1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2010 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_FULL_GRAPH_H |
---|
20 | #define LEMON_FULL_GRAPH_H |
---|
21 | |
---|
22 | #include <lemon/core.h> |
---|
23 | #include <lemon/bits/graph_extender.h> |
---|
24 | |
---|
25 | ///\ingroup graphs |
---|
26 | ///\file |
---|
27 | ///\brief FullDigraph and FullGraph classes. |
---|
28 | |
---|
29 | namespace lemon { |
---|
30 | |
---|
31 | class FullDigraphBase { |
---|
32 | public: |
---|
33 | |
---|
34 | typedef FullDigraphBase Digraph; |
---|
35 | |
---|
36 | class Node; |
---|
37 | class Arc; |
---|
38 | |
---|
39 | protected: |
---|
40 | |
---|
41 | int _node_num; |
---|
42 | int _arc_num; |
---|
43 | |
---|
44 | FullDigraphBase() {} |
---|
45 | |
---|
46 | void construct(int n) { _node_num = n; _arc_num = n * n; } |
---|
47 | |
---|
48 | public: |
---|
49 | |
---|
50 | typedef True NodeNumTag; |
---|
51 | typedef True ArcNumTag; |
---|
52 | |
---|
53 | Node operator()(int ix) const { return Node(ix); } |
---|
54 | static int index(const Node& node) { return node._id; } |
---|
55 | |
---|
56 | Arc arc(const Node& s, const Node& t) const { |
---|
57 | return Arc(s._id * _node_num + t._id); |
---|
58 | } |
---|
59 | |
---|
60 | int nodeNum() const { return _node_num; } |
---|
61 | int arcNum() const { return _arc_num; } |
---|
62 | |
---|
63 | int maxNodeId() const { return _node_num - 1; } |
---|
64 | int maxArcId() const { return _arc_num - 1; } |
---|
65 | |
---|
66 | Node source(Arc arc) const { return arc._id / _node_num; } |
---|
67 | Node target(Arc arc) const { return arc._id % _node_num; } |
---|
68 | |
---|
69 | static int id(Node node) { return node._id; } |
---|
70 | static int id(Arc arc) { return arc._id; } |
---|
71 | |
---|
72 | static Node nodeFromId(int id) { return Node(id);} |
---|
73 | static Arc arcFromId(int id) { return Arc(id);} |
---|
74 | |
---|
75 | typedef True FindArcTag; |
---|
76 | |
---|
77 | Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
---|
78 | return prev == INVALID ? arc(s, t) : INVALID; |
---|
79 | } |
---|
80 | |
---|
81 | class Node { |
---|
82 | friend class FullDigraphBase; |
---|
83 | |
---|
84 | protected: |
---|
85 | int _id; |
---|
86 | Node(int id) : _id(id) {} |
---|
87 | public: |
---|
88 | Node() {} |
---|
89 | Node (Invalid) : _id(-1) {} |
---|
90 | bool operator==(const Node node) const {return _id == node._id;} |
---|
91 | bool operator!=(const Node node) const {return _id != node._id;} |
---|
92 | bool operator<(const Node node) const {return _id < node._id;} |
---|
93 | }; |
---|
94 | |
---|
95 | class Arc { |
---|
96 | friend class FullDigraphBase; |
---|
97 | |
---|
98 | protected: |
---|
99 | int _id; // _node_num * source + target; |
---|
100 | |
---|
101 | Arc(int id) : _id(id) {} |
---|
102 | |
---|
103 | public: |
---|
104 | Arc() { } |
---|
105 | Arc (Invalid) { _id = -1; } |
---|
106 | bool operator==(const Arc arc) const {return _id == arc._id;} |
---|
107 | bool operator!=(const Arc arc) const {return _id != arc._id;} |
---|
108 | bool operator<(const Arc arc) const {return _id < arc._id;} |
---|
109 | }; |
---|
110 | |
---|
111 | void first(Node& node) const { |
---|
112 | node._id = _node_num - 1; |
---|
113 | } |
---|
114 | |
---|
115 | static void next(Node& node) { |
---|
116 | --node._id; |
---|
117 | } |
---|
118 | |
---|
119 | void first(Arc& arc) const { |
---|
120 | arc._id = _arc_num - 1; |
---|
121 | } |
---|
122 | |
---|
123 | static void next(Arc& arc) { |
---|
124 | --arc._id; |
---|
125 | } |
---|
126 | |
---|
127 | void firstOut(Arc& arc, const Node& node) const { |
---|
128 | arc._id = (node._id + 1) * _node_num - 1; |
---|
129 | } |
---|
130 | |
---|
131 | void nextOut(Arc& arc) const { |
---|
132 | if (arc._id % _node_num == 0) arc._id = 0; |
---|
133 | --arc._id; |
---|
134 | } |
---|
135 | |
---|
136 | void firstIn(Arc& arc, const Node& node) const { |
---|
137 | arc._id = _arc_num + node._id - _node_num; |
---|
138 | } |
---|
139 | |
---|
140 | void nextIn(Arc& arc) const { |
---|
141 | arc._id -= _node_num; |
---|
142 | if (arc._id < 0) arc._id = -1; |
---|
143 | } |
---|
144 | |
---|
145 | }; |
---|
146 | |
---|
147 | typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
---|
148 | |
---|
149 | /// \ingroup graphs |
---|
150 | /// |
---|
151 | /// \brief A directed full graph class. |
---|
152 | /// |
---|
153 | /// FullDigraph is a simple and fast implmenetation of directed full |
---|
154 | /// (complete) graphs. It contains an arc from each node to each node |
---|
155 | /// (including a loop for each node), therefore the number of arcs |
---|
156 | /// is the square of the number of nodes. |
---|
