
---|
776 | ///Returns an active item on level \c l. |
---|
777 | /// |
---|
778 | ///Returns an active item on level \c l or \ref INVALID if there is no such |
---|
779 | ///an item. (\c l must be from the range [0...\c max_level]. |
---|
780 | Item activeOn(int l) const |
---|
781 | { |
---|
782 | return _active[_first[l]] ? _first[l] : INVALID; |
---|
783 | } |
---|
784 | |
---|
785 | ///Lifts the active item returned by \c activeOn() member function. |
---|
786 | |
---|
787 | ///Lifts the active item returned by \c activeOn() member function |
---|
788 | ///by one. |
---|
789 | Item liftActiveOn(int l) |
---|
790 | { |
---|
791 | Item i = _first[l]; |
---|
792 | if (_next[i] != INVALID) { |
---|
793 | _prev.set(_next[i], INVALID); |
---|
794 | _first[l] = _next[i]; |
---|
795 | } else { |
---|
796 | _first[l] = INVALID; |
---|
797 | _last[l] = INVALID; |
---|
798 | } |
---|
799 | _level.set(i, ++l); |
---|
800 | if (_first[l] == INVALID) { |
---|
801 | _first[l] = _last[l] = i; |
---|
802 | _prev.set(i, INVALID); |
---|
803 | _next.set(i, INVALID); |
---|
804 | } else { |
---|
805 | _prev.set(_first[l], i); |
---|
806 | _next.set(i, _first[l]); |
---|
807 | _first[l] = i; |
---|
808 | } |
---|
809 | if (_highest_active < l) { |
---|
810 | _highest_active = l; |
---|
811 | } |
---|
812 | } |
---|
813 | |
---|
814 | /// \brief Lifts the active item returned by \c activeOn() member function. |
---|
815 | /// |
---|
816 | /// Lifts the active item returned by \c activeOn() member function |
---|
817 | /// to the given level. |
---|
818 | void liftActiveOn(int l, int new_level) |
---|
819 | { |
---|
820 | Item i = _first[l]; |
---|
821 | if (_next[i] != INVALID) { |
---|
822 | _prev.set(_next[i], INVALID); |
---|
823 | _first[l] = _next[i]; |
---|
824 | } else { |
---|
825 | _first[l] = INVALID; |
---|
826 | _last[l] = INVALID; |
---|
827 | } |
---|
828 | _level.set(i, l = new_level); |
---|
829 | if (_first[l] == INVALID) { |
---|
830 | _first[l] = _last[l] = i; |
---|
831 | _prev.set(i, INVALID); |
---|
832 | _next.set(i, INVALID); |
---|
833 | } else { |
---|
834 | _prev.set(_first[l], i); |
---|
835 | _next.set(i, _first[l]); |
---|
836 | _first[l] = i; |
---|
837 | } |
---|
838 | if (_highest_active < l) { |
---|
839 | _highest_active = l; |
---|
840 | } |
---|
841 | } |
---|
842 | |
---|
843 | ///Lifts the active item returned by \c activeOn() member function. |
---|
844 | |
---|
845 | ///Lifts the active item returned by \c activeOn() member function |
---|
846 | ///to the top level. |
---|
847 | void liftActiveToTop(int l) |
---|
848 | { |
---|
849 | Item i = _first[l]; |
---|
850 | if (_next[i] != INVALID) { |
---|
851 | _prev.set(_next[i], INVALID); |
---|
852 | _first[l] = _next[i]; |
---|
853 | } else { |
---|
854 | _first[l] = INVALID; |
---|
855 | _last[l] = INVALID; |
---|
856 | } |
---|
857 | _level.set(i, _max_level); |
---|
858 | if (l == _highest_active) { |
---|
859 | while (_highest_active >= 0 && activeFree(_highest_active)) |
---|
860 | --_highest_active; |
---|
861 | } |
---|
862 | } |
---|
863 | |
---|
864 | ///@} |
---|
865 | |
---|
866 | /// \brief Lift an active item to a higher level. |
---|
867 | /// |
---|
868 | /// Lift an active item to a higher level. |
---|
869 | /// \param i The item to be lifted. It must be active. |
---|
870 | /// \param new_level The new level of \c i. It must be strictly higher |
---|
871 | /// than the current level. |
---|
872 | /// |
---|
873 | void lift(Item i, int new_level) { |
---|
874 | if (_next[i] != INVALID) { |
---|
875 | _prev.set(_next[i], _prev[i]); |
---|
876 | } else { |
---|
877 | _last[new_level] = _prev[i]; |
---|
878 | } |
---|
879 | if (_prev[i] != INVALID) { |
---|
880 | _next.set(_prev[i], _next[i]); |
---|
881 | } else { |
---|
882 | _first[new_level] = _next[i]; |
---|
883 | } |
---|
884 | _level.set(i, new_level); |
---|
885 | if (_first[new_level] == INVALID) { |
---|
886 | _first[new_level] = _last[new_level] = i; |
