/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_FIB_HEAP_H #define LEMON_FIB_HEAP_H ///\file ///\ingroup heaps ///\brief Fibonacci heap implementation. #include #include #include #include namespace lemon { /// \ingroup heaps /// /// \brief Fibonacci heap data structure. /// /// This class implements the \e Fibonacci \e heap data structure. /// It fully conforms to the \ref concepts::Heap "heap concept". /// /// The methods \ref increase() and \ref erase() are not efficient in a /// Fibonacci heap. In case of many calls of these operations, it is /// better to use other heap structure, e.g. \ref BinHeap "binary heap". /// /// \tparam PR Type of the priorities of the items. /// \tparam IM A read-writable item map with \c int values, used /// internally to handle the cross references. /// \tparam CMP A functor class for comparing the priorities. /// The default is \c std::less. #ifdef DOXYGEN template #else template > #endif class FibHeap { public: /// Type of the item-int map. typedef IM ItemIntMap; /// Type of the priorities. typedef PR Prio; /// Type of the items stored in the heap. typedef typename ItemIntMap::Key Item; /// Type of the item-priority pairs. typedef std::pair Pair; /// Functor type for comparing the priorities. typedef CMP Compare; private: class Store; std::vector _data; int _minimum; ItemIntMap &_iim; Compare _comp; int _num; public: /// \brief Type to represent the states of the items. /// /// Each item has a state associated to it. It can be "in heap", /// "pre-heap" or "post-heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. explicit FibHeap(ItemIntMap &map) : _minimum(0), _iim(map), _num() {} /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. /// \param comp The function object used for comparing the priorities. FibHeap(ItemIntMap &map, const Compare &comp) : _minimum(0), _iim(map), _comp(comp), _num() {} /// \brief The number of items stored in the heap. /// /// This function returns the number of items stored in the heap. int size() const { return _num; } /// \brief Check if the heap is empty. /// /// This function returns \c true if the heap is empty. bool empty() const { return _num==0; } /// \brief Make the heap empty. /// /// This functon makes the heap empty. /// It does not change the cross reference map. If you want to reuse /// a heap that is not surely empty, you should first clear it and /// then you should set the cross reference map to \c PRE_HEAP /// for each item. void clear() { _data.clear(); _minimum = 0; _num = 0; } /// \brief Insert an item into the heap with the given priority. /// /// This function inserts the given item into the heap with the /// given priority. /// \param item The item to insert. /// \param prio The priority of the item. /// \pre \e item must not be stored in the heap. void push (const Item& item, const Prio& prio) { int i=_iim[item]; if ( i < 0 ) { int s=_data.size(); _iim.set( item, s ); Store st; st.name=item; _data.push_back(st); i=s; } else { _data[i].parent=_data[i].child=-1; _data[i].degree=0; _data[i].in=true; _data[i].marked=false; } if ( _num ) { _data[_data[_minimum].right_neighbor].left_neighbor=i; _data[i].right_neighbor=_data[_minimum].right_neighbor; _data[_minimum].right_neighbor=i; _data[i].left_neighbor=_minimum; if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; } else { _data[i].right_neighbor=_data[i].left_neighbor=i; _minimum=i; } _data[i].prio=prio; ++_num; } /// \brief Return the item having minimum priority. /// /// This function returns the item having minimum priority. /// \pre The heap must be non-empty. Item top() const { return _data[_minimum].name; } /// \brief The minimum priority. /// /// This function returns the minimum priority. /// \pre The heap must be non-empty. Prio prio() const { return _data[_minimum].prio; } /// \brief Remove the item having minimum priority. /// /// This function removes the item having minimum priority. /// \pre The heap must be non-empty. void pop() { /*The first case is that there are only one root.*/ if ( _data[_minimum].left_neighbor==_minimum ) { _data[_minimum].in=false; if ( _data[_minimum].degree!=0 ) { makeRoot(_data[_minimum].child); _minimum=_data[_minimum].child; balance(); } } else { int right=_data[_minimum].right_neighbor; unlace(_minimum); _data[_minimum].in=false; if ( _data[_minimum].degree > 0 ) { int left=_data[_minimum].left_neighbor; int child=_data[_minimum].child; int last_child=_data[child].left_neighbor; makeRoot(child); _data[left].right_neighbor=child; _data[child].left_neighbor=left; _data[right].left_neighbor=last_child; _data[last_child].right_neighbor=right; } _minimum=right; balance(); } // the case where there are more roots --_num; } /// \brief Remove the given item from the heap. /// /// This function removes the given item from the heap if it is /// already stored. /// \param item The item to delete. /// \pre \e item must be in the heap. void erase (const Item& item) { int i=_iim[item]; if ( i >= 0 && _data[i].in ) { if ( _data[i].parent!