/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_KARY_HEAP_H #define LEMON_KARY_HEAP_H ///\ingroup heaps ///\file ///\brief Fourary heap implementation. #include #include #include namespace lemon { /// \ingroup heaps /// ///\brief K-ary heap data structure. /// /// This class implements the \e K-ary \e heap data structure. /// It fully conforms to the \ref concepts::Heap "heap concept". /// /// The \ref KaryHeap "K-ary heap" is a generalization of the /// \ref BinHeap "binary heap" structure, its nodes have at most /// \c K children, instead of two. /// \ref BinHeap and \ref FouraryHeap are specialized implementations /// of this structure for K=2 and K=4, respectively. /// /// \tparam PR Type of the priorities of the items. /// \tparam IM A read-writable item map with \c int values, used /// internally to handle the cross references. /// \tparam K The degree of the heap, each node have at most \e K /// children. The default is 16. Powers of two are suggested to use /// so that the multiplications and divisions needed to traverse the /// nodes of the heap could be performed faster. /// \tparam CMP A functor class for comparing the priorities. /// The default is \c std::less. /// ///\sa BinHeap ///\sa FouraryHeap #ifdef DOXYGEN template #else template > #endif class KaryHeap { public: /// Type of the item-int map. typedef IM ItemIntMap; /// Type of the priorities. typedef PR Prio; /// Type of the items stored in the heap. typedef typename ItemIntMap::Key Item; /// Type of the item-priority pairs. typedef std::pair Pair; /// Functor type for comparing the priorities. typedef CMP Compare; /// \brief Type to represent the states of the items. /// /// Each item has a state associated to it. It can be "in heap", /// "pre-heap" or "post-heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; private: std::vector _data; Compare _comp; ItemIntMap &_iim; public: /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. explicit KaryHeap(ItemIntMap &map) : _iim(map) {} /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. /// \param comp The function object used for comparing the priorities. KaryHeap(ItemIntMap &map, const Compare &comp) : _iim(map), _comp(comp) {} /// \brief The number of items stored in the heap. /// /// This function returns the number of items stored in the heap. int size() const { return _data.size(); } /// \brief Check if the heap is empty. /// /// This function returns \c true if the heap is empty. bool empty() const { return _data.empty(); } /// \brief Make the heap empty. /// /// This functon makes the heap empty. /// It does not change the cross reference map. If you want to reuse /// a heap that is not surely empty, you should first clear it and /// then you should set the cross reference map to \c PRE_HEAP /// for each item. void clear() { _data.clear(); } private: int parent(int i) { return (i-1)/K; } int firstChild(int i) { return K*i+1; } bool less(const Pair &p1, const Pair &p2) const { return _comp(p1.second, p2.second); } int findMin(const int child, const int length) { int min=child, i=1; while( i0 && less(p,_data[par]) ) { move(_data[par],hole); hole = par; par = parent(hole); } move(p, hole); } void bubbleDown(int hole, Pair p, int length) { if( length>1 ) { int child = firstChild(hole); while( child0) bubbleDown(0, _data[n], n); _data.pop_back(); } /// \brief Remove the given item from the heap. /// /// This function removes the given item from the heap if it is /// already stored. /// \param i The item to delete. /// \pre \e i must be in the heap. void erase(const Item &i) { int h = _iim[i]; int n = _data.size()-1; _iim.set(_data[h].first, POST_HEAP); if( h=0) s=0; return State(s); } /// \brief Set the state of an item in the heap. /// /// This function sets the state of the given item in the heap. /// It can be used to manually clear the heap when it is important /// to achive better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) erase(i); _iim[i] = st; break; case IN_HEAP: break; } } /// \brief Replace an item in the heap. /// /// This function replaces item \c i with item \c j. /// Item \c i must be in the heap, while \c j must be out of the heap. /// After calling this method, item \c i will be out of the /// heap and \c j will be in the heap with the same prioriority /// as item \c i had before. void replace(const Item& i, const Item& j) { int idx=_iim[i]; _iim.set(i, _iim[j]); _iim.set(j, idx); _data[idx].first=j; } }; // class KaryHeap } // namespace lemon #endif // LEMON_KARY_HEAP_H