1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2009 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_EULER_H |
---|
20 | #define LEMON_EULER_H |
---|
21 | |
---|
22 | #include<lemon/core.h> |
---|
23 | #include<lemon/adaptors.h> |
---|
24 | #include<lemon/connectivity.h> |
---|
25 | #include <list> |
---|
26 | |
---|
27 | /// \ingroup graph_prop |
---|
28 | /// \file |
---|
29 | /// \brief Euler tour |
---|
30 | /// |
---|
31 | ///This file provides an Euler tour iterator and ways to check |
---|
32 | ///if a digraph is euler. |
---|
33 | |
---|
34 | |
---|
35 | namespace lemon { |
---|
36 | |
---|
37 | ///Euler iterator for digraphs. |
---|
38 | |
---|
39 | /// \ingroup graph_prop |
---|
40 | ///This iterator converts to the \c Arc type of the digraph and using |
---|
41 | ///operator ++, it provides an Euler tour of a \e directed |
---|
42 | ///graph (if there exists). |
---|
43 | /// |
---|
44 | ///For example |
---|
45 | ///if the given digraph is Euler (i.e it has only one nontrivial component |
---|
46 | ///and the in-degree is equal to the out-degree for all nodes), |
---|
47 | ///the following code will put the arcs of \c g |
---|
48 | ///to the vector \c et according to an |
---|
49 | ///Euler tour of \c g. |
---|
50 | ///\code |
---|
51 | /// std::vector<ListDigraph::Arc> et; |
---|
52 | /// for(DiEulerIt<ListDigraph> e(g),e!=INVALID;++e) |
---|
53 | /// et.push_back(e); |
---|
54 | ///\endcode |
---|
55 | ///If \c g is not Euler then the resulted tour will not be full or closed. |
---|
56 | ///\sa EulerIt |
---|
57 | template<typename GR> |
---|
58 | class DiEulerIt |
---|
59 | { |
---|
60 | typedef typename GR::Node Node; |
---|
61 | typedef typename GR::NodeIt NodeIt; |
---|
62 | typedef typename GR::Arc Arc; |
---|
63 | typedef typename GR::ArcIt ArcIt; |
---|
64 | typedef typename GR::OutArcIt OutArcIt; |
---|
65 | typedef typename GR::InArcIt InArcIt; |
---|
66 | |
---|
67 | const GR &g; |
---|
68 | typename GR::template NodeMap<OutArcIt> nedge; |
---|
69 | std::list<Arc> euler; |
---|
70 | |
---|
71 | public: |
---|
72 | |
---|
73 | ///Constructor |
---|
74 | |
---|
75 | ///\param gr A digraph. |
---|
76 | ///\param start The starting point of the tour. If it is not given |
---|
77 | /// the tour will start from the first node. |
---|
78 | DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
---|
79 | : g(gr), nedge(g) |
---|
80 | { |
---|
81 | if(start==INVALID) start=NodeIt(g); |
---|
82 | for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
---|
83 | while(nedge[start]!=INVALID) { |
---|
84 | euler.push_back(nedge[start]); |
---|
85 | Node next=g.target(nedge[start]); |
---|
86 | ++nedge[start]; |
---|
87 | start=next; |
---|
88 | } |
---|
89 | } |
---|
90 | |
---|
91 | ///Arc Conversion |
---|
92 | operator Arc() { return euler.empty()?INVALID:euler.front(); } |
---|
93 | bool operator==(Invalid) { return euler.empty(); } |
---|
94 | bool operator!=(Invalid) { return !euler.empty(); } |
---|
95 | |
---|
96 | ///Next arc of the tour |
---|
97 | DiEulerIt &operator++() { |
---|
98 | Node s=g.target(euler.front()); |
---|
99 | euler.pop_front(); |
---|
100 | //This produces a warning.Strange. |
---|
101 | //std::list<Arc>::iterator next=euler.begin(); |
---|
102 | typename std::list<Arc>::iterator next=euler.begin(); |
---|
103 | while(nedge[s]!=INVALID) { |
---|
104 | euler.insert(next,nedge[s]); |
---|
105 | Node n=g.target(nedge[s]); |
---|
106 | ++nedge[s]; |
---|
107 | s=n; |
---|
108 | } |
---|
109 | return *this; |
---|
110 | } |
---|
111 | ///Postfix incrementation |
---|
112 | |
---|
113 | ///\warning This incrementation |
---|
114 | ///returns an \c Arc, not an \ref DiEulerIt, as one may |
---|
115 | ///expect. |
---|
116 | Arc operator++(int) |
---|
117 | { |
---|
118 | Arc e=*this; |
---|
119 | ++(*this); |
---|
120 | return e; |
---|
121 | } |
---|
122 | }; |
---|
123 | |
---|
124 | ///Euler iterator for graphs. |
---|
125 | |
---|
126 | /// \ingroup graph_prop |
---|
127 | ///This iterator converts to the \c Arc (or \c Edge) |
---|
128 | ///type of the digraph and using |
---|
129 | ///operator ++, it provides an Euler tour of an undirected |
---|
130 | ///digraph (if there exists). |
---|
131 | /// |
---|
132 | ///For example |
---|
133 | ///if the given digraph if Euler (i.e it has only one nontrivial component |
---|
134 | ///and the degree of each node is even), |
---|
135 | ///the following code will print the arc IDs according to an |
---|
136 | ///Euler tour of \c g. |
---|
137 | ///\code |
---|
138 | /// for(EulerIt<ListGraph> e(g),e!=INVALID;++e) { |
---|
139 | /// std::cout << g.id(Edge(e)) << std::eol; |
---|
140 | /// } |
---|
141 | ///\endcode |
---|
