/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_HOWARD_MMC_H #define LEMON_HOWARD_MMC_H /// \ingroup min_mean_cycle /// /// \file /// \brief Howard's algorithm for finding a minimum mean cycle. #include #include #include #include #include #include namespace lemon { /// \brief Default traits class of HowardMmc class. /// /// Default traits class of HowardMmc class. /// \tparam GR The type of the digraph. /// \tparam CM The type of the cost map. /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. #ifdef DOXYGEN template #else template ::is_integer> #endif struct HowardMmcDefaultTraits { /// The type of the digraph typedef GR Digraph; /// The type of the cost map typedef CM CostMap; /// The type of the arc costs typedef typename CostMap::Value Cost; /// \brief The large cost type used for internal computations /// /// The large cost type used for internal computations. /// It is \c long \c long if the \c Cost type is integer, /// otherwise it is \c double. /// \c Cost must be convertible to \c LargeCost. typedef double LargeCost; /// The tolerance type used for internal computations typedef lemon::Tolerance Tolerance; /// \brief The path type of the found cycles /// /// The path type of the found cycles. /// It must conform to the \ref lemon::concepts::Path "Path" concept /// and it must have an \c addBack() function. typedef lemon::Path Path; }; // Default traits class for integer cost types template struct HowardMmcDefaultTraits { typedef GR Digraph; typedef CM CostMap; typedef typename CostMap::Value Cost; #ifdef LEMON_HAVE_LONG_LONG typedef long long LargeCost; #else typedef long LargeCost; #endif typedef lemon::Tolerance Tolerance; typedef lemon::Path Path; }; /// \addtogroup min_mean_cycle /// @{ /// \brief Implementation of Howard's algorithm for finding a minimum /// mean cycle. /// /// This class implements Howard's policy iteration algorithm for finding /// a directed cycle of minimum mean cost in a digraph /// \cite dasdan98minmeancycle, \cite dasdan04experimental. /// This class provides the most efficient algorithm for the /// minimum mean cycle problem, though the best known theoretical /// bound on its running time is exponential. /// /// \tparam GR The type of the digraph the algorithm runs on. /// \tparam CM The type of the cost map. The default /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". /// \tparam TR The traits class that defines various types used by the /// algorithm. By default, it is \ref HowardMmcDefaultTraits /// "HowardMmcDefaultTraits". /// In most cases, this parameter should not be set directly, /// consider to use the named template parameters instead. #ifdef DOXYGEN template #else template < typename GR, typename CM = typename GR::template ArcMap, typename TR = HowardMmcDefaultTraits > #endif class HowardMmc { public: /// The type of the digraph typedef typename TR::Digraph Digraph; /// The type of the cost map typedef typename TR::CostMap CostMap; /// The type of the arc costs typedef typename TR::Cost Cost; /// \brief The large cost type /// /// The large cost type used for internal computations. /// By default, it is \c long \c long if the \c Cost type is integer, /// otherwise it is \c double. typedef typename TR::LargeCost LargeCost; /// The tolerance type typedef typename TR::Tolerance Tolerance; /// \brief The path type of the found cycles /// /// The path type of the found cycles. /// Using the \ref lemon::HowardMmcDefaultTraits "default traits class", /// it is \ref lemon::Path "Path". typedef typename TR::Path Path; /// The \ref lemon::HowardMmcDefaultTraits "traits class" of the algorithm typedef TR Traits; /// \brief Constants for the causes of search termination. /// /// Enum type containing constants for the different causes of search /// termination. The \ref findCycleMean() function returns one of /// these values. enum TerminationCause { /// No directed cycle can be found in the digraph. NO_CYCLE = 0, /// Optimal solution (minimum cycle mean) is found. OPTIMAL = 1, /// The iteration count limit is reached. ITERATION_LIMIT }; private: TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); // The digraph the algorithm runs on const Digraph &_gr; // The cost of the arcs const CostMap &_cost; // Data for the found cycles bool _curr_found, _best_found; LargeCost _curr_cost, _best_cost; int _curr_size, _best_size; Node _curr_node, _best_node; Path *_cycle_path; bool _local_path; // Internal data used by the algorithm typename Digraph::template NodeMap _policy; typename Digraph::template NodeMap _reached; typename Digraph::template NodeMap _level; typename Digraph::template NodeMap _dist; // Data for storing the strongly connected components int _comp_num; typename Digraph::template NodeMap _comp; std::vector > _comp_nodes; std::vector* _nodes; typename Digraph::template NodeMap > _in_arcs; // Queue used for BFS search std::vector _queue; int _qfront, _qback; Tolerance _tolerance; // Infinite constant const LargeCost INF; public: /// \name Named Template Parameters /// @{ template struct SetLargeCostTraits : public Traits { typedef T LargeCost; typedef lemon::Tolerance Tolerance; }; /// \brief \ref named-templ-param "Named parameter" for setting /// \c LargeCost type. /// /// \ref