157 | /// This class is completely static and it needs constant memory space. |
---|
158 | /// Thus you can neither add nor delete nodes or arcs, however |
---|
159 | /// the structure can be resized using resize(). |
---|
160 | /// |
---|
161 | /// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
---|
162 | /// Most of its member functions and nested classes are documented |
---|
163 | /// only in the concept class. |
---|
164 | /// |
---|
165 | /// This class provides constant time counting for nodes and arcs. |
---|
166 | /// |
---|
167 | /// \note FullDigraph and FullGraph classes are very similar, |
---|
168 | /// but there are two differences. While this class conforms only |
---|
169 | /// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
---|
170 | /// conforms to the \ref concepts::Graph "Graph" concept, |
---|
171 | /// moreover FullGraph does not contain a loop for each |
---|
172 | /// node as this class does. |
---|
173 | /// |
---|
174 | /// \sa FullGraph |
---|
175 | class FullDigraph : public ExtendedFullDigraphBase { |
---|
176 | typedef ExtendedFullDigraphBase Parent; |
---|
177 | |
---|
178 | public: |
---|
179 | |
---|
180 | /// \brief Default constructor. |
---|
181 | /// |
---|
182 | /// Default constructor. The number of nodes and arcs will be zero. |
---|
183 | FullDigraph() { construct(0); } |
---|
184 | |
---|
185 | /// \brief Constructor |
---|
186 | /// |
---|
187 | /// Constructor. |
---|
188 | /// \param n The number of the nodes. |
---|
189 | FullDigraph(int n) { construct(n); } |
---|
190 | |
---|
191 | /// \brief Resizes the digraph |
---|
192 | /// |
---|
193 | /// This function resizes the digraph. It fully destroys and |
---|
194 | /// rebuilds the structure, therefore the maps of the digraph will be |
---|
195 | /// reallocated automatically and the previous values will be lost. |
---|
196 | void resize(int n) { |
---|
197 | Parent::notifier(Arc()).clear(); |
---|
198 | Parent::notifier(Node()).clear(); |
---|
199 | construct(n); |
---|
200 | Parent::notifier(Node()).build(); |
---|
201 | Parent::notifier(Arc()).build(); |
---|
202 | } |
---|
203 | |
---|
204 | /// \brief Returns the node with the given index. |
---|
205 | /// |
---|
206 | /// Returns the node with the given index. Since this structure is |
---|
207 | /// completely static, the nodes can be indexed with integers from |
---|
208 | /// the range <tt>[0..nodeNum()-1]</tt>. |
---|
209 | /// The index of a node is the same as its ID. |
---|
210 | /// \sa index() |
---|
211 | Node operator()(int ix) const { return Parent::operator()(ix); } |
---|
212 | |
---|
213 | /// \brief Returns the index of the given node. |
---|
214 | /// |
---|
215 | /// Returns the index of the given node. Since this structure is |
---|
216 | /// completely static, the nodes can be indexed with integers from |
---|
217 | /// the range <tt>[0..nodeNum()-1]</tt>. |
---|
218 | /// The index of a node is the same as its ID. |
---|
219 | /// \sa operator()() |
---|
220 | static int index(const Node& node) { return Parent::index(node); } |
---|
221 | |
---|
222 | /// \brief Returns the arc connecting the given nodes. |
---|
223 | /// |
---|
224 | /// Returns the arc connecting the given nodes. |
---|
225 | Arc arc(Node u, Node v) const { |
---|
226 | return Parent::arc(u, v); |
---|
227 | } |
---|
228 | |
---|
229 | /// \brief Number of nodes. |
---|
230 | int nodeNum() const { return Parent::nodeNum(); } |
---|
231 | /// \brief Number of arcs. |
---|
232 | int arcNum() const { return Parent::arcNum(); } |
---|
233 | }; |
---|
234 | |
---|
235 | |
---|
236 | class FullGraphBase { |
---|
237 | public: |
---|
238 | |
---|
239 | typedef FullGraphBase Graph; |
---|
240 | |
---|
241 | class Node; |
---|
242 | class Arc; |
---|
243 | class Edge; |
---|
244 | |
---|
245 | protected: |
---|
246 | |
---|
247 | int _node_num; |
---|
248 | int _edge_num; |
---|
249 | |
---|
250 | FullGraphBase() {} |
---|
251 | |
---|
252 | void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; } |
---|
253 | |
---|
254 | int _uid(int e) const { |
---|
255 | int u = e / _node_num; |
---|
256 | int v = e % _node_num; |
---|
257 | return u < v ? u : _node_num - 2 - u; |
---|
258 | } |
---|
259 | |
---|
260 | int _vid(int e) const { |
---|
261 | int u = e / _node_num; |
---|
262 | int v = e % _node_num; |
---|
263 | return u < v ? v : _node_num - 1 - v; |
---|
264 | } |
---|
265 | |
---|
266 | void _uvid(int e, int& u, int& v) const { |
---|
267 | u = e / _node_num; |
---|
268 | v = e % _node_num; |
---|
269 | if (u >= v) { |
---|
270 | u = _node_num - 2 - u; |
---|
271 | v = _node_num - 1 - v; |
---|
272 | } |
---|
273 | } |
---|
274 | |
---|
275 | void _stid(int a, int& s, int& t) const { |
---|
276 | if ((a & 1) == 1) { |
---|
