/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_GREEDY_TSP_H #define LEMON_GREEDY_TSP_H /// \ingroup tsp /// \file /// \brief Greedy algorithm for symmetric TSP #include #include #include #include namespace lemon { /// \ingroup tsp /// /// \brief Greedy algorithm for symmetric TSP. /// /// GreedyTsp implements the greedy heuristic for solving /// symmetric \ref tsp "TSP". /// /// This algorithm is quite similar to the \ref NearestNeighborTsp /// "nearest neighbor" heuristic, but it maintains a set of disjoint paths. /// At each step, the shortest possible edge is added to these paths /// as long as it does not create a cycle of less than n edges and it does /// not increase the degree of any node above two. /// /// This method runs in O(n2) time. /// It quickly finds a relatively short tour for most TSP instances, /// but it could also yield a really bad (or even the worst) solution /// in special cases. /// /// \tparam CM Type of the cost map. template class GreedyTsp { public: /// Type of the cost map typedef CM CostMap; /// Type of the edge costs typedef typename CM::Value Cost; private: GRAPH_TYPEDEFS(FullGraph); const FullGraph &_gr; const CostMap &_cost; Cost _sum; std::vector _path; private: // Functor class to compare edges by their costs class EdgeComp { private: const CostMap &_cost; public: EdgeComp(const CostMap &cost) : _cost(cost) {} bool operator()(const Edge &a, const Edge &b) const { return _cost[a] < _cost[b]; } }; public: /// \brief Constructor /// /// Constructor. /// \param gr The \ref FullGraph "full graph" the algorithm runs on. /// \param cost The cost map. GreedyTsp(const FullGraph &gr, const CostMap &cost) : _gr(gr), _cost(cost) {} /// \name Execution Control /// @{ /// \brief Runs the algorithm. /// /// This function runs the algorithm. /// /// \return The total cost of the found tour. Cost run() { _path.clear(); if (_gr.nodeNum() == 0) return _sum = 0; else if (_gr.nodeNum() == 1) { _path.push_back(_gr(0)); return _sum = 0; } std::vector plist; plist.resize(_gr.nodeNum()*2, -1); std::vector sorted_edges; sorted_edges.reserve(_gr.edgeNum()); for (EdgeIt e(_gr); e != INVALID; ++e) sorted_edges.push_back(e); std::sort(sorted_edges.begin(), sorted_edges.end(), EdgeComp(_cost)); FullGraph::NodeMap item_int_map(_gr); UnionFind > union_find(item_int_map); for (NodeIt n(_gr); n != INVALID; ++n) union_find.insert(n); FullGraph::NodeMap degree(_gr, 0); int nodesNum = 0, i = 0; while (nodesNum != _gr.nodeNum()-1) { Edge e = sorted_edges[i++]; Node u = _gr.u(e), v = _gr.v(e); if (degree[u] <= 1 && degree[v] <= 1) { if (union_find.join(u, v)) { const int uid = _gr.id(u), vid = _gr.id(v); plist[uid*2 + degree[u]] = vid; plist[vid*2 + degree[v]] = uid; ++degree[u]; ++degree[v]; ++nodesNum; } } } for (int i=0, n=-1; i<_gr.nodeNum()*2; ++i) { if (plist[i] == -1) { if (n==-1) { n = i; } else { plist[n] = i/2; plist[i] = n/2; break; } } } for (int i=0, next=0, last=-1; i!=_gr.nodeNum(); ++i) { _path.push_back(_gr.nodeFromId(next)); if (plist[2*next] != last) { last = next; next = plist[2*next]; } else { last = next; next = plist[2*next+1]; } } _sum = _cost[_gr.edge(_path.back(), _path.front())]; for (int i = 0; i < int(_path.size())-1; ++i) { _sum += _cost[_gr.edge(_path[i], _path[i+1])]; } return _sum; } /// @} /// \name Query Functions /// @{ /// \brief The total cost of the found tour. /// /// This function returns the total cost of the found tour. /// /// \pre run() must be called before using this function. Cost tourCost() const { return _sum; } /// \brief Returns a const reference to the node sequence of the /// found tour. /// /// This function returns a const reference to a vector /// that stores the node sequence of the found tour. /// /// \pre run() must be called before using this function. const std::vector& tourNodes() const { return _path; } /// \brief Gives back the node sequence of the found tour. /// /// This function copies the node sequence of the found tour into /// an STL container through the given output iterator. The /// value_type of the container must be FullGraph::Node. /// For example, /// \code /// std::vector nodes(countNodes(graph)); /// tsp.tourNodes(nodes.begin()); /// \endcode /// or /// \code /// std::list nodes; /// tsp.tourNodes(std::back_inserter(nodes)); /// \endcode /// /// \pre run() must be called before using this function. template void tourNodes(Iterator out) const { std::copy(_path.begin(), _path.end(), out); } /// \brief Gives back the found tour as a path. /// /// This function copies the found tour as a list of arcs/edges into /// the given \ref concept::Path "path structure". /// /// \pre run() must be called before using this function. template void tour(Path &path) const { path.clear(); for (int i = 0; i < int(_path.size()) - 1; ++i) { path.addBack(_gr.arc(_path[i], _path[i+1])); } if (int(_path.size()) >= 2) { path.addBack(_gr.arc(_path.back(), _path.front())); } } /// @} }; }; // namespace lemon #endif