COIN-OR::LEMON - Graph Library

source: lemon/lemon/list_graph.h @ 77:2de55e4f57a7

Last change on this file since 77:2de55e4f57a7 was 73:c56b7389dc78, checked in by Peter Kovacs <kpeter@…>, 17 years ago

Several fixes and improvements in list_graph.h.

  • Fix incorrect or misleading renamings in the code and in the documentation.
  • Improve the documentation.
File size: 39.7 KB
Line 
1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_LIST_GRAPH_H
20#define LEMON_LIST_GRAPH_H
21
22///\ingroup graphs
23///\file
24///\brief ListDigraph, ListGraph classes.
25
26#include <lemon/bits/graph_extender.h>
27
28#include <vector>
29#include <list>
30
31namespace lemon {
32
33  class ListDigraphBase {
34
35  protected:
36    struct NodeT {
37      int first_in, first_out;
38      int prev, next;
39    };
40 
41    struct ArcT {
42      int target, source;
43      int prev_in, prev_out;
44      int next_in, next_out;
45    };
46
47    std::vector<NodeT> nodes;
48
49    int first_node;
50
51    int first_free_node;
52
53    std::vector<ArcT> arcs;
54
55    int first_free_arc;
56   
57  public:
58   
59    typedef ListDigraphBase Digraph;
60   
61    class Node {
62      friend class ListDigraphBase;
63    protected:
64
65      int id;
66      explicit Node(int pid) { id = pid;}
67
68    public:
69      Node() {}
70      Node (Invalid) { id = -1; }
71      bool operator==(const Node& node) const {return id == node.id;}
72      bool operator!=(const Node& node) const {return id != node.id;}
73      bool operator<(const Node& node) const {return id < node.id;}
74    };
75
76    class Arc {
77      friend class ListDigraphBase;
78    protected:
79
80      int id;
81      explicit Arc(int pid) { id = pid;}
82
83    public:
84      Arc() {}
85      Arc (Invalid) { id = -1; }
86      bool operator==(const Arc& arc) const {return id == arc.id;}
87      bool operator!=(const Arc& arc) const {return id != arc.id;}
88      bool operator<(const Arc& arc) const {return id < arc.id;}
89    };
90
91
92
93    ListDigraphBase()
94      : nodes(), first_node(-1),
95        first_free_node(-1), arcs(), first_free_arc(-1) {}
96
97   
98    int maxNodeId() const { return nodes.size()-1; }
99    int maxArcId() const { return arcs.size()-1; }
100
101    Node source(Arc e) const { return Node(arcs[e.id].source); }
102    Node target(Arc e) const { return Node(arcs[e.id].target); }
103
104
105    void first(Node& node) const {
106      node.id = first_node;
107    }
108
109    void next(Node& node) const {
110      node.id = nodes[node.id].next;
111    }
112
113
114    void first(Arc& arc) const {
115      int n;
116      for(n = first_node;
117          n!=-1 && nodes[n].first_in == -1;
118          n = nodes[n].next);
119      arc.id = (n == -1) ? -1 : nodes[n].first_in;
120    }
121
122    void next(Arc& arc) const {
123      if (arcs[arc.id].next_in != -1) {
124        arc.id = arcs[arc.id].next_in;
125      } else {
126        int n;
127        for(n = nodes[arcs[arc.id].target].next;
128          n!=-1 && nodes[n].first_in == -1;
129          n = nodes[n].next);
130        arc.id = (n == -1) ? -1 : nodes[n].first_in;
131      }     
132    }
133
134    void firstOut(Arc &e, const Node& v) const {
135      e.id = nodes[v.id].first_out;
136    }
137    void nextOut(Arc &e) const {
138      e.id=arcs[e.id].next_out;
139    }
140
141    void firstIn(Arc &e, const Node& v) const {
142      e.id = nodes[v.id].first_in;
143    }
144    void nextIn(Arc &e) const {
145      e.id=arcs[e.id].next_in;
146    }
147
148   
149    static int id(Node v) { return v.id; }
150    static int id(Arc e) { return e.id; }
151
152    static Node nodeFromId(int id) { return Node(id);}
153    static Arc arcFromId(int id) { return Arc(id);}
154
155    Node addNode() {     
156      int n;
157     
158      if(first_free_node==-1) {
159        n = nodes.size();
160        nodes.push_back(NodeT());
161      } else {
162        n = first_free_node;
163        first_free_node = nodes[n].next;
164      }
165     
166      nodes[n].next = first_node;
167      if(first_node != -1) nodes[first_node].prev = n;
168      first_node = n;
169      nodes[n].prev = -1;
170     
171      nodes[n].first_in = nodes[n].first_out = -1;
172     
173      return Node(n);
174    }
175   
176    Arc addArc(Node u, Node v) {
177      int n;     
178
179      if (first_free_arc == -1) {
180        n = arcs.size();
181        arcs.push_back(ArcT());
182      } else {
183        n = first_free_arc;
184        first_free_arc = arcs[n].next_in;
185      }
186     
187      arcs[n].source = u.id;
188      arcs[n].target = v.id;
189
190      arcs[n].next_out = nodes[u.id].first_out;
191      if(nodes[u.id].first_out != -1) {
192        arcs[nodes[u.id].first_out].prev_out = n;
193      }
194     
195      arcs[n].next_in = nodes[v.id].first_in;
196      if(nodes[v.id].first_in != -1) {
197        arcs[nodes[v.id].first_in].prev_in = n;
198      }
199     
200      arcs[n].prev_in = arcs[n].prev_out = -1;
201       
202      nodes[u.id].first_out = nodes[v.id].first_in = n;
203
204      return Arc(n);
205    }
206   
207    void erase(const Node& node) {
208      int n = node.id;
209     
210      if(nodes[n].next != -1) {
211        nodes[nodes[n].next].prev = nodes[n].prev;
212      }
213     
214      if(nodes[n].prev != -1) {
215        nodes[nodes[n].prev].next = nodes[n].next;
216      } else {
217        first_node = nodes[n].next;
218      }
219     
220      nodes[n].next = first_free_node;
221      first_free_node = n;
222
223    }
224   
225    void erase(const Arc& arc) {
226      int n = arc.id;
227     
228      if(arcs[n].next_in!=-1) {
229        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