277 | _uvid(a >> 1, s, t); |
---|
278 | } else { |
---|
279 | _uvid(a >> 1, t, s); |
---|
280 | } |
---|
281 | } |
---|
282 | |
---|
283 | int _eid(int u, int v) const { |
---|
284 | if (u < (_node_num - 1) / 2) { |
---|
285 | return u * _node_num + v; |
---|
286 | } else { |
---|
287 | return (_node_num - 1 - u) * _node_num - v - 1; |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | public: |
---|
292 | |
---|
293 | Node operator()(int ix) const { return Node(ix); } |
---|
294 | static int index(const Node& node) { return node._id; } |
---|
295 | |
---|
296 | Edge edge(const Node& u, const Node& v) const { |
---|
297 | if (u._id < v._id) { |
---|
298 | return Edge(_eid(u._id, v._id)); |
---|
299 | } else if (u._id != v._id) { |
---|
300 | return Edge(_eid(v._id, u._id)); |
---|
301 | } else { |
---|
302 | return INVALID; |
---|
303 | } |
---|
304 | } |
---|
305 | |
---|
306 | Arc arc(const Node& s, const Node& t) const { |
---|
307 | if (s._id < t._id) { |
---|
308 | return Arc((_eid(s._id, t._id) << 1) | 1); |
---|
309 | } else if (s._id != t._id) { |
---|
310 | return Arc(_eid(t._id, s._id) << 1); |
---|
311 | } else { |
---|
312 | return INVALID; |
---|
313 | } |
---|
314 | } |
---|
315 | |
---|
316 | typedef True NodeNumTag; |
---|
317 | typedef True ArcNumTag; |
---|
318 | typedef True EdgeNumTag; |
---|
319 | |
---|
320 | int nodeNum() const { return _node_num; } |
---|
321 | int arcNum() const { return 2 * _edge_num; } |
---|
322 | int edgeNum() const { return _edge_num; } |
---|
323 | |
---|
324 | static int id(Node node) { return node._id; } |
---|
325 | static int id(Arc arc) { return arc._id; } |
---|
326 | static int id(Edge edge) { return edge._id; } |
---|
327 | |
---|
328 | int maxNodeId() const { return _node_num-1; } |
---|
329 | int maxArcId() const { return 2 * _edge_num-1; } |
---|
330 | int maxEdgeId() const { return _edge_num-1; } |
---|
331 | |
---|
332 | static Node nodeFromId(int id) { return Node(id);} |
---|
333 | static Arc arcFromId(int id) { return Arc(id);} |
---|
334 | static Edge edgeFromId(int id) { return Edge(id);} |
---|
335 | |
---|
336 | Node u(Edge edge) const { |
---|
337 | return Node(_uid(edge._id)); |
---|
338 | } |
---|
339 | |
---|
340 | Node v(Edge edge) const { |
---|
341 | return Node(_vid(edge._id)); |
---|
342 | } |
---|
343 | |
---|
344 | Node source(Arc arc) const { |
---|
345 | return Node((arc._id & 1) == 1 ? |
---|
346 | _uid(arc._id >> 1) : _vid(arc._id >> 1)); |
---|
347 | } |
---|
348 | |
---|
349 | Node target(Arc arc) const { |
---|
350 | return Node((arc._id & 1) == 1 ? |
---|
351 | _vid(arc._id >> 1) : _uid(arc._id >> 1)); |
---|
352 | } |
---|
353 | |
---|
354 | typedef True FindEdgeTag; |
---|
355 | typedef True FindArcTag; |
---|
356 | |
---|
357 | Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
---|
358 | return prev != INVALID ? INVALID : edge(u, v); |
---|
359 | } |
---|
360 | |
---|
361 | Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
---|
362 | return prev != INVALID ? INVALID : arc(s, t); |
---|
363 | } |
---|
364 | |
---|
365 | class Node { |
---|
366 | friend class FullGraphBase; |
---|
367 | |
---|
368 | protected: |
---|
369 | int _id; |
---|
370 | Node(int id) : _id(id) {} |
---|
371 | public: |
---|
372 | Node() {} |
---|
373 | Node (Invalid) { _id = -1; } |
---|
374 | bool operator==(const Node node) const {return _id == node._id;} |
---|
375 | bool operator!=(const Node node) const {return _id != node._id;} |
---|
376 | bool operator<(const Node node) const {return _id < node._id;} |
---|
377 | }; |
---|
378 | |
---|
379 | class Edge { |
---|
380 | friend class FullGraphBase; |
---|
381 | friend class Arc; |
---|
382 | |
---|
383 | protected: |
---|
384 | int _id; |
---|
385 | |
---|
386 | Edge(int id) : _id(id) {} |
---|
387 | |
---|
388 | public: |
---|
389 | Edge() { } |
---|
390 | Edge (Invalid) { _id = -1; } |
---|
391 | |
---|
392 | bool operator==(const Edge edge) const {return _id == edge._id;} |
---|
393 | bool operator!=(const Edge edge) const {return _id != edge._id;} |
---|
394 | bool operator<(const Edge edge) const {return _id < edge._id;} |
---|
395 | }; |
---|
396 | |
---|
397 | class Arc { |
---|
398 | friend class FullGraphBase; |
---|
399 | |
---|
400 | protected: |
---|
401 | int _id; |
---|
402 | |
---|
403 | Arc(int id) : _id(id) {} |
---|
404 | |
---|
405 | public: |
---|
406 | Arc() { } |
---|
407 | Arc (Invalid) { _id = -1; } |
---|
408 | |
---|
409 | operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); } |
---|
410 | |
---|
411 | bool operator==(const Arc arc) const {return _id == arc._id;} |
---|
412 | bool operator!=(const Arc arc) const {return _id != arc._id;} |
---|
413 | bool operator<(const Arc arc) const {return _id < arc._id;} |
