/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_HOWARD_H #define LEMON_HOWARD_H /// \ingroup min_mean_cycle /// /// \file /// \brief Howard's algorithm for finding a minimum mean cycle. #include #include #include #include #include #include namespace lemon { /// \brief Default traits class of Howard class. /// /// Default traits class of Howard class. /// \tparam GR The type of the digraph. /// \tparam LEN The type of the length map. /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. #ifdef DOXYGEN template #else template ::is_integer> #endif struct HowardDefaultTraits { /// The type of the digraph typedef GR Digraph; /// The type of the length map typedef LEN LengthMap; /// The type of the arc lengths typedef typename LengthMap::Value Value; /// \brief The large value type used for internal computations /// /// The large value type used for internal computations. /// It is \c long \c long if the \c Value type is integer, /// otherwise it is \c double. /// \c Value must be convertible to \c LargeValue. typedef double LargeValue; /// The tolerance type used for internal computations typedef lemon::Tolerance Tolerance; /// \brief The path type of the found cycles /// /// The path type of the found cycles. /// It must conform to the \ref lemon::concepts::Path "Path" concept /// and it must have an \c addBack() function. typedef lemon::Path Path; }; // Default traits class for integer value types template struct HowardDefaultTraits { typedef GR Digraph; typedef LEN LengthMap; typedef typename LengthMap::Value Value; #ifdef LEMON_HAVE_LONG_LONG typedef long long LargeValue; #else typedef long LargeValue; #endif typedef lemon::Tolerance Tolerance; typedef lemon::Path Path; }; /// \addtogroup min_mean_cycle /// @{ /// \brief Implementation of Howard's algorithm for finding a minimum /// mean cycle. /// /// This class implements Howard's policy iteration algorithm for finding /// a directed cycle of minimum mean length (cost) in a digraph /// \ref amo93networkflows, \ref dasdan98minmeancycle. /// This class provides the most efficient algorithm for the /// minimum mean cycle problem, though the best known theoretical /// bound on its running time is exponential. /// /// \tparam GR The type of the digraph the algorithm runs on. /// \tparam LEN The type of the length map. The default /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". /// \tparam TR The traits class that defines various types used by the /// algorithm. By default, it is \ref HowardDefaultTraits /// "HowardDefaultTraits". /// In most cases, this parameter should not be set directly, /// consider to use the named template parameters instead. #ifdef DOXYGEN template #else template < typename GR, typename LEN = typename GR::template ArcMap, typename TR = HowardDefaultTraits > #endif class Howard { public: /// The type of the digraph typedef typename TR::Digraph Digraph; /// The type of the length map typedef typename TR::LengthMap LengthMap; /// The type of the arc lengths typedef typename TR::Value Value; /// \brief The large value type /// /// The large value type used for internal computations. /// By default, it is \c long \c long if the \c Value type is integer, /// otherwise it is \c double. typedef typename TR::LargeValue LargeValue; /// The tolerance type typedef typename TR::Tolerance Tolerance; /// \brief The path type of the found cycles /// /// The path type of the found cycles. /// Using the \ref HowardDefaultTraits "default traits class", /// it is \ref lemon::Path "Path". typedef typename TR::Path Path; /// The \ref HowardDefaultTraits "traits class" of the algorithm typedef TR Traits; private: TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); // The digraph the algorithm runs on const Digraph &_gr; // The length of the arcs const LengthMap &_length; // Data for the found cycles bool _curr_found, _best_found; LargeValue _curr_length, _best_length; int _curr_size, _best_size; Node _curr_node, _best_node; Path *_cycle_path; bool _local_path; // Internal data used by the algorithm typename Digraph::template NodeMap _policy; typename Digraph::template NodeMap _reached; typename Digraph::template NodeMap _level; typename Digraph::template NodeMap _dist; // Data for storing the strongly connected components int _comp_num; typename Digraph::template NodeMap _comp; std::vector > _comp_nodes; std::vector* _nodes; typename Digraph::template NodeMap > _in_arcs; // Queue used for BFS search std::vector _queue; int _qfront, _qback; Tolerance _tolerance; // Infinite constant const LargeValue INF; public: /// \name Named Template Parameters /// @{ template struct SetLargeValueTraits : public Traits { typedef T LargeValue; typedef lemon::Tolerance