230      }
231
232      if(arcs[n].prev_in!=-1) {
233        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
234      } else {
235        nodes[arcs[n].target].first_in = arcs[n].next_in;
236      }
237
238     
239      if(arcs[n].next_out!=-1) {
240        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
241      }
242
243      if(arcs[n].prev_out!=-1) {
244        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
245      } else {
246        nodes[arcs[n].source].first_out = arcs[n].next_out;
247      }
248     
249      arcs[n].next_in = first_free_arc;
250      first_free_arc = n;     
251
252    }
253
254    void clear() {
255      arcs.clear();
256      nodes.clear();
257      first_node = first_free_node = first_free_arc = -1;
258    }
259
260  protected:
261    void changeTarget(Arc e, Node n)
262    {
263      if(arcs[e.id].next_in != -1)
264        arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
265      if(arcs[e.id].prev_in != -1)
266        arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
267      else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
268      if (nodes[n.id].first_in != -1) {
269        arcs[nodes[n.id].first_in].prev_in = e.id;
270      }
271      arcs[e.id].target = n.id;
272      arcs[e.id].prev_in = -1;
273      arcs[e.id].next_in = nodes[n.id].first_in;
274      nodes[n.id].first_in = e.id;
275    }
276    void changeSource(Arc e, Node n)
277    {
278      if(arcs[e.id].next_out != -1)
279        arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
280      if(arcs[e.id].prev_out != -1)
281        arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
282      else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
283      if (nodes[n.id].first_out != -1) {
284        arcs[nodes[n.id].first_out].prev_out = e.id;
285      }
286      arcs[e.id].source = n.id;
287      arcs[e.id].prev_out = -1;
288      arcs[e.id].next_out = nodes[n.id].first_out;
289      nodes[n.id].first_out = e.id;
290    }
291
292  };
293
294  typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
295
296  /// \addtogroup graphs
297  /// @{
298
299  ///A general directed graph structure.
300
301  ///\ref ListDigraph is a simple and fast <em>directed graph</em>
302  ///implementation based on static linked lists that are stored in
303  ///\c std::vector structures.   
304  ///
305  ///It conforms to the \ref concepts::Digraph "Digraph concept" and it
306  ///also provides several useful additional functionalities.
307  ///Most of the member functions and nested classes are documented
308  ///only in the concept class.
309  ///
310  ///An important extra feature of this digraph implementation is that
311  ///its maps are real \ref concepts::ReferenceMap "reference map"s.
312  ///
313  ///\sa concepts::Digraph
314
315  class ListDigraph : public ExtendedListDigraphBase {
316  private:
317    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
318   
319    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
320    ///
321    ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
322    ///\brief Assignment of ListDigraph to another one is \e not allowed.
323    ///Use copyDigraph() instead.
324
325    ///Assignment of ListDigraph to another one is \e not allowed.
326    ///Use copyDigraph() instead.
327    void operator=(const ListDigraph &) {}
328  public:
329
330    typedef ExtendedListDigraphBase Parent;
331
332    /// Constructor
333   
334    /// Constructor.
335    ///
336    ListDigraph() {}
337
338    ///Add a new node to the digraph.
339   
340    ///Add a new node to the digraph.
341    ///\return the new node.
342    Node addNode() { return Parent::addNode(); }
343
344    ///Add a new arc to the digraph.
345   
346    ///Add a new arc to the digraph with source node \c s
347    ///and target node \c t.
348    ///\return the new arc.
349    Arc addArc(const Node& s, const Node& t) {
350      return Parent::addArc(s, t);
351    }
352
353    /// Change the target of \c e to \c n
354
355    /// Change the target of \c e to \c n
356    ///
357    ///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing
358    ///the changed arc remain valid. However <tt>InArcIt</tt>s are
359    ///invalidated.
360    ///
361    ///\warning This functionality cannot be used together with the Snapshot
362    ///feature.
363    void changeTarget(Arc e, Node n) {
364      Parent::changeTarget(e,n);
365    }
366    /// Change the source of \c e to \c n
367
368    /// Change the source of \c e to \c n
369    ///
370    ///\note The <tt>ArcIt</tt>s and <tt>InArcIt</tt>s referencing
371    ///the changed arc remain valid. However <tt>OutArcIt</tt>s are
372    ///invalidated.
373    ///
374    ///\warning This functionality cannot be used together with the Snapshot
375    ///feature.
376    void changeSource(Arc e, Node n) {
377      Parent::changeSource(e,n);
378    }
379
380    /// Invert the direction of an arc.
381
382    ///\note The <tt>ArcIt</tt>s referencing the changed arc remain
383    ///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are
384    ///invalidated.
385    ///
386    ///\warning This functionality cannot be used together with the Snapshot
387    ///feature.
388    void reverseArc(Arc e) {
389      Node t=target(e);
390      changeTarget(e,source(e));
391      changeSource(e,t);
392    }
393
394    /// Reserve memory for nodes.
395
396    /// Using this function it is possible to avoid the superfluous memory
397    /// allocation: if you know that the digraph you want to build will
398    /// be very large (e.g. it will contain millions of nodes and/or arcs)
399    /// then it is worth reserving space for this amount before starting
400    /// to build the digraph.