named-templ-param "Named parameter" for setting \c LargeCost /// type. It is used for internal computations in the algorithm. template struct SetLargeCost : public HowardMmc > { typedef HowardMmc > Create; }; template struct SetPathTraits : public Traits { typedef T Path; }; /// \brief \ref named-templ-param "Named parameter" for setting /// \c %Path type. /// /// \ref named-templ-param "Named parameter" for setting the \c %Path /// type of the found cycles. /// It must conform to the \ref lemon::concepts::Path "Path" concept /// and it must have an \c addBack() function. template struct SetPath : public HowardMmc > { typedef HowardMmc > Create; }; /// @} protected: HowardMmc() {} public: /// \brief Constructor. /// /// The constructor of the class. /// /// \param digraph The digraph the algorithm runs on. /// \param cost The costs of the arcs. HowardMmc( const Digraph &digraph, const CostMap &cost ) : _gr(digraph), _cost(cost), _best_found(false), _best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false), _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), _comp(digraph), _in_arcs(digraph), INF(std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : std::numeric_limits::max()) {} /// Destructor. ~HowardMmc() { if (_local_path) delete _cycle_path; } /// \brief Set the path structure for storing the found cycle. /// /// This function sets an external path structure for storing the /// found cycle. /// /// If you don't call this function before calling \ref run() or /// \ref findCycleMean(), a local \ref Path "path" structure /// will be allocated. The destuctor deallocates this automatically /// allocated object, of course. /// /// \note The algorithm calls only the \ref lemon::Path::addBack() /// "addBack()" function of the given path structure. /// /// \return (*this) HowardMmc& cycle(Path &path) { if (_local_path) { delete _cycle_path; _local_path = false; } _cycle_path = &path; return *this; } /// \brief Set the tolerance used by the algorithm. /// /// This function sets the tolerance object used by the algorithm. /// /// \return (*this) HowardMmc& tolerance(const Tolerance& tolerance) { _tolerance = tolerance; return *this; } /// \brief Return a const reference to the tolerance. /// /// This function returns a const reference to the tolerance object /// used by the algorithm. const Tolerance& tolerance() const { return _tolerance; } /// \name Execution control /// The simplest way to execute the algorithm is to call the \ref run() /// function.\n /// If you only need the minimum mean cost, you may call /// \ref findCycleMean(). /// @{ /// \brief Run the algorithm. /// /// This function runs the algorithm. /// It can be called more than once (e.g. if the underlying digraph /// and/or the arc costs have been modified). /// /// \return \c true if a directed cycle exists in the digraph. /// /// \note mmc.run() is just a shortcut of the following code. /// \code /// return mmc.findCycleMean() && mmc.findCycle(); /// \endcode bool run() { return findCycleMean() && findCycle(); } /// \brief Find the minimum cycle mean (or an upper bound). /// /// This function finds the minimum mean cost of the directed /// cycles in the digraph (or an upper bound for it). /// /// By default, the function finds the exact minimum cycle mean, /// but an optional limit can also be specified for the number of /// iterations performed during the search process. /// The return value indicates if the optimal solution is found /// or the iteration limit is reached. In the latter case, an /// approximate solution is provided, which corresponds to a directed /// cycle whose mean cost is relatively small, but not necessarily /// minimal. /// /// \param limit The maximum allowed number of iterations during /// the search process. Its default value implies that the algorithm /// runs until it finds the exact optimal solution. /// /// \return The termination cause of the search process. /// For more information, see \ref TerminationCause. TerminationCause findCycleMean(int limit = std::numeric_limits::max()) { // Initialize and find strongly connected components init(); findComponents(); // Find the minimum cycle mean in the components int iter_count = 0; bool iter_limit_reached = false; for (int comp = 0; comp < _comp_num; ++comp) { // Find the minimum mean cycle in the current component if (!buildPolicyGraph(comp)) continue; while (true) { if (++iter_count > limit) { iter_limit_reached = true; break; } findPolicyCycle(); if (!computeNodeDistances()) break; } // Update the best cycle (global minimum mean cycle) if ( _curr_found && (!_best_found || _curr_cost * _best_size < _best_cost * _curr_size) ) { _best_found = true; _best_cost = _curr_cost; _best_size = _curr_size; _best_node = _curr_node; } if (iter_limit_reached) break; } if (iter_limit_reached) { return ITERATION_LIMIT; } else { return _best_found ? OPTIMAL : NO_CYCLE; } } /// \brief Find a minimum mean directed cycle. /// /// This function finds a directed cycle of minimum mean cost /// in the digraph using the data computed by findCycleMean(). /// /// \return \c true if a directed cycle exists in the digraph. /// /// \pre \ref findCycleMean() must be called before using this function. bool findCycle() { if (!