---|
414 | }; |
---|
415 | |
---|
416 | static bool direction(Arc arc) { |
---|
417 | return (arc._id & 1) == 1; |
---|
418 | } |
---|
419 | |
---|
420 | static Arc direct(Edge edge, bool dir) { |
---|
421 | return Arc((edge._id << 1) | (dir ? 1 : 0)); |
---|
422 | } |
---|
423 | |
---|
424 | void first(Node& node) const { |
---|
425 | node._id = _node_num - 1; |
---|
426 | } |
---|
427 | |
---|
428 | static void next(Node& node) { |
---|
429 | --node._id; |
---|
430 | } |
---|
431 | |
---|
432 | void first(Arc& arc) const { |
---|
433 | arc._id = (_edge_num << 1) - 1; |
---|
434 | } |
---|
435 | |
---|
436 | static void next(Arc& arc) { |
---|
437 | --arc._id; |
---|
438 | } |
---|
439 | |
---|
440 | void first(Edge& edge) const { |
---|
441 | edge._id = _edge_num - 1; |
---|
442 | } |
---|
443 | |
---|
444 | static void next(Edge& edge) { |
---|
445 | --edge._id; |
---|
446 | } |
---|
447 | |
---|
448 | void firstOut(Arc& arc, const Node& node) const { |
---|
449 | int s = node._id, t = _node_num - 1; |
---|
450 | if (s < t) { |
---|
451 | arc._id = (_eid(s, t) << 1) | 1; |
---|
452 | } else { |
---|
453 | --t; |
---|
454 | arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
---|
455 | } |
---|
456 | } |
---|
457 | |
---|
458 | void nextOut(Arc& arc) const { |
---|
459 | int s, t; |
---|
460 | _stid(arc._id, s, t); |
---|
461 | --t; |
---|
462 | if (s < t) { |
---|
463 | arc._id = (_eid(s, t) << 1) | 1; |
---|
464 | } else { |
---|
465 | if (s == t) --t; |
---|
466 | arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | void firstIn(Arc& arc, const Node& node) const { |
---|
471 | int s = _node_num - 1, t = node._id; |
---|
472 | if (s > t) { |
---|
473 | arc._id = (_eid(t, s) << 1); |
---|
474 | } else { |
---|
475 | --s; |
---|
476 | arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
---|
477 | } |
---|
478 | } |
---|
479 | |
---|
480 | void nextIn(Arc& arc) const { |
---|
481 | int s, t; |
---|
482 | _stid(arc._id, s, t); |
---|
483 | --s; |
---|
484 | if (s > t) { |
---|
485 | arc._id = (_eid(t, s) << 1); |
---|
486 | } else { |
---|
487 | if (s == t) --s; |
---|
488 | arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
---|
489 | } |
---|
490 | } |
---|
491 | |
---|
492 | void firstInc(Edge& edge, bool& dir, const Node& node) const { |
---|
493 | int u = node._id, v = _node_num - 1; |
---|
494 | if (u < v) { |
---|
495 | edge._id = _eid(u, v); |
---|
496 | dir = true; |
---|
497 | } else { |
---|
498 | --v; |
---|
499 | edge._id = (v != -1 ? _eid(v, u) : -1); |
---|
500 | dir = false; |
---|
501 | } |
---|
502 | } |
---|
503 | |
---|
504 | void nextInc(Edge& edge, bool& dir) const { |
---|
505 | int u, v; |
---|
506 | if (dir) { |
---|
507 | _uvid(edge._id, u, v); |
---|
508 | --v; |
---|
509 | if (u < v) { |
---|
510 | edge._id = _eid(u, v); |
---|
511 | } else { |
---|
512 | --v; |
---|
513 | edge._id = (v != -1 ? _eid(v, u) : -1); |
---|
514 | dir = false; |
---|
515 | } |
---|
516 | } else { |
---|
517 | _uvid(edge._id, v, u); |
---|
518 | --v; |
---|
519 | edge._id = (v != -1 ? _eid(v, u) : -1); |
---|
520 | } |
---|
521 | } |
---|
522 | |
---|
523 | }; |
---|
524 | |
---|
525 | typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
---|
526 | |
---|
527 | /// \ingroup graphs |
---|
528 | /// |
---|
529 | /// \brief An undirected full graph class. |
---|
530 | /// |
---|
531 | /// FullGraph is a simple and fast implmenetation of undirected full |
---|
532 | /// (complete) graphs. It contains an edge between every distinct pair |
---|
533 | /// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
---|
534 | /// This class is completely static and it needs constant memory space. |
---|
535 | /// Thus you can neither add nor delete nodes or edges, however |
---|
536 | /// the structure can be resized using resize(). |
---|
537 | /// |
---|
538 | /// This type fully conforms to the \ref concepts::Graph "Graph concept". |
---|
539 | /// Most of its member functions and nested classes are documented |
---|
540 | /// only in the concept class. |
---|
541 | /// |
---|
542 | /// This class provides constant time counting for nodes, edges and arcs. |
---|
543 | /// |
---|
544 | /// \note FullDigraph and FullGraph classes are very similar, |
---|
545 | /// but there are two differences. While FullDigraph |
---|
546 | /// conforms only to the \ref concepts::Digraph "Digraph" concept, |
---|
547 | /// this class conforms to the \ref concepts::Graph "Graph" concept, |
---|
548 | /// moreover this class does not contain a loop for each |
---|
549 | /// node as FullDigraph does. |
---|
550 | /// |
---|
551 | /// \sa FullDigraph |
---|
552 | class FullGraph : public ExtendedFullGraphBase { |
---|
553 | typedef ExtendedFullGraphBase Parent; |