401    /// \sa reserveArc
402    void reserveNode(int n) { nodes.reserve(n); };
403
404    /// Reserve memory for arcs.
405
406    /// Using this function it is possible to avoid the superfluous memory
407    /// allocation: if you know that the digraph you want to build will
408    /// be very large (e.g. it will contain millions of nodes and/or arcs)
409    /// then it is worth reserving space for this amount before starting
410    /// to build the digraph.
411    /// \sa reserveNode
412    void reserveArc(int m) { arcs.reserve(m); };
413
414    ///Contract two nodes.
415
416    ///This function contracts two nodes.
417    ///Node \p b will be removed but instead of deleting
418    ///incident arcs, they will be joined to \p a.
419    ///The last parameter \p r controls whether to remove loops. \c true
420    ///means that loops will be removed.
421    ///
422    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
423    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s
424    ///may be invalidated.
425    ///
426    ///\warning This functionality cannot be used together with the Snapshot
427    ///feature.
428    void contract(Node a, Node b, bool r = true)
429    {
430      for(OutArcIt e(*this,b);e!=INVALID;) {
431        OutArcIt f=e;
432        ++f;
433        if(r && target(e)==a) erase(e);
434        else changeSource(e,a);
435        e=f;
436      }
437      for(InArcIt e(*this,b);e!=INVALID;) {
438        InArcIt f=e;
439        ++f;
440        if(r && source(e)==a) erase(e);
441        else changeTarget(e,a);
442        e=f;
443      }
444      erase(b);
445    }
446
447    ///Split a node.
448
449    ///This function splits a node. First a new node is added to the digraph,
450    ///then the source of each outgoing arc of \c n is moved to this new node.
451    ///If \c connect is \c true (this is the default value), then a new arc
452    ///from \c n to the newly created node is also added.
453    ///\return The newly created node.
454    ///
455    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
456    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may
457    ///be invalidated. 
458    ///
459    ///\warning This functionality cannot be used together with the
460    ///Snapshot feature.
461    ///
462    ///\todo It could be implemented in a bit faster way.
463    Node split(Node n, bool connect = true) {
464      Node b = addNode();
465      for(OutArcIt e(*this,n);e!=INVALID;) {
466        OutArcIt f=e;
467        ++f;
468        changeSource(e,b);
469        e=f;
470      }
471      if (connect) addArc(n,b);
472      return b;
473    }
474     
475    ///Split an arc.
476
477    ///This function splits an arc. First a new node \c b is added to
478    ///the digraph, then the original arc is re-targeted to \c
479    ///b. Finally an arc from \c b to the original target is added.
480    ///
481    ///\return The newly created node.
482    ///
483    ///\warning This functionality cannot be used together with the
484    ///Snapshot feature.
485    Node split(Arc e) {
486      Node b = addNode();
487      addArc(b,target(e));
488      changeTarget(e,b);
489      return b;
490    }
491     
492    /// \brief Class to make a snapshot of the digraph and restore
493    /// it later.
494    ///
495    /// Class to make a snapshot of the digraph and restore it later.
496    ///
497    /// The newly added nodes and arcs can be removed using the
498    /// restore() function.
499    ///
500    /// \warning Arc and node deletions and other modifications (e.g.
501    /// contracting, splitting, reversing arcs or nodes) cannot be
502    /// restored. These events invalidate the snapshot.
503    class Snapshot {
504    protected:
505
506      typedef Parent::NodeNotifier NodeNotifier;
507
508      class NodeObserverProxy : public NodeNotifier::ObserverBase {
509      public:
510
511        NodeObserverProxy(Snapshot& _snapshot)
512          : snapshot(_snapshot) {}
513
514        using NodeNotifier::ObserverBase::attach;
515        using NodeNotifier::ObserverBase::detach;
516        using NodeNotifier::ObserverBase::attached;
517       
518      protected:
519       
520        virtual void add(const Node& node) {
521          snapshot.addNode(node);
522        }
523        virtual void add(const std::vector<Node>& nodes) {
524          for (int i = nodes.size() - 1; i >= 0; ++i) {
525            snapshot.addNode(nodes[i]);
526          }
527        }
528        virtual void erase(const Node& node) {
529          snapshot.eraseNode(node);
530        }
531        virtual void erase(const std::vector<Node>& nodes) {
532          for (int i = 0; i < int(nodes.size()); ++i) {
533            snapshot.eraseNode(nodes[i]);
534          }
535        }
536        virtual void build() {
537          Node node;
538          std::vector<Node> nodes;
539          for (notifier()->first(node); node != INVALID;
540               notifier()->next(node)) {
541            nodes.push_back(node);
542          }
543          for (int i = nodes.size() - 1; i >= 0; --i) {
544            snapshot.addNode(nodes[i]);
545          }
546        }
547        virtual void clear() {
548          Node node;
549          for (notifier()->first(node); node != INVALID;
550               notifier()->next(node)) {
551            snapshot.eraseNode(node);