=-1 ) { int p=_data[i].parent; cut(i,p); cascade(p); } _minimum=i; //As if its prio would be -infinity pop(); } } /// \brief The priority of the given item. /// /// This function returns the priority of the given item. /// \param item The item. /// \pre \e item must be in the heap. Prio operator[](const Item& item) const { return _data[_iim[item]].prio; } /// \brief Set the priority of an item or insert it, if it is /// not stored in the heap. /// /// This method sets the priority of the given item if it is /// already stored in the heap. Otherwise it inserts the given /// item into the heap with the given priority. /// \param item The item. /// \param prio The priority. void set (const Item& item, const Prio& prio) { int i=_iim[item]; if ( i >= 0 && _data[i].in ) { if ( _comp(prio, _data[i].prio) ) decrease(item, prio); if ( _comp(_data[i].prio, prio) ) increase(item, prio); } else push(item, prio); } /// \brief Decrease the priority of an item to the given value. /// /// This function decreases the priority of an item to the given value. /// \param item The item. /// \param prio The priority. /// \pre \e item must be stored in the heap with priority at least \e prio. void decrease (const Item& item, const Prio& prio) { int i=_iim[item]; _data[i].prio=prio; int p=_data[i].parent; if ( p!=-1 && _comp(prio, _data[p].prio) ) { cut(i,p); cascade(p); } if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; } /// \brief Increase the priority of an item to the given value. /// /// This function increases the priority of an item to the given value. /// \param item The item. /// \param prio The priority. /// \pre \e item must be stored in the heap with priority at most \e prio. void increase (const Item& item, const Prio& prio) { erase(item); push(item, prio); } /// \brief Return the state of an item. /// /// This method returns \c PRE_HEAP if the given item has never /// been in the heap, \c IN_HEAP if it is in the heap at the moment, /// and \c POST_HEAP otherwise. /// In the latter case it is possible that the item will get back /// to the heap again. /// \param item The item. State state(const Item &item) const { int i=_iim[item]; if( i>=0 ) { if ( _data[i].in ) i=0; else i=-2; } return State(i); } /// \brief Set the state of an item in the heap. /// /// This function sets the state of the given item in the heap. /// It can be used to manually clear the heap when it is important /// to achive better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } _iim[i] = st; break; case IN_HEAP: break; } } private: void balance() { int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; std::vector A(maxdeg,-1); /* *Recall that now minimum does not point to the minimum prio element. *We set minimum to this during balance(). */ int anchor=_data[_minimum].left_neighbor; int next=_minimum; bool end=false; do { int active=next; if ( anchor==active ) end=true; int d=_data[active].degree; next=_data[active].right_neighbor; while (A[d]!=-1) { if( _comp(_data[active].prio, _data[A[d]].prio) ) { fuse(active,A[d]); } else { fuse(A[d],active); active=A[d]; } A[d]=-1; ++d; } A[d]=active; } while ( !end ); while ( _data[_minimum].parent >=0 ) _minimum=_data[_minimum].parent; int s=_minimum; int m=_minimum; do { if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; s=_data[s].right_neighbor; } while ( s != m ); } void makeRoot(int c) { int s=c; do { _data[s].parent=-1; s=_data[s].right_neighbor; } while ( s != c ); } void cut(int a, int b) { /* *Replacing a from the children of b. */ --_data[b].degree; if ( _data[b].degree !=0 ) { int child=_data[b].child; if ( child==a ) _data[b].child=_data[child].right_neighbor; unlace(a); } /*Lacing a to the roots.*/ int right=_data[_minimum].right_neighbor; _data[_minimum].right_neighbor=a; _data[a].left_neighbor=_minimum; _data[a].right_neighbor=right; _data[right].left_neighbor=a; _data[a].parent=-1; _data[a].marked=false; } void cascade(int a) { if ( _data[a].parent!=-1 ) { int p=_data[a].parent; if ( _data[a].marked==false ) _data[a].marked=true; else { cut(a,p); cascade(p); } } } void fuse(int a, int b) { unlace(b); /*Lacing b under a.*/ _data[b].parent=a; if (_data[a].degree==0) { _data[b].left_neighbor=b; _data[b].right_neighbor=b; _data[a].child=b; } else { int child=_data[a].child; int last_child=_data[child].left_neighbor; _data[child].left_neighbor=b; _data[b].right_neighbor=child; _data[last_child].right_neighbor=b; _data[b].left_neighbor=last_child; } ++_data[a].degree; _data[b].marked=false; } /* *It is invoked only if a has siblings. */ void unlace(int a) { int leftn=_data[a].left_neighbor; int rightn=_data[a].right_neighbor; _data[leftn].right_neighbor=rightn; _data[rightn].left_neighbor=leftn; } class Store { friend class FibHeap; Item name; int parent; int left_neighbor; int right_neighbor; int child; int degree; bool marked; bool in; Prio prio; Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} }; }; } //namespace lemon #endif //LEMON_FIB_HEAP_H