Tolerance; }; /// \brief \ref named-templ-param "Named parameter" for setting /// \c LargeValue type. /// /// \ref named-templ-param "Named parameter" for setting \c LargeValue /// type. It is used for internal computations in the algorithm. template struct SetLargeValue : public Howard > { typedef Howard > Create; }; template struct SetPathTraits : public Traits { typedef T Path; }; /// \brief \ref named-templ-param "Named parameter" for setting /// \c %Path type. /// /// \ref named-templ-param "Named parameter" for setting the \c %Path /// type of the found cycles. /// It must conform to the \ref lemon::concepts::Path "Path" concept /// and it must have an \c addBack() function. template struct SetPath : public Howard > { typedef Howard > Create; }; /// @} public: /// \brief Constructor. /// /// The constructor of the class. /// /// \param digraph The digraph the algorithm runs on. /// \param length The lengths (costs) of the arcs. Howard( const Digraph &digraph, const LengthMap &length ) : _gr(digraph), _length(length), _best_found(false), _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), _comp(digraph), _in_arcs(digraph), INF(std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : std::numeric_limits::max()) {} /// Destructor. ~Howard() { if (_local_path) delete _cycle_path; } /// \brief Set the path structure for storing the found cycle. /// /// This function sets an external path structure for storing the /// found cycle. /// /// If you don't call this function before calling \ref run() or /// \ref findMinMean(), it will allocate a local \ref Path "path" /// structure. The destuctor deallocates this automatically /// allocated object, of course. /// /// \note The algorithm calls only the \ref lemon::Path::addBack() /// "addBack()" function of the given path structure. /// /// \return (*this) Howard& cycle(Path &path) { if (_local_path) { delete _cycle_path; _local_path = false; } _cycle_path = &path; return *this; } /// \brief Set the tolerance used by the algorithm. /// /// This function sets the tolerance object used by the algorithm. /// /// \return (*this) Howard& tolerance(const Tolerance& tolerance) { _tolerance = tolerance; return *this; } /// \brief Return a const reference to the tolerance. /// /// This function returns a const reference to the tolerance object /// used by the algorithm. const Tolerance& tolerance() const { return _tolerance; } /// \name Execution control /// The simplest way to execute the algorithm is to call the \ref run() /// function.\n /// If you only need the minimum mean length, you may call /// \ref findMinMean(). /// @{ /// \brief Run the algorithm. /// /// This function runs the algorithm. /// It can be called more than once (e.g. if the underlying digraph /// and/or the arc lengths have been modified). /// /// \return \c true if a directed cycle exists in the digraph. /// /// \note mmc.run() is just a shortcut of the following code. /// \code /// return mmc.findMinMean() && mmc.findCycle(); /// \endcode bool run() { return findMinMean() && findCycle(); } /// \brief Find the minimum cycle mean. /// /// This function finds the minimum mean length of the directed /// cycles in the digraph. /// /// \return \c true if a directed cycle exists in the digraph. bool findMinMean() { // Initialize and find strongly connected components init(); findComponents(); // Find the minimum cycle mean in the components for (int comp = 0; comp < _comp_num; ++comp) { // Find the minimum mean cycle in the current component if (!buildPolicyGraph(comp)) continue; while (true) { findPolicyCycle(); if (!computeNodeDistances()) break; } // Update the best cycle (global minimum mean cycle) if ( _curr_found && (!_best_found || _curr_length * _best_size < _best_length * _curr_size) ) { _best_found = true; _best_length = _curr_length; _best_size = _curr_size; _best_node = _curr_node; } } return _best_found; } /// \brief Find a minimum mean directed cycle. /// /// This function finds a directed cycle of minimum mean length /// in the digraph using the data computed by findMinMean(). /// /// \return \c true if a directed cycle exists in the digraph. /// /// \pre \ref findMinMean() must be called before using this function. bool findCycle() { if (!_best_found) return false; _cycle_path->addBack(_policy[_best_node]); for ( Node v = _best_node; (v = _gr.target(_policy[v])) != _best_node; ) { _cycle_path->addBack(_policy[v]); } return true; } /// @} /// \name Query Functions /// The results of the algorithm can be obtained using these /// functions.