---|
554 | |
---|
555 | public: |
---|
556 | |
---|
557 | /// \brief Default constructor. |
---|
558 | /// |
---|
559 | /// Default constructor. The number of nodes and edges will be zero. |
---|
560 | FullGraph() { construct(0); } |
---|
561 | |
---|
562 | /// \brief Constructor |
---|
563 | /// |
---|
564 | /// Constructor. |
---|
565 | /// \param n The number of the nodes. |
---|
566 | FullGraph(int n) { construct(n); } |
---|
567 | |
---|
568 | /// \brief Resizes the graph |
---|
569 | /// |
---|
570 | /// This function resizes the graph. It fully destroys and |
---|
571 | /// rebuilds the structure, therefore the maps of the graph will be |
---|
572 | /// reallocated automatically and the previous values will be lost. |
---|
573 | void resize(int n) { |
---|
574 | Parent::notifier(Arc()).clear(); |
---|
575 | Parent::notifier(Edge()).clear(); |
---|
576 | Parent::notifier(Node()).clear(); |
---|
577 | construct(n); |
---|
578 | Parent::notifier(Node()).build(); |
---|
579 | Parent::notifier(Edge()).build(); |
---|
580 | Parent::notifier(Arc()).build(); |
---|
581 | } |
---|
582 | |
---|
583 | /// \brief Returns the node with the given index. |
---|
584 | /// |
---|
585 | /// Returns the node with the given index. Since this structure is |
---|
586 | /// completely static, the nodes can be indexed with integers from |
---|
587 | /// the range <tt>[0..nodeNum()-1]</tt>. |
---|
588 | /// The index of a node is the same as its ID. |
---|
589 | /// \sa index() |
---|
590 | Node operator()(int ix) const { return Parent::operator()(ix); } |
---|
591 | |
---|
592 | /// \brief Returns the index of the given node. |
---|
593 | /// |
---|
594 | /// Returns the index of the given node. Since this structure is |
---|
595 | /// completely static, the nodes can be indexed with integers from |
---|
596 | /// the range <tt>[0..nodeNum()-1]</tt>. |
---|
597 | /// The index of a node is the same as its ID. |
---|
598 | /// \sa operator()() |
---|
599 | static int index(const Node& node) { return Parent::index(node); } |
---|
600 | |
---|
601 | /// \brief Returns the arc connecting the given nodes. |
---|
602 | /// |
---|
603 | /// Returns the arc connecting the given nodes. |
---|
604 | Arc arc(Node s, Node t) const { |
---|
605 | return Parent::arc(s, t); |
---|
606 | } |
---|
607 | |
---|
608 | /// \brief Returns the edge connecting the given nodes. |
---|
609 | /// |
---|
610 | /// Returns the edge connecting the given nodes. |
---|
611 | Edge edge(Node u, Node v) const { |
---|
612 | return Parent::edge(u, v); |
---|
613 | } |
---|
614 | |
---|
615 | /// \brief Number of nodes. |
---|
616 | int nodeNum() const { return Parent::nodeNum(); } |
---|
617 | /// \brief Number of arcs. |
---|
618 | int arcNum() const { return Parent::arcNum(); } |
---|
619 | /// \brief Number of edges. |
---|
620 | int edgeNum() const { return Parent::edgeNum(); } |
---|
621 | |
---|
622 | }; |
---|
623 | |
---|
624 | class FullBpGraphBase { |
---|
625 | |
---|
626 | protected: |
---|
627 | |
---|
628 | int _red_num, _blue_num; |
---|
629 | int _node_num, _edge_num; |
---|
630 | |
---|
631 | public: |
---|
632 | |
---|
633 | typedef FullBpGraphBase Graph; |
---|
634 | |
---|
635 | class Node; |
---|
636 | class Arc; |
---|
637 | class Edge; |
---|
638 | |
---|
639 | class Node { |
---|
640 | friend class FullBpGraphBase; |
---|
641 | protected: |
---|
642 | |
---|
643 | int _id; |
---|
644 | explicit Node(int id) { _id = id;} |
---|
645 | |
---|
646 | public: |
---|
647 | Node() {} |
---|
648 | Node (Invalid) { _id = -1; } |
---|
649 | bool operator==(const Node& node) const {return _id == node._id;} |
---|
650 | bool operator!=(const Node& node) const {return _id != node._id;} |
---|
651 | bool operator<(const Node& node) const {return _id < node._id;} |
---|
652 | }; |
---|
653 | |
---|
654 | class Edge { |
---|
655 | friend class FullBpGraphBase; |
---|
656 | protected: |
---|
657 | |
---|
658 | int _id; |
---|
659 | explicit Edge(int id) { _id = id;} |
---|
660 | |
---|
661 | public: |
---|
662 | Edge() {} |
---|
663 | Edge (Invalid) { _id = -1; } |
---|
664 | bool operator==(const Edge& arc) const {return _id == arc._id;} |
---|
665 | bool operator!=(const Edge& arc) const {return _id != arc._id;} |
---|
666 | bool operator<(const Edge& arc) const {return _id < arc._id;} |
---|
667 | }; |
---|
668 | |
---|
669 | class Arc { |
---|
670 | friend class FullBpGraphBase; |
---|
671 | protected: |
---|
672 | |
---|
673 | int _id; |
---|
674 | explicit Arc(int id) { _id = id;} |
---|
675 | |
---|
676 | public: |
---|
677 | operator Edge() const { |
---|
678 | return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
---|
679 | } |
---|
680 | |
---|
681 | Arc() {} |
---|