_best_found) return false; _cycle_path->addBack(_policy[_best_node]); for ( Node v = _best_node; (v = _gr.target(_policy[v])) != _best_node; ) { _cycle_path->addBack(_policy[v]); } return true; } /// @} /// \name Query Functions /// The results of the algorithm can be obtained using these /// functions.\n /// The algorithm should be executed before using them. /// @{ /// \brief Return the total cost of the found cycle. /// /// This function returns the total cost of the found cycle. /// /// \pre \ref run() or \ref findCycleMean() must be called before /// using this function. Cost cycleCost() const { return static_cast(_best_cost); } /// \brief Return the number of arcs on the found cycle. /// /// This function returns the number of arcs on the found cycle. /// /// \pre \ref run() or \ref findCycleMean() must be called before /// using this function. int cycleSize() const { return _best_size; } /// \brief Return the mean cost of the found cycle. /// /// This function returns the mean cost of the found cycle. /// /// \note alg.cycleMean() is just a shortcut of the /// following code. /// \code /// return static_cast(alg.cycleCost()) / alg.cycleSize(); /// \endcode /// /// \pre \ref run() or \ref findCycleMean() must be called before /// using this function. double cycleMean() const { return static_cast(_best_cost) / _best_size; } /// \brief Return the found cycle. /// /// This function returns a const reference to the path structure /// storing the found cycle. /// /// \pre \ref run() or \ref findCycle() must be called before using /// this function. const Path& cycle() const { return *_cycle_path; } ///@} private: // Initialize void init() { if (!_cycle_path) { _local_path = true; _cycle_path = new Path; } _queue.resize(countNodes(_gr)); _best_found = false; _best_cost = 0; _best_size = 1; _cycle_path->clear(); } // Find strongly connected components and initialize _comp_nodes // and _in_arcs void findComponents() { _comp_num = stronglyConnectedComponents(_gr, _comp); _comp_nodes.resize(_comp_num); if (_comp_num == 1) { _comp_nodes[0].clear(); for (NodeIt n(_gr); n != INVALID; ++n) { _comp_nodes[0].push_back(n); _in_arcs[n].clear(); for (InArcIt a(_gr, n); a != INVALID; ++a) { _in_arcs[n].push_back(a); } } } else { for (int i = 0; i < _comp_num; ++i) _comp_nodes[i].clear(); for (NodeIt n(_gr); n != INVALID; ++n) { int k = _comp[n]; _comp_nodes[k].push_back(n); _in_arcs[n].clear(); for (InArcIt a(_gr, n); a != INVALID; ++a) { if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); } } } } // Build the policy graph in the given strongly connected component // (the out-degree of every node is 1) bool buildPolicyGraph(int comp) { _nodes = &(_comp_nodes[comp]); if (_nodes->size() < 1 || (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { return false; } for (int i = 0; i < int(_nodes->size()); ++i) { _dist[(*_nodes)[i]] = INF; } Node u, v; Arc e; for (int i = 0; i < int(_nodes->size()); ++i) { v = (*_nodes)[i]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); if (_cost[e] < _dist[u]) { _dist[u] = _cost[e]; _policy[u] = e; } } } return true; } // Find the minimum mean cycle in the policy graph void findPolicyCycle() { for (int i = 0; i < int(_nodes->size()); ++i) { _level[(*_nodes)[i]] = -1; } LargeCost ccost; int csize; Node u, v; _curr_found = false; for (int i = 0; i < int(_nodes->size()); ++i) { u = (*_nodes)[i]; if (_level[u] >= 0) continue; for (; _level[u] < 0; u = _gr.target(_policy[u])) { _level[u] = i; } if (_level[u] == i) { // A cycle is found ccost = _cost[_policy[u]]; csize = 1; for (v = u; (v = _gr.target(_policy[v])) != u; ) { ccost += _cost[_policy[v]]; ++csize; } if ( !_curr_found || (ccost * _curr_size < _curr_cost * csize) ) { _curr_found = true; _curr_cost = ccost; _curr_size = csize; _curr_node = u; } } } } // Contract the policy graph and compute node distances bool computeNodeDistances() { // Find the component of the main cycle and compute node distances // using reverse BFS for (int i = 0; i < int(_nodes->size()); ++i) { _reached[(*_nodes)[i]] = false; } _qfront = _qback = 0; _queue[0] = _curr_node; _reached[_curr_node] = true; _dist[_curr_node] = 0; Node u, v; Arc e; while (_qfront <= _qback) { v = _queue[_qfront++]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); if (_policy[u] == e && !_reached[u]) { _reached[u] = true; _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost; _queue[++_qback] = u; } } } // Connect all other nodes to this component and compute node // distances using reverse BFS _qfront = 0; while (_qback < int(_nodes->size())-1) { v = _queue[_qfront++]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); if (!_reached[u]) { _reached[u] = true; _policy[u] = e; _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost; _queue[++_qback] = u; } } } // Improve node distances bool improved = false; for (int i = 0; i < int(_nodes->size()); ++i) { v = (*_nodes)[i]; for (int j = 0; j < int(_in_arcs[v].size()); ++j) { e = _in_arcs[v][j]; u = _gr.source(e); LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost; if (_tolerance.less(delta, _dist[u])) { _dist[u] = delta; _policy[u] = e; improved = true; } } } return improved; } }; //class HowardMmc ///@} } //namespace lemon #endif //LEMON_HOWARD_MMC_H