142 | ///Although the iterator provides an Euler tour of an graph, |
---|
143 | ///it still returns Arcs in order to indicate the direction of the tour. |
---|
144 | ///(But Arc will convert to Edges, of course). |
---|
145 | /// |
---|
146 | ///If \c g is not Euler then the resulted tour will not be full or closed. |
---|
147 | ///\sa EulerIt |
---|
148 | template<typename GR> |
---|
149 | class EulerIt |
---|
150 | { |
---|
151 | typedef typename GR::Node Node; |
---|
152 | typedef typename GR::NodeIt NodeIt; |
---|
153 | typedef typename GR::Arc Arc; |
---|
154 | typedef typename GR::Edge Edge; |
---|
155 | typedef typename GR::ArcIt ArcIt; |
---|
156 | typedef typename GR::OutArcIt OutArcIt; |
---|
157 | typedef typename GR::InArcIt InArcIt; |
---|
158 | |
---|
159 | const GR &g; |
---|
160 | typename GR::template NodeMap<OutArcIt> nedge; |
---|
161 | typename GR::template EdgeMap<bool> visited; |
---|
162 | std::list<Arc> euler; |
---|
163 | |
---|
164 | public: |
---|
165 | |
---|
166 | ///Constructor |
---|
167 | |
---|
168 | ///\param gr An graph. |
---|
169 | ///\param start The starting point of the tour. If it is not given |
---|
170 | /// the tour will start from the first node. |
---|
171 | EulerIt(const GR &gr, typename GR::Node start = INVALID) |
---|
172 | : g(gr), nedge(g), visited(g, false) |
---|
173 | { |
---|
174 | if(start==INVALID) start=NodeIt(g); |
---|
175 | for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
---|
176 | while(nedge[start]!=INVALID) { |
---|
177 | euler.push_back(nedge[start]); |
---|
178 | visited[nedge[start]]=true; |
---|
179 | Node next=g.target(nedge[start]); |
---|
180 | ++nedge[start]; |
---|
181 | start=next; |
---|
182 | while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start]; |
---|
183 | } |
---|
184 | } |
---|
185 | |
---|
186 | ///Arc Conversion |
---|
187 | operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
---|
188 | ///Arc Conversion |
---|
189 | operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
---|
190 | ///\e |
---|
191 | bool operator==(Invalid) const { return euler.empty(); } |
---|
192 | ///\e |
---|
193 | bool operator!=(Invalid) const { return !euler.empty(); } |
---|
194 | |
---|
195 | ///Next arc of the tour |
---|
196 | EulerIt &operator++() { |
---|
197 | Node s=g.target(euler.front()); |
---|
198 | euler.pop_front(); |
---|
199 | typename std::list<Arc>::iterator next=euler.begin(); |
---|
200 | |
---|
201 | while(nedge[s]!=INVALID) { |
---|
202 | while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
---|
203 | if(nedge[s]==INVALID) break; |
---|
204 | else { |
---|
205 | euler.insert(next,nedge[s]); |
---|
206 | visited[nedge[s]]=true; |
---|
207 | Node n=g.target(nedge[s]); |
---|
208 | ++nedge[s]; |
---|
209 | s=n; |
---|
210 | } |
---|
211 | } |
---|
212 | return *this; |
---|
213 | } |
---|
214 | |
---|
215 | ///Postfix incrementation |
---|
216 | |
---|
217 | ///\warning This incrementation |
---|
218 | ///returns an \c Arc, not an \ref EulerIt, as one may |
---|
219 | ///expect. |
---|
220 | Arc operator++(int) |
---|
221 | { |
---|
222 | Arc e=*this; |
---|
223 | ++(*this); |
---|
224 | return e; |
---|
225 | } |
---|
226 | }; |
---|
227 | |
---|
228 | |
---|
229 | ///Checks if the graph is Eulerian |
---|
230 | |
---|
231 | /// \ingroup graph_prop |
---|
232 | ///Checks if the graph is Eulerian. It works for both directed and undirected |
---|
233 | ///graphs. |
---|
234 | ///\note By definition, a digraph is called \e Eulerian if |
---|
235 | ///and only if it is connected and the number of its incoming and outgoing |
---|
236 | ///arcs are the same for each node. |
---|
237 | ///Similarly, an undirected graph is called \e Eulerian if |
---|
238 | ///and only if it is connected and the number of incident arcs is even |
---|
239 | ///for each node. <em>Therefore, there are digraphs which are not Eulerian, |
---|
240 | ///but still have an Euler tour</em>. |
---|
241 | template<typename GR> |
---|
242 | #ifdef DOXYGEN |
---|
243 | bool |
---|
244 | #else |
---|
245 | typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
---|
246 | eulerian(const GR &g) |
---|
247 | { |
---|
248 | for(typename GR::NodeIt n(g);n!=INVALID;++n) |
---|
249 | if(countIncEdges(g,n)%2) return false; |
---|
250 | return connected(g); |
---|
251 | } |
---|
252 | template<class GR> |
---|
253 | typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
---|
254 | #endif |
---|
255 | eulerian(const GR &g) |
---|
256 | { |
---|
257 | for(typename GR::NodeIt n(g);n!=INVALID;++n) |
---|
258 | if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
---|
259 | return connected(Undirector<const GR>(g)); |
---|
260 | } |
---|
261 | |
---|
262 | } |
---|
263 | |
---|
264 | #endif |
---|