682 | Arc (Invalid) { _id = -1; } |
---|
683 | bool operator==(const Arc& arc) const {return _id == arc._id;} |
---|
684 | bool operator!=(const Arc& arc) const {return _id != arc._id;} |
---|
685 | bool operator<(const Arc& arc) const {return _id < arc._id;} |
---|
686 | }; |
---|
687 | |
---|
688 | |
---|
689 | protected: |
---|
690 | |
---|
691 | FullBpGraphBase() |
---|
692 | : _red_num(0), _blue_num(0), _node_num(0), _edge_num(0) {} |
---|
693 | |
---|
694 | void construct(int redNum, int blueNum) { |
---|
695 | _red_num = redNum; _blue_num = blueNum; |
---|
696 | _node_num = redNum + blueNum; _edge_num = redNum * blueNum; |
---|
697 | } |
---|
698 | |
---|
699 | public: |
---|
700 | |
---|
701 | typedef True NodeNumTag; |
---|
702 | typedef True EdgeNumTag; |
---|
703 | typedef True ArcNumTag; |
---|
704 | |
---|
705 | int nodeNum() const { return _node_num; } |
---|
706 | int redNum() const { return _red_num; } |
---|
707 | int blueNum() const { return _blue_num; } |
---|
708 | int edgeNum() const { return _edge_num; } |
---|
709 | int arcNum() const { return 2 * _edge_num; } |
---|
710 | |
---|
711 | int maxNodeId() const { return _node_num - 1; } |
---|
712 | int maxRedId() const { return _red_num - 1; } |
---|
713 | int maxBlueId() const { return _blue_num - 1; } |
---|
714 | int maxEdgeId() const { return _edge_num - 1; } |
---|
715 | int maxArcId() const { return 2 * _edge_num - 1; } |
---|
716 | |
---|
717 | bool red(Node n) const { return n._id < _red_num; } |
---|
718 | bool blue(Node n) const { return n._id >= _red_num; } |
---|
719 | |
---|
720 | Node source(Arc a) const { |
---|
721 | if (a._id & 1) { |
---|
722 | return Node((a._id >> 1) % _red_num); |
---|
723 | } else { |
---|
724 | return Node((a._id >> 1) / _red_num + _red_num); |
---|
725 | } |
---|
726 | } |
---|
727 | Node target(Arc a) const { |
---|
728 | if (a._id & 1) { |
---|
729 | return Node((a._id >> 1) / _red_num + _red_num); |
---|
730 | } else { |
---|
731 | return Node((a._id >> 1) % _red_num); |
---|
732 | } |
---|
733 | } |
---|
734 | |
---|
735 | Node redNode(Edge e) const { |
---|
736 | return Node(e._id % _red_num); |
---|
737 | } |
---|
738 | Node blueNode(Edge e) const { |
---|
739 | return Node(e._id / _red_num + _red_num); |
---|
740 | } |
---|
741 | |
---|
742 | static bool direction(Arc a) { |
---|
743 | return (a._id & 1) == 1; |
---|
744 | } |
---|
745 | |
---|
746 | static Arc direct(Edge e, bool d) { |
---|
747 | return Arc(e._id * 2 + (d ? 1 : 0)); |
---|
748 | } |
---|
749 | |
---|
750 | void first(Node& node) const { |
---|
751 | node._id = _node_num - 1; |
---|
752 | } |
---|
753 | |
---|
754 | static void next(Node& node) { |
---|
755 | --node._id; |
---|
756 | } |
---|
757 | |
---|
758 | void firstRed(Node& node) const { |
---|
759 | node._id = _red_num - 1; |
---|
760 | } |
---|
761 | |
---|
762 | static void nextRed(Node& node) { |
---|
763 | --node._id; |
---|
764 | } |
---|
765 | |
---|
766 | void firstBlue(Node& node) const { |
---|
767 | if (_red_num == _node_num) node._id = -1; |
---|
768 | else node._id = _node_num - 1; |
---|
769 | } |
---|
770 | |
---|
771 | void nextBlue(Node& node) const { |
---|
772 | if (node._id == _red_num) node._id = -1; |
---|
773 | else --node._id; |
---|
774 | } |
---|
775 | |
---|
776 | void first(Arc& arc) const { |
---|
777 | arc._id = 2 * _edge_num - 1; |
---|
778 | } |
---|
779 | |
---|
780 | static void next(Arc& arc) { |
---|
781 | --arc._id; |
---|
782 | } |
---|
783 | |
---|
784 | void first(Edge& arc) const { |
---|
785 | arc._id = _edge_num - 1; |
---|
786 | } |
---|
787 | |
---|
788 | static void next(Edge& arc) { |
---|
789 | --arc._id; |
---|
790 | } |
---|
791 | |
---|
792 | void firstOut(Arc &a, const Node& v) const { |
---|
793 | if (v._id < _red_num) { |
---|
794 | a._id = 2 * (v._id + _red_num * (_blue_num - 1)) + 1; |
---|
795 | } else { |
---|
796 | a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)); |
---|
797 | } |
---|
798 | } |
---|
799 | void nextOut(Arc &a) const { |
---|
800 | if (a._id & 1) { |
---|
801 | a._id -= 2 * _red_num; |
---|
802 | if (a._id < 0) a._id = -1; |
---|
803 | } else { |
---|
804 | if (a._id % (2 * _red_num) == 0) a._id = -1; |
---|
805 | else a._id -= 2; |
---|
806 | } |
---|
807 | } |
---|
808 | |
---|
809 | void firstIn(Arc &a, const Node& v) const { |
---|
810 | if (v._id < _red_num) { |
---|
811 | a._id = 2 * (v._id + _red_num * (_blue_num - 1)); |
---|
812 | } else { |
---|
813 | a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)) + 1; |
---|
814 | } |
---|
815 | } |
---|
816 | void nextIn(Arc &a) const { |
---|
817 | if (a._id & 1) { |
---|
818 | if (a._id % (2 * _red_num) == 1) a._id = -1; |
---|
819 | else a._id -= 2; |
---|
820 | } else { |