552          }
553        }
554
555        Snapshot& snapshot;
556      };
557
558      class ArcObserverProxy : public ArcNotifier::ObserverBase {
559      public:
560
561        ArcObserverProxy(Snapshot& _snapshot)
562          : snapshot(_snapshot) {}
563
564        using ArcNotifier::ObserverBase::attach;
565        using ArcNotifier::ObserverBase::detach;
566        using ArcNotifier::ObserverBase::attached;
567       
568      protected:
569
570        virtual void add(const Arc& arc) {
571          snapshot.addArc(arc);
572        }
573        virtual void add(const std::vector<Arc>& arcs) {
574          for (int i = arcs.size() - 1; i >= 0; ++i) {
575            snapshot.addArc(arcs[i]);
576          }
577        }
578        virtual void erase(const Arc& arc) {
579          snapshot.eraseArc(arc);
580        }
581        virtual void erase(const std::vector<Arc>& arcs) {
582          for (int i = 0; i < int(arcs.size()); ++i) {
583            snapshot.eraseArc(arcs[i]);
584          }
585        }
586        virtual void build() {
587          Arc arc;
588          std::vector<Arc> arcs;
589          for (notifier()->first(arc); arc != INVALID;
590               notifier()->next(arc)) {
591            arcs.push_back(arc);
592          }
593          for (int i = arcs.size() - 1; i >= 0; --i) {
594            snapshot.addArc(arcs[i]);
595          }
596        }
597        virtual void clear() {
598          Arc arc;
599          for (notifier()->first(arc); arc != INVALID;
600               notifier()->next(arc)) {
601            snapshot.eraseArc(arc);
602          }
603        }
604
605        Snapshot& snapshot;
606      };
607     
608      ListDigraph *digraph;
609
610      NodeObserverProxy node_observer_proxy;
611      ArcObserverProxy arc_observer_proxy;
612
613      std::list<Node> added_nodes;
614      std::list<Arc> added_arcs;
615
616
617      void addNode(const Node& node) {
618        added_nodes.push_front(node);       
619      }
620      void eraseNode(const Node& node) {
621        std::list<Node>::iterator it =
622          std::find(added_nodes.begin(), added_nodes.end(), node);
623        if (it == added_nodes.end()) {
624          clear();
625          arc_observer_proxy.detach();
626          throw NodeNotifier::ImmediateDetach();
627        } else {
628          added_nodes.erase(it);
629        }
630      }
631
632      void addArc(const Arc& arc) {
633        added_arcs.push_front(arc);       
634      }
635      void eraseArc(const Arc& arc) {
636        std::list<Arc>::iterator it =
637          std::find(added_arcs.begin(), added_arcs.end(), arc);
638        if (it == added_arcs.end()) {
639          clear();
640          node_observer_proxy.detach();
641          throw ArcNotifier::ImmediateDetach();
642        } else {
643          added_arcs.erase(it);
644        }       
645      }
646
647      void attach(ListDigraph &_digraph) {
648        digraph = &_digraph;
649        node_observer_proxy.attach(digraph->notifier(Node()));
650        arc_observer_proxy.attach(digraph->notifier(Arc()));
651      }
652           
653      void detach() {
654        node_observer_proxy.detach();
655        arc_observer_proxy.detach();
656      }
657
658      bool attached() const {
659        return node_observer_proxy.attached();
660      }
661
662      void clear() {
663        added_nodes.clear();
664        added_arcs.clear();       
665      }
666
667    public:
668
669      /// \brief Default constructor.
670      ///
671      /// Default constructor.
672      /// To actually make a snapshot you must call save().
673      Snapshot()
674        : digraph(0), node_observer_proxy(*this),
675          arc_observer_proxy(*this) {}
676     
677      /// \brief Constructor that immediately makes a snapshot.
678      ///     
679      /// This constructor immediately makes a snapshot of the digraph.
680      /// \param _digraph The digraph we make a snapshot of.
681      Snapshot(ListDigraph &_digraph)
682        : node_observer_proxy(*this),
683          arc_observer_proxy(*this) {
684        attach(_digraph);
685      }
686     
687      /// \brief Make a snapshot.
688      ///
689      /// Make a snapshot of the digraph.
690      ///
691      /// This function can be called more than once. In case of a repeated
692      /// call, the previous snapshot gets lost.
693      /// \param _digraph The digraph we make the snapshot of.
694      void save(ListDigraph &_digraph) {
695        if (attached()) {
696          detach();
697          clear();
698        }
699        attach(_digraph);
700      }
701     
702      /// \brief Undo the changes until the last snapshot.
703      //
704      /// Undo the changes until the last snapshot created by save().
705      void restore() {
706        detach();
707        for(std::list<Arc>::iterator it = added_arcs.begin();
708            it != added_arcs.end(); ++it) {
709          digraph->erase(*it);
710        }
711        for(std::list<Node>::iterator it = added_nodes.begin();
712            it != added_nodes.end(); ++it) {
713          digraph->erase(*it);
714        }
715        clear();
716      }
717
718      /// \brief Gives back true when the snapshot is valid.
719      ///
720      /// Gives back true when the snapshot is valid.