---|
887 | _prev.set(i, INVALID); |
---|
888 | _next.set(i, INVALID); |
---|
889 | } else { |
---|
890 | _prev.set(_first[new_level], i); |
---|
891 | _next.set(i, _first[new_level]); |
---|
892 | _first[new_level] = i; |
---|
893 | } |
---|
894 | if (_highest_active < new_level) { |
---|
895 | _highest_active = new_level; |
---|
896 | } |
---|
897 | } |
---|
898 | |
---|
899 | ///Move an inactive item to the top but one level (in a dirty way). |
---|
900 | |
---|
901 | ///This function moves an inactive item to the top but one level. |
---|
902 | ///It makes the underlying datastructure corrupt, so use is only if |
---|
903 | ///you really know what it is for. |
---|
904 | ///\pre The item is on the top level. |
---|
905 | void dirtyTopButOne(Item i) { |
---|
906 | _level.set(i, _max_level - 1); |
---|
907 | } |
---|
908 | |
---|
909 | ///Lift all items on and above a level to the top (and deactivate them). |
---|
910 | |
---|
911 | ///This function lifts all items on and above level \c l to \c |
---|
912 | ///maxLevel(), and also deactivates them. |
---|
913 | void liftToTop(int l) { |
---|
914 | for (int i = l + 1; _first[i] != INVALID; ++i) { |
---|
915 | Item n = _first[i]; |
---|
916 | while (n != INVALID) { |
---|
917 | _level.set(n, _max_level); |
---|
918 | n = _next[n]; |
---|
919 | } |
---|
920 | _first[i] = INVALID; |
---|
921 | _last[i] = INVALID; |
---|
922 | } |
---|
923 | if (_highest_active > l - 1) { |
---|
924 | _highest_active = l - 1; |
---|
925 | while (_highest_active >= 0 && activeFree(_highest_active)) |
---|
926 | --_highest_active; |
---|
927 | } |
---|
928 | } |
---|
929 | |
---|
930 | private: |
---|
931 | |
---|
932 | int _init_level; |
---|
933 | |
---|
934 | public: |
---|
935 | |
---|
936 | ///\name Initialization |
---|
937 | ///Using this function you can initialize the levels of the item. |
---|
938 | ///\n |
---|
939 | ///This initializatios is started with calling \c initStart(). |
---|
940 | ///Then the |
---|
941 | ///items should be listed levels by levels statring with the lowest one |
---|
942 | ///(with level 0). This is done by using \c initAddItem() |
---|
943 | ///and \c initNewLevel(). Finally \c initFinish() must be called. |
---|
944 | ///The items not listed will be put on the highest level. |
---|
945 | ///@{ |
---|
946 | |
---|
947 | ///Start the initialization process. |
---|
948 | |
---|
949 | void initStart() { |
---|
950 | |
---|
951 | for (int i = 0; i <= _max_level; ++i) { |
---|
952 | _first[i] = _last[i] = INVALID; |
---|
953 | } |
---|
954 | _init_level = 0; |
---|
955 | for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
---|
956 | i != INVALID; ++i) { |
---|
957 | _level.set(i, _max_level); |
---|
958 | _active.set(i, false); |
---|
959 | } |
---|
960 | } |
---|
961 | |
---|
962 | ///Add an item to the current level. |
---|
963 | |
---|
964 | void initAddItem(Item i) { |
---|
965 | _level.set(i, _init_level); |
---|
966 | if (_last[_init_level] == INVALID) { |
---|
967 | _first[_init_level] = i; |
---|
968 | _last[_init_level] = i; |
---|
969 | _prev.set(i, INVALID); |
---|
970 | _next.set(i, INVALID); |
---|
971 | } else { |
---|
972 | _prev.set(i, _last[_init_level]); |
---|
973 | _next.set(i, INVALID); |
---|
974 | _next.set(_last[_init_level], i); |
---|
975 | _last[_init_level] = i; |
---|
976 | } |
---|
977 | } |
---|
978 | |
---|
979 | ///Start a new level. |
---|
980 | |
---|
981 | ///Start a new level. |
---|
982 | ///It shouldn't be used before the items on level 0 are listed. |
---|
983 | void initNewLevel() { |
---|
984 | ++_init_level; |
---|
985 | } |
---|
986 | |
---|
987 | ///Finalize the initialization process. |
---|
988 | |
---|
989 | void initFinish() { |
---|
990 | _highest_active = -1; |
---|
991 | } |
---|
992 | |
---|
993 | ///@} |
---|
994 | |
---|
995 | }; |
---|
996 | |
---|
997 | |
---|
998 | } //END OF NAMESPACE LEMON |
---|
999 | |
---|
1000 | #endif |
---|
1001 | |
---|