\n /// The algorithm should be executed before using them. /// @{ /// \brief Return the total length of the found cycle. /// /// This function returns the total length of the found cycle. /// /// \pre \ref run() or \ref findMinMean() must be called before /// using this function. Value cycleLength() const { return static_cast(_best_length); } /// \brief Return the number of arcs on the found cycle. /// /// This function returns the number of arcs on the found cycle. /// /// \pre \ref run() or \ref findMinMean() must be called before /// using this function. int cycleArcNum() const { return _best_size; } /// \brief Return the mean length of the found cycle. /// /// This function returns the mean length of the found cycle. /// /// \note alg.cycleMean() is just a shortcut of the /// following code. /// \code /// return static_cast(alg.cycleLength()) / alg.cycleArcNum(); /// \endcode /// /// \pre \ref run() or \ref findMinMean() must be called before /// using this function. double cycleMean() const { return static_cast(_best_length) / _best_size; } /// \brief Return the found cycle. /// /// This function returns a const reference to the path structure /// storing the found cycle. /// /// \pre \ref run() or \ref findCycle() must be called before using /// this function. const Path& cycle() const { return *_cycle_path; } ///@} private: // Initialize void init() { if (!_cycle_path) { _local_path = true; _cycle_path = new Path; } _queue.resize(countNodes(_gr)); _best_found = false; _best_length = 0; _best_size = 1; _cycle_path->clear(); } // Find strongly connected components and initialize _comp_nodes // and _in_arcs void findComponents() { _comp_num = stronglyConnectedComponents(_gr, _comp); _comp_nodes.resize(_comp_num); if (_comp_num == 1) { _comp_nodes[0].clear(); for (NodeIt n(_gr); n != INVALID; ++n) { _comp_nodes[0].push_back(n); _in_arcs[n].clear(); for (InArcIt a(_gr, n); a != INVALID; ++a) { _in_arcs[n].push_back(a); } } } else { for (int i = 0; i < _comp_num; ++i) _comp_nodes[i].clear(); for (NodeIt n(_gr); n != INVALID; ++n) { int k = _comp[n]; _comp_nodes[k].push_back(n); _in_arcs[n].clear(); for (InArcIt a(_gr, n); a != INVALID; ++a) { if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); } } } } // Build the policy graph in the given strongly connected component // (the out-degree of every node is 1) bool buildPolicyGraph(int comp) { _nodes = &(_comp_nodes[comp]); if (_nodes->size() < 1 || (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { return false; } for (int i = 0; i < int(_nodes->size()); ++i) { _dist[(*_nodes)[i]] = INF; } Node u, v; Arc e; for (int i = 0; i < int(_nodes->size()); ++i) { v = (*_nodes)[i]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); if (_length[e] < _dist[u]) { _dist[u] = _length[e]; _policy[u] = e; } } } return true; } // Find the minimum mean cycle in the policy graph void findPolicyCycle() { for (int i = 0; i < int(_nodes->size()); ++i) { _level[(*_nodes)[i]] = -1; } LargeValue clength; int csize; Node u, v; _curr_found = false; for (int i = 0; i < int(_nodes->size()); ++i) { u = (*_nodes)[i]; if (_level[u] >= 0) continue; for (; _level[u] < 0; u = _gr.target(_policy[u])) { _level[u] = i; } if (_level[u] == i) { // A cycle is found clength = _length[_policy[u]]; csize = 1; for (v = u; (v = _gr.target(_policy[v])) != u; ) { clength += _length[_policy[v]]; ++csize; } if ( !_curr_found || (clength * _curr_size < _curr_length * csize) ) { _curr_found = true; _curr_length = clength; _curr_size = csize; _curr_node = u; } } } } // Contract the policy graph and compute node distances bool computeNodeDistances() { // Find the component of the main cycle and compute node distances // using reverse BFS for (int i = 0; i < int(_nodes->size()); ++i) { _reached[(*_nodes)[i]] = false; } _qfront = _qback = 0; _queue[0] = _curr_node; _reached[_curr_node] = true; _dist[_curr_node] = 0; Node u, v; Arc e; while (_qfront <= _qback) { v = _queue[_qfront++]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); if (_policy[u] == e && !_reached[u]) { _reached[u] = true; _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; _queue[++_qback] = u; } } } // Connect all other nodes to this component and compute node // distances using reverse BFS _qfront = 0; while (_qback < int(_nodes->size())-1) { v = _queue[_qfront++]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); if (!_reached[u]) { _reached[u] = true; _policy[u] = e; _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; _queue[++_qback] = u; } } } // Improve node distances bool improved = false; for (int i = 0; i < int(_nodes->size()); ++i) { v = (*_nodes)[i]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; if (_tolerance.less(delta, _dist[u])) { _dist[u] = delta; _policy[u] = e; improved = true; } } } return improved; } }; //class Howard ///@} } //namespace lemon #endif //LEMON_HOWARD_H