721      bool valid() const {
722        return attached();
723      }
724    };
725   
726  };
727
728  ///@}
729
730  class ListGraphBase {
731
732  protected:
733
734    struct NodeT {
735      int first_out;
736      int prev, next;
737    };
738 
739    struct ArcT {
740      int target;
741      int prev_out, next_out;
742    };
743
744    std::vector<NodeT> nodes;
745
746    int first_node;
747
748    int first_free_node;
749
750    std::vector<ArcT> arcs;
751
752    int first_free_arc;
753   
754  public:
755   
756    typedef ListGraphBase Digraph;
757
758    class Node;
759    class Arc;
760    class Edge;
761   
762    class Node {
763      friend class ListGraphBase;
764    protected:
765
766      int id;
767      explicit Node(int pid) { id = pid;}
768
769    public:
770      Node() {}
771      Node (Invalid) { id = -1; }
772      bool operator==(const Node& node) const {return id == node.id;}
773      bool operator!=(const Node& node) const {return id != node.id;}
774      bool operator<(const Node& node) const {return id < node.id;}
775    };
776
777    class Edge {
778      friend class ListGraphBase;
779    protected:
780
781      int id;
782      explicit Edge(int pid) { id = pid;}
783
784    public:
785      Edge() {}
786      Edge (Invalid) { id = -1; }
787      bool operator==(const Edge& edge) const {return id == edge.id;}
788      bool operator!=(const Edge& edge) const {return id != edge.id;}
789      bool operator<(const Edge& edge) const {return id < edge.id;}
790    };
791
792    class Arc {
793      friend class ListGraphBase;
794    protected:
795
796      int id;
797      explicit Arc(int pid) { id = pid;}
798
799    public:
800      operator Edge() const { return edgeFromId(id / 2); }
801
802      Arc() {}
803      Arc (Invalid) { id = -1; }
804      bool operator==(const Arc& arc) const {return id == arc.id;}
805      bool operator!=(const Arc& arc) const {return id != arc.id;}
806      bool operator<(const Arc& arc) const {return id < arc.id;}
807    };
808
809
810
811    ListGraphBase()
812      : nodes(), first_node(-1),
813        first_free_node(-1), arcs(), first_free_arc(-1) {}
814
815   
816    int maxNodeId() const { return nodes.size()-1; }
817    int maxEdgeId() const { return arcs.size() / 2 - 1; }
818    int maxArcId() const { return arcs.size()-1; }
819
820    Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
821    Node target(Arc e) const { return Node(arcs[e.id].target); }
822
823    Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
824    Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
825
826    static bool direction(Arc e) {
827      return (e.id & 1) == 1;
828    }
829
830    static Arc direct(Edge e, bool d) {
831      return Arc(e.id * 2 + (d ? 1 : 0));
832    }
833
834    void first(Node& node) const {
835      node.id = first_node;
836    }
837
838    void next(Node& node) const {
839      node.id = nodes[node.id].next;
840    }
841
842    void first(Arc& e) const {
843      int n = first_node;
844      while (n != -1 && nodes[n].first_out == -1) {
845        n = nodes[n].next;
846      }
847      e.id = (n == -1) ? -1 : nodes[n].first_out;
848    }
849
850    void next(Arc& e) const {
851      if (arcs[e.id].next_out != -1) {
852        e.id = arcs[e.id].next_out;
853      } else {
854        int n = nodes[arcs[e.id ^ 1].target].next;
855        while(n != -1 && nodes[n].first_out == -1) {
856          n = nodes[n].next;
857        }
858        e.id = (n == -1) ? -1 : nodes[n].first_out;
859      }     
860    }
861
862    void first(Edge& e) const {
863      int n = first_node;
864      while (n != -1) {
865        e.id = nodes[n].first_out;
866        while ((e.id & 1) != 1) {
867          e.id = arcs[e.id].next_out;
868        }
869        if (e.id != -1) {
870          e.id /= 2;
871          return;
872        }
873        n = nodes[n].next;
874      }
875      e.id = -1;
876    }
877
878    void next(Edge& e) const {
879      int n = arcs[e.id * 2].target;
880      e.id = arcs[(e.id * 2) | 1].next_out;
881      while ((e.id & 1) != 1) {
882        e.id = arcs[e.id].next_out;
883      }
884      if (e.id != -1) {
885        e.id /= 2;
886        return;
887      }
888      n = nodes[n].next;
889      while (n != -1) {
890        e.id = nodes[n].first_out;
891        while ((e.id & 1) != 1) {
892          e.id = arcs[e.id].next_out;
893        }
894        if (e.id != -1) {
895          e.id /= 2;
896          return;
897        }
898        n = nodes[n].next;
899      }
900      e.id = -1;
901    }
902
903    void firstOut(Arc &e, const Node& v) const {
904      e.id = nodes[v.id].first_out;
905    }
906    void nextOut(Arc &e) const {
907      e.id = arcs[e.id].next_out;
908    }
909
910    void firstIn(Arc &e, const Node& v) const {
911      e.id = ((nodes[v.id].first_out) ^ 1);
912      if (e.id == -2) e.id = -1;
913    }
914    void nextIn(Arc &e) const {
915      e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
916      if (e.id == -2) e.id = -1;
917    }
918
919    void firstInc(Edge &e, bool& d, const Node& v) const {
920      int a = nodes[v.id].first_out;
921      if (a != -1 ) {
922        e.id = a / 2;
923        d = ((a & 1) == 1);
924      } else {
925        e.id = -1;
926        d = true;
927      }
928    }
929    void nextInc(Edge &e, bool& d) const {
930      int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
931      if (a != -1 ) {
932        e.id = a / 2;
933        d = ((a & 1) == 1);
934      } else {
935        e.id = -1;
936        d = true;
937      }
938    }
939   
940    static int id(Node v) { return v.id; }
941    static int id(Arc e) { return e.id; }
942    static int id(Edge e) { return e.id; }
943
944    static Node nodeFromId(int id) { return Node(id);}
945    static Arc arcFromId(int id) { return Arc(id);}
946    static Edge edgeFromId(int id) { return Edge(id);}
947
948    Node addNode() {     
949      int n;
950     
951      if(first_free_node==-1) {
952        n = nodes.size();
953        nodes.push_back(NodeT());
954      } else {
955        n = first_free_node;
956        first_free_node = nodes[n].next;
957      }
958     
959      nodes[n].next = first_node;