---|
821 | a._id -= 2 * _red_num; |
---|
822 | if (a._id < 0) a._id = -1; |
---|
823 | } |
---|
824 | } |
---|
825 | |
---|
826 | void firstInc(Edge &e, bool& d, const Node& v) const { |
---|
827 | if (v._id < _red_num) { |
---|
828 | d = true; |
---|
829 | e._id = v._id + _red_num * (_blue_num - 1); |
---|
830 | } else { |
---|
831 | d = false; |
---|
832 | e._id = _red_num - 1 + _red_num * (v._id - _red_num); |
---|
833 | } |
---|
834 | } |
---|
835 | void nextInc(Edge &e, bool& d) const { |
---|
836 | if (d) { |
---|
837 | e._id -= _red_num; |
---|
838 | if (e._id < 0) e._id = -1; |
---|
839 | } else { |
---|
840 | if (e._id % _red_num == 0) e._id = -1; |
---|
841 | else --e._id; |
---|
842 | } |
---|
843 | } |
---|
844 | |
---|
845 | static int id(Node v) { return v._id; } |
---|
846 | int redId(Node v) const { |
---|
847 | LEMON_DEBUG(v._id < _red_num, "Node has to be red"); |
---|
848 | return v._id; |
---|
849 | } |
---|
850 | int blueId(Node v) const { |
---|
851 | LEMON_DEBUG(v._id >= _red_num, "Node has to be blue"); |
---|
852 | return v._id - _red_num; |
---|
853 | } |
---|
854 | static int id(Arc e) { return e._id; } |
---|
855 | static int id(Edge e) { return e._id; } |
---|
856 | |
---|
857 | static Node nodeFromId(int id) { return Node(id);} |
---|
858 | static Arc arcFromId(int id) { return Arc(id);} |
---|
859 | static Edge edgeFromId(int id) { return Edge(id);} |
---|
860 | |
---|
861 | bool valid(Node n) const { |
---|
862 | return n._id >= 0 && n._id < _node_num; |
---|
863 | } |
---|
864 | bool valid(Arc a) const { |
---|
865 | return a._id >= 0 && a._id < 2 * _edge_num; |
---|
866 | } |
---|
867 | bool valid(Edge e) const { |
---|
868 | return e._id >= 0 && e._id < _edge_num; |
---|
869 | } |
---|
870 | |
---|
871 | Node redNode(int index) const { |
---|
872 | return Node(index); |
---|
873 | } |
---|
874 | |
---|
875 | int redIndex(Node n) const { |
---|
876 | return n._id; |
---|
877 | } |
---|
878 | |
---|
879 | Node blueNode(int index) const { |
---|
880 | return Node(index + _red_num); |
---|
881 | } |
---|
882 | |
---|
883 | int blueIndex(Node n) const { |
---|
884 | return n._id - _red_num; |
---|
885 | } |
---|
886 | |
---|
887 | void clear() { |
---|
888 | _red_num = 0; _blue_num = 0; |
---|
889 | _node_num = 0; _edge_num = 0; |
---|
890 | } |
---|
891 | |
---|
892 | Edge edge(const Node& u, const Node& v) const { |
---|
893 | if (u._id < _red_num) { |
---|
894 | if (v._id < _red_num) { |
---|
895 | return Edge(-1); |
---|
896 | } else { |
---|
897 | return Edge(u._id + _red_num * (v._id - _red_num)); |
---|
898 | } |
---|
899 | } else { |
---|
900 | if (v._id < _red_num) { |
---|
901 | return Edge(v._id + _red_num * (u._id - _red_num)); |
---|
902 | } else { |
---|
903 | return Edge(-1); |
---|
904 | } |
---|
905 | } |
---|
906 | } |
---|
907 | |
---|
908 | Arc arc(const Node& u, const Node& v) const { |
---|
909 | if (u._id < _red_num) { |
---|
910 | if (v._id < _red_num) { |
---|
911 | return Arc(-1); |
---|
912 | } else { |
---|
913 | return Arc(2 * (u._id + _red_num * (v._id - _red_num)) + 1); |
---|
914 | } |
---|
915 | } else { |
---|
916 | if (v._id < _red_num) { |
---|
917 | return Arc(2 * (v._id + _red_num * (u._id - _red_num))); |
---|
918 | } else { |
---|
919 | return Arc(-1); |
---|
920 | } |
---|
921 | } |
---|
922 | } |
---|
923 | |
---|
924 | typedef True FindEdgeTag; |
---|
925 | typedef True FindArcTag; |
---|
926 | |
---|
927 | Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
---|
928 | return prev != INVALID ? INVALID : edge(u, v); |
---|
929 | } |
---|
930 | |
---|
931 | Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
---|
932 | return prev != INVALID ? INVALID : arc(s, t); |
---|
933 | } |
---|
934 | |
---|
935 | }; |
---|
936 | |
---|
937 | typedef BpGraphExtender<FullBpGraphBase> ExtendedFullBpGraphBase; |
---|
938 | |
---|
939 | /// \ingroup graphs |
---|
940 | /// |
---|
941 | /// \brief An undirected full bipartite graph class. |
---|
942 | /// |
---|
943 | /// FullBpGraph is a simple and fast implmenetation of undirected |
---|
944 | /// full bipartite graphs. It contains an edge between every |
---|
945 | /// red-blue pairs of nodes, therefore the number of edges is |
---|
946 | /// <tt>nr*nb</tt>. This class is completely static and it needs |
---|
947 | /// constant memory space. Thus you can neither add nor delete |
---|
948 | /// nodes or edges, however the structure can be resized using |
---|
949 | /// resize(). |
---|
950 | /// |
---|
951 | /// This type fully conforms to the \ref concepts::BpGraph "BpGraph concept". |
---|
952 | /// Most of its member functions and nested classes are documented |
---|
953 | /// only in the concept class. |
---|
954 | /// |
---|