960      if (first_node != -1) nodes[first_node].prev = n;
961      first_node = n;
962      nodes[n].prev = -1;
963     
964      nodes[n].first_out = -1;
965     
966      return Node(n);
967    }
968   
969    Edge addEdge(Node u, Node v) {
970      int n;     
971
972      if (first_free_arc == -1) {
973        n = arcs.size();
974        arcs.push_back(ArcT());
975        arcs.push_back(ArcT());
976      } else {
977        n = first_free_arc;
978        first_free_arc = arcs[n].next_out;
979      }
980     
981      arcs[n].target = u.id;
982      arcs[n | 1].target = v.id;
983
984      arcs[n].next_out = nodes[v.id].first_out;
985      if (nodes[v.id].first_out != -1) {
986        arcs[nodes[v.id].first_out].prev_out = n;
987      }     
988      arcs[n].prev_out = -1;
989      nodes[v.id].first_out = n;
990     
991      arcs[n | 1].next_out = nodes[u.id].first_out;
992      if (nodes[u.id].first_out != -1) {
993        arcs[nodes[u.id].first_out].prev_out = (n | 1);
994      }
995      arcs[n | 1].prev_out = -1;     
996      nodes[u.id].first_out = (n | 1);
997
998      return Edge(n / 2);
999    }
1000   
1001    void erase(const Node& node) {
1002      int n = node.id;
1003     
1004      if(nodes[n].next != -1) {
1005        nodes[nodes[n].next].prev = nodes[n].prev;
1006      }
1007     
1008      if(nodes[n].prev != -1) {
1009        nodes[nodes[n].prev].next = nodes[n].next;
1010      } else {
1011        first_node = nodes[n].next;
1012      }
1013     
1014      nodes[n].next = first_free_node;
1015      first_free_node = n;
1016
1017    }
1018   
1019    void erase(const Edge& edge) {
1020      int n = edge.id * 2;
1021     
1022      if (arcs[n].next_out != -1) {
1023        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
1024      }
1025
1026      if (arcs[n].prev_out != -1) {
1027        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
1028      } else {
1029        nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
1030      }
1031
1032      if (arcs[n | 1].next_out != -1) {
1033        arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
1034      }
1035
1036      if (arcs[n | 1].prev_out != -1) {
1037        arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
1038      } else {
1039        nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
1040      }
1041     
1042      arcs[n].next_out = first_free_arc;
1043      first_free_arc = n;     
1044
1045    }
1046
1047    void clear() {
1048      arcs.clear();
1049      nodes.clear();
1050      first_node = first_free_node = first_free_arc = -1;
1051    }
1052
1053  protected:
1054
1055    void changeTarget(Edge e, Node n) {
1056      if(arcs[2 * e.id].next_out != -1) {
1057        arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
1058      }
1059      if(arcs[2 * e.id].prev_out != -1) {
1060        arcs[arcs[2 * e.id].prev_out].next_out =
1061          arcs[2 * e.id].next_out;
1062      } else {
1063        nodes[arcs[(2 * e.id) | 1].target].first_out =
1064          arcs[2 * e.id].next_out;
1065      }
1066
1067      if (nodes[n.id].first_out != -1) {
1068        arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
1069      }
1070      arcs[(2 * e.id) | 1].target = n.id;
1071      arcs[2 * e.id].prev_out = -1;
1072      arcs[2 * e.id].next_out = nodes[n.id].first_out;
1073      nodes[n.id].first_out = 2 * e.id;
1074    }
1075
1076    void changeSource(Edge e, Node n) {
1077      if(arcs[(2 * e.id) | 1].next_out != -1) {
1078        arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
1079          arcs[(2 * e.id) | 1].prev_out;
1080      }
1081      if(arcs[(2 * e.id) | 1].prev_out != -1) {
1082        arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
1083          arcs[(2 * e.id) | 1].next_out;
1084      } else {
1085        nodes[arcs[2 * e.id].target].first_out =
1086          arcs[(2 * e.id) | 1].next_out;
1087      }
1088
1089      if (nodes[n.id].first_out != -1) {
1090        arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
1091      }
1092      arcs[2 * e.id].target = n.id;
1093      arcs[(2 * e.id) | 1].prev_out = -1;
1094      arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
1095      nodes[n.id].first_out = ((2 * e.id) | 1);
1096    }
1097
1098  };
1099
1100  typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
1101
1102
1103  /// \addtogroup graphs
1104  /// @{
1105
1106  ///A general undirected graph structure.
1107
1108  ///\ref ListGraph is a simple and fast <em>undirected graph</em>
1109  ///implementation based on static linked lists that are stored in
1110  ///\c std::vector structures.
1111  ///
1112  ///It conforms to the \ref concepts::Graph "Graph concept" and it
1113  ///also provides several useful additional functionalities.
1114  ///Most of the member functions and nested classes are documented
1115  ///only in the concept class.
1116  ///
1117  ///An important extra feature of this graph implementation is that
1118  ///its maps are real \ref concepts::ReferenceMap "reference map"s.
1119  ///
1120  ///\sa concepts::Graph
1121
1122  class ListGraph : public ExtendedListGraphBase {
1123  private:
1124    ///ListGraph is \e not copy constructible. Use copyGraph() instead.
1125
1126    ///ListGraph is \e not copy constructible. Use copyGraph() instead.
1127    ///
1128    ListGraph(const ListGraph &) :ExtendedListGraphBase()  {};
1129    ///\brief Assignment of ListGraph to another one is \e not allowed.
1130    ///Use copyGraph() instead.
1131
1132    ///Assignment of ListGraph to another one is \e not allowed.
1133    ///Use copyGraph() instead.
1134    void operator=(const ListGraph &) {}
1135  public:
1136    /// Constructor
1137   
1138    /// Constructor.
1139    ///
1140    ListGraph() {}
1141
1142    typedef ExtendedListGraphBase Parent;
1143
1144    typedef Parent::OutArcIt IncEdgeIt;
1145
1146    /// \brief Add a new node to the graph.
1147    ///
1148    /// Add a new node to the graph.
1149    /// \return the new node.
1150    Node addNode() { return Parent::addNode(); }
1151
1152    /// \brief Add a new edge to the graph.
1153    ///
1154    /// Add a new edge to the graph with source node \c s
1155    /// and target node \c t.
1156    /// \return the new edge.
1157    Edge addEdge(const Node& s, const Node& t) {
1158      return Parent::addEdge(s, t);
1159    }
1160    /// \brief Change the source of \c e to \c n
1161    ///
1162    /// This function changes the source of \c e to \c n.
1163    ///
1164    ///\note The <tt>ArcIt</tt>s and <tt>InArcIt</tt>s
1165    ///referencing the changed arc remain
1166    ///valid. However <tt>OutArcIt</tt>s are invalidated.
1167    ///
1168    ///\warning This functionality cannot be used together with the
1169    ///Snapshot feature.
1170    void changeSource(Edge e, Node n) {
1171      Parent::changeSource(e,n);
1172    }   
1173    /// \brief Change the target of \c e to \c n
1174    ///
1175    /// This function changes the target of \c e to \c n.
1176    ///
1177    /// \note The <tt>ArcIt</tt>s referencing the changed arc remain
1178    /// valid. However the other iterators may be invalidated.
1179    ///
1180    ///\warning This functionality cannot be used together with the
1181    ///Snapshot feature.
1182    void changeTarget(Edge e, Node n) {
1183      Parent::changeTarget(e,n);
1184    }
1185    /// \brief Change the source of \c e to \c n
1186    ///
1187    /// This function changes the source of \c e to \c n.
1188    /// It also changes the proper node of the represented edge.
1189    ///
1190    ///\note The <tt>ArcIt</tt>s and <tt>InArcIt</tt>s
1191    ///referencing the changed arc remain
1192    ///valid. However <tt>OutArcIt</tt>s are invalidated.
1193    ///
1194    ///\warning This functionality cannot be used together with the
1195    ///Snapshot feature.
1196    void changeSource(Arc e, Node n) {
1197      if (Parent::direction(e)) {
1198        Parent::changeSource(e,n);
1199      } else {
1200        Parent::changeTarget(e,n);
1201      }
1202    }
1203    /// \brief Change the target of \c e to \c n
1204    ///
1205    /// This function changes the target of \c e to \c n.
1206    /// It also changes the proper node of the represented edge.
1207    ///
1208    ///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s
1209    ///referencing the changed arc remain
1210    ///valid. However <tt>InArcIt</tt>s are invalidated.
1211    ///
1212    ///\warning This functionality cannot be used together with the
1213    ///Snapshot feature.
1214    void changeTarget(Arc e, Node n) {
1215      if (Parent::direction(e)) {
1216        Parent::changeTarget(e,n);
1217      } else {
1218        Parent::changeSource(e,n);
1219      }
1220    }
1221    /// \brief Contract two nodes.
1222    ///
1223    /// This function contracts two nodes.
1224    /// Node \p b will be removed but instead of deleting
1225    /// its neighboring arcs, they will be joined to \p a.
1226    /// The last parameter \p r controls whether to remove loops. \c true
1227    /// means that loops will be removed.
1228    ///
1229    /// \note The <tt>ArcIt</tt>s referencing a moved arc remain
1230    /// valid.
1231    ///
1232    ///\warning This functionality cannot be used together with the
1233    ///Snapshot feature.
1234    void contract(Node a, Node b, bool r = true) {
1235      for(IncEdgeIt e(*this, b); e!=INVALID;) {
1236        IncEdgeIt f = e; ++f;
1237        if (r && runningNode(e) == a) {
1238          erase(e);
1239        } else if (source(e) == b) {
1240          changeSource(e, a);
1241        } else {
1242          changeTarget(e, a);
1243        }
1244        e = f;
1245      }
1246      erase(b);
1247    }
1248
1249
1250    /// \brief Class to make a snapshot of the graph and restore
1251    /// it later.
1252    ///
1253    /// Class to make a snapshot of the graph and restore it later.
1254    ///
1255    /// The newly added nodes and edges can be removed
1256    /// using the restore() function.
1257    ///
1258    /// \warning Edge and node deletions and other modifications
1259    /// (e.g. changing nodes of edges, contracting nodes) cannot be
1260    /// restored. These events invalidate the snapshot.