955 | /// This class provides constant time counting for nodes, edges and arcs. |
---|
956 | /// |
---|
957 | /// \sa FullGraph |
---|
958 | class FullBpGraph : public ExtendedFullBpGraphBase { |
---|
959 | public: |
---|
960 | |
---|
961 | typedef ExtendedFullBpGraphBase Parent; |
---|
962 | |
---|
963 | /// \brief Default constructor. |
---|
964 | /// |
---|
965 | /// Default constructor. The number of nodes and edges will be zero. |
---|
966 | FullBpGraph() { construct(0, 0); } |
---|
967 | |
---|
968 | /// \brief Constructor |
---|
969 | /// |
---|
970 | /// Constructor. |
---|
971 | /// \param redNum The number of the red nodes. |
---|
972 | /// \param blueNum The number of the blue nodes. |
---|
973 | FullBpGraph(int redNum, int blueNum) { construct(redNum, blueNum); } |
---|
974 | |
---|
975 | /// \brief Resizes the graph |
---|
976 | /// |
---|
977 | /// This function resizes the graph. It fully destroys and |
---|
978 | /// rebuilds the structure, therefore the maps of the graph will be |
---|
979 | /// reallocated automatically and the previous values will be lost. |
---|
980 | void resize(int redNum, int blueNum) { |
---|
981 | Parent::notifier(Arc()).clear(); |
---|
982 | Parent::notifier(Edge()).clear(); |
---|
983 | Parent::notifier(Node()).clear(); |
---|
984 | Parent::notifier(BlueNode()).clear(); |
---|
985 | Parent::notifier(RedNode()).clear(); |
---|
986 | construct(redNum, blueNum); |
---|
987 | Parent::notifier(RedNode()).build(); |
---|
988 | Parent::notifier(BlueNode()).build(); |
---|
989 | Parent::notifier(Node()).build(); |
---|
990 | Parent::notifier(Edge()).build(); |
---|
991 | Parent::notifier(Arc()).build(); |
---|
992 | } |
---|
993 | |
---|
994 | /// \brief Returns the red node with the given index. |
---|
995 | /// |
---|
996 | /// Returns the red node with the given index. Since this |
---|
997 | /// structure is completely static, the red nodes can be indexed |
---|
998 | /// with integers from the range <tt>[0..redNum()-1]</tt>. |
---|
999 | /// \sa redIndex() |
---|
1000 | Node redNode(int index) const { return Parent::redNode(index); } |
---|
1001 | |
---|
1002 | /// \brief Returns the index of the given red node. |
---|
1003 | /// |
---|
1004 | /// Returns the index of the given red node. Since this structure |
---|
1005 | /// is completely static, the red nodes can be indexed with |
---|
1006 | /// integers from the range <tt>[0..redNum()-1]</tt>. |
---|
1007 | /// |
---|
1008 | /// \sa operator()() |
---|
1009 | int redIndex(Node node) const { return Parent::redIndex(node); } |
---|
1010 | |
---|
1011 | /// \brief Returns the blue node with the given index. |
---|
1012 | /// |
---|
1013 | /// Returns the blue node with the given index. Since this |
---|
1014 | /// structure is completely static, the blue nodes can be indexed |
---|
1015 | /// with integers from the range <tt>[0..blueNum()-1]</tt>. |
---|
1016 | /// \sa blueIndex() |
---|
1017 | Node blueNode(int index) const { return Parent::blueNode(index); } |
---|
1018 | |
---|
1019 | /// \brief Returns the index of the given blue node. |
---|
1020 | /// |
---|
1021 | /// Returns the index of the given blue node. Since this structure |
---|
1022 | /// is completely static, the blue nodes can be indexed with |
---|
1023 | /// integers from the range <tt>[0..blueNum()-1]</tt>. |
---|
1024 | /// |
---|
1025 | /// \sa operator()() |
---|
1026 | int blueIndex(Node node) const { return Parent::blueIndex(node); } |
---|
1027 | |
---|
1028 | /// \brief Returns the edge which connects the given nodes. |
---|
1029 | /// |
---|
1030 | /// Returns the edge which connects the given nodes. |
---|
1031 | Edge edge(const Node& u, const Node& v) const { |
---|
1032 | return Parent::edge(u, v); |
---|
1033 | } |
---|
1034 | |
---|
1035 | /// \brief Returns the arc which connects the given nodes. |
---|
1036 | /// |
---|
1037 | /// Returns the arc which connects the given nodes. |
---|
1038 | Arc arc(const Node& u, const Node& v) const { |
---|
1039 | return Parent::arc(u, v); |
---|
1040 | } |
---|
1041 | |
---|
1042 | /// \brief Number of nodes. |
---|
1043 | int nodeNum() const { return Parent::nodeNum(); } |
---|
1044 | /// \brief Number of red nodes. |
---|
1045 | int redNum() const { return Parent::redNum(); } |
---|
1046 | /// \brief Number of blue nodes. |
---|
1047 | int blueNum() const { return Parent::blueNum(); } |
---|
1048 | /// \brief Number of arcs. |
---|
1049 | int arcNum() const { return Parent::arcNum(); } |
---|
1050 | /// \brief Number of edges. |
---|
1051 | int edgeNum() const { return Parent::edgeNum(); } |
---|
1052 | }; |
---|
1053 | |
---|
1054 | |
---|
1055 | } //namespace lemon |
---|
1056 | |
---|
1057 | |
---|
1058 | #endif //LEMON_FULL_GRAPH_H |
---|