1261    class Snapshot {
1262    protected:
1263
1264      typedef Parent::NodeNotifier NodeNotifier;
1265
1266      class NodeObserverProxy : public NodeNotifier::ObserverBase {
1267      public:
1268
1269        NodeObserverProxy(Snapshot& _snapshot)
1270          : snapshot(_snapshot) {}
1271
1272        using NodeNotifier::ObserverBase::attach;
1273        using NodeNotifier::ObserverBase::detach;
1274        using NodeNotifier::ObserverBase::attached;
1275       
1276      protected:
1277       
1278        virtual void add(const Node& node) {
1279          snapshot.addNode(node);
1280        }
1281        virtual void add(const std::vector<Node>& nodes) {
1282          for (int i = nodes.size() - 1; i >= 0; ++i) {
1283            snapshot.addNode(nodes[i]);
1284          }
1285        }
1286        virtual void erase(const Node& node) {
1287          snapshot.eraseNode(node);
1288        }
1289        virtual void erase(const std::vector<Node>& nodes) {
1290          for (int i = 0; i < int(nodes.size()); ++i) {
1291            snapshot.eraseNode(nodes[i]);
1292          }
1293        }
1294        virtual void build() {
1295          Node node;
1296          std::vector<Node> nodes;
1297          for (notifier()->first(node); node != INVALID;
1298               notifier()->next(node)) {
1299            nodes.push_back(node);
1300          }
1301          for (int i = nodes.size() - 1; i >= 0; --i) {
1302            snapshot.addNode(nodes[i]);
1303          }
1304        }
1305        virtual void clear() {
1306          Node node;
1307          for (notifier()->first(node); node != INVALID;
1308               notifier()->next(node)) {
1309            snapshot.eraseNode(node);
1310          }
1311        }
1312
1313        Snapshot& snapshot;
1314      };
1315
1316      class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
1317      public:
1318
1319        EdgeObserverProxy(Snapshot& _snapshot)
1320          : snapshot(_snapshot) {}
1321
1322        using EdgeNotifier::ObserverBase::attach;
1323        using EdgeNotifier::ObserverBase::detach;
1324        using EdgeNotifier::ObserverBase::attached;
1325       
1326      protected:
1327
1328        virtual void add(const Edge& edge) {
1329          snapshot.addEdge(edge);
1330        }
1331        virtual void add(const std::vector<Edge>& edges) {
1332          for (int i = edges.size() - 1; i >= 0; ++i) {
1333            snapshot.addEdge(edges[i]);
1334          }
1335        }
1336        virtual void erase(const Edge& edge) {
1337          snapshot.eraseEdge(edge);
1338        }
1339        virtual void erase(const std::vector<Edge>& edges) {
1340          for (int i = 0; i < int(edges.size()); ++i) {
1341            snapshot.eraseEdge(edges[i]);
1342          }
1343        }
1344        virtual void build() {
1345          Edge edge;
1346          std::vector<Edge> edges;
1347          for (notifier()->first(edge); edge != INVALID;
1348               notifier()->next(edge)) {
1349            edges.push_back(edge);
1350          }
1351          for (int i = edges.size() - 1; i >= 0; --i) {
1352            snapshot.addEdge(edges[i]);
1353          }
1354        }
1355        virtual void clear() {
1356          Edge edge;
1357          for (notifier()->first(edge); edge != INVALID;
1358               notifier()->next(edge)) {
1359            snapshot.eraseEdge(edge);
1360          }
1361        }
1362
1363        Snapshot& snapshot;
1364      };
1365
1366      ListGraph *graph;
1367
1368      NodeObserverProxy node_observer_proxy;
1369      EdgeObserverProxy edge_observer_proxy;
1370
1371      std::list<Node> added_nodes;
1372      std::list<Edge> added_edges;
1373
1374
1375      void addNode(const Node& node) {
1376        added_nodes.push_front(node);       
1377      }
1378      void eraseNode(const Node& node) {
1379        std::list<Node>::iterator it =
1380          std::find(added_nodes.begin(), added_nodes.end(), node);
1381        if (it == added_nodes.end()) {
1382          clear();
1383          edge_observer_proxy.detach();
1384          throw NodeNotifier::ImmediateDetach();
1385        } else {
1386          added_nodes.erase(it);
1387        }
1388      }
1389
1390      void addEdge(const Edge& edge) {
1391        added_edges.push_front(edge);       
1392      }
1393      void eraseEdge(const Edge& edge) {
1394        std::list<Edge>::iterator it =
1395          std::find(added_edges.begin(), added_edges.end(), edge);
1396        if (it == added_edges.end()) {
1397          clear();
1398          node_observer_proxy.detach();
1399          throw EdgeNotifier::ImmediateDetach();
1400        } else {
1401          added_edges.erase(it);
1402        }
1403      }
1404
1405      void attach(ListGraph &_graph) {
1406        graph = &_graph;
1407        node_observer_proxy.attach(graph->notifier(Node()));
1408        edge_observer_proxy.attach(graph->notifier(Edge()));
1409      }
1410           
1411      void detach() {
1412        node_observer_proxy.detach();
1413        edge_observer_proxy.detach();
1414      }
1415
1416      bool attached() const {
1417        return node_observer_proxy.attached();
1418      }
1419
1420      void clear() {
1421        added_nodes.clear();
1422        added_edges.clear();       
1423      }
1424
1425    public:
1426
1427      /// \brief Default constructor.
1428      ///
1429      /// Default constructor.
1430      /// To actually make a snapshot you must call save().
1431      Snapshot()
1432        : graph(0), node_observer_proxy(*this),
1433          edge_observer_proxy(*this) {}
1434     
1435      /// \brief Constructor that immediately makes a snapshot.
1436      ///     
1437      /// This constructor immediately makes a snapshot of the graph.
1438      /// \param _graph The graph we make a snapshot of.
1439      Snapshot(ListGraph &_graph)
1440        : node_observer_proxy(*this),
1441          edge_observer_proxy(*this) {
1442        attach(_graph);
1443      }
1444     
1445      /// \brief Make a snapshot.
1446      ///
1447      /// Make a snapshot of the graph.
1448      ///
1449      /// This function can be called more than once. In case of a repeated
1450      /// call, the previous snapshot gets lost.
1451      /// \param _graph The graph we make the snapshot of.
1452      void save(ListGraph &_graph) {
1453        if (attached()) {
1454          detach();
1455          clear();
1456        }
1457        attach(_graph);
1458      }
1459     
1460      /// \brief Undo the changes until the last snapshot.
1461      //
1462      /// Undo the changes until the last snapshot created by save().
1463      void restore() {
1464        detach();
1465        for(std::list<Edge>::iterator it = added_edges.begin();
1466            it != added_edges.end(); ++it) {
1467          graph->erase(*it);
1468        }
1469        for(std::list<Node>::iterator it = added_nodes.begin();
1470            it != added_nodes.end(); ++it) {
1471          graph->erase(*it);
1472        }
1473        clear();
1474      }
1475
1476      /// \brief Gives back true when the snapshot is valid.
1477      ///
1478      /// Gives back true when the snapshot is valid.
1479      bool valid() const {
1480        return attached();
1481      }
1482    };
1483  };
1484 
1485  /// @} 
1486} //namespace lemon
1487 
1488
1489#endif
Note: See TracBrowser for help on using the repository browser.