[481] | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
| 4 | * |
---|
[956] | 5 | * Copyright (C) 2003-2010 |
---|
[481] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | #ifndef LEMON_LP_BASE_H |
---|
| 20 | #define LEMON_LP_BASE_H |
---|
| 21 | |
---|
| 22 | #include<iostream> |
---|
| 23 | #include<vector> |
---|
| 24 | #include<map> |
---|
| 25 | #include<limits> |
---|
| 26 | #include<lemon/math.h> |
---|
| 27 | |
---|
[482] | 28 | #include<lemon/error.h> |
---|
| 29 | #include<lemon/assert.h> |
---|
| 30 | |
---|
[481] | 31 | #include<lemon/core.h> |
---|
[482] | 32 | #include<lemon/bits/solver_bits.h> |
---|
[481] | 33 | |
---|
| 34 | ///\file |
---|
| 35 | ///\brief The interface of the LP solver interface. |
---|
| 36 | ///\ingroup lp_group |
---|
| 37 | namespace lemon { |
---|
| 38 | |
---|
[482] | 39 | ///Common base class for LP and MIP solvers |
---|
[481] | 40 | |
---|
[482] | 41 | ///Usually this class is not used directly, please use one of the concrete |
---|
| 42 | ///implementations of the solver interface. |
---|
[481] | 43 | ///\ingroup lp_group |
---|
[482] | 44 | class LpBase { |
---|
[481] | 45 | |
---|
| 46 | protected: |
---|
| 47 | |
---|
[482] | 48 | _solver_bits::VarIndex rows; |
---|
| 49 | _solver_bits::VarIndex cols; |
---|
[481] | 50 | |
---|
| 51 | public: |
---|
| 52 | |
---|
| 53 | ///Possible outcomes of an LP solving procedure |
---|
| 54 | enum SolveExitStatus { |
---|
[631] | 55 | /// = 0. It means that the problem has been successfully solved: either |
---|
[481] | 56 | ///an optimal solution has been found or infeasibility/unboundedness |
---|
| 57 | ///has been proved. |
---|
| 58 | SOLVED = 0, |
---|
[631] | 59 | /// = 1. Any other case (including the case when some user specified |
---|
| 60 | ///limit has been exceeded). |
---|
[481] | 61 | UNSOLVED = 1 |
---|
| 62 | }; |
---|
| 63 | |
---|
[482] | 64 | ///Direction of the optimization |
---|
| 65 | enum Sense { |
---|
| 66 | /// Minimization |
---|
| 67 | MIN, |
---|
| 68 | /// Maximization |
---|
| 69 | MAX |
---|
[481] | 70 | }; |
---|
| 71 | |
---|
[623] | 72 | ///Enum for \c messageLevel() parameter |
---|
| 73 | enum MessageLevel { |
---|
[631] | 74 | /// No output (default value). |
---|
[623] | 75 | MESSAGE_NOTHING, |
---|
[631] | 76 | /// Error messages only. |
---|
[623] | 77 | MESSAGE_ERROR, |
---|
[631] | 78 | /// Warnings. |
---|
[623] | 79 | MESSAGE_WARNING, |
---|
[631] | 80 | /// Normal output. |
---|
[623] | 81 | MESSAGE_NORMAL, |
---|
[631] | 82 | /// Verbose output. |
---|
[623] | 83 | MESSAGE_VERBOSE |
---|
| 84 | }; |
---|
[956] | 85 | |
---|
[623] | 86 | |
---|
[481] | 87 | ///The floating point type used by the solver |
---|
| 88 | typedef double Value; |
---|
| 89 | ///The infinity constant |
---|
| 90 | static const Value INF; |
---|
| 91 | ///The not a number constant |
---|
| 92 | static const Value NaN; |
---|
| 93 | |
---|
| 94 | friend class Col; |
---|
| 95 | friend class ColIt; |
---|
| 96 | friend class Row; |
---|
[482] | 97 | friend class RowIt; |
---|
[481] | 98 | |
---|
| 99 | ///Refer to a column of the LP. |
---|
| 100 | |
---|
| 101 | ///This type is used to refer to a column of the LP. |
---|
| 102 | /// |
---|
| 103 | ///Its value remains valid and correct even after the addition or erase of |
---|
| 104 | ///other columns. |
---|
| 105 | /// |
---|
[482] | 106 | ///\note This class is similar to other Item types in LEMON, like |
---|
| 107 | ///Node and Arc types in digraph. |
---|
[481] | 108 | class Col { |
---|
[482] | 109 | friend class LpBase; |
---|
[481] | 110 | protected: |
---|
[482] | 111 | int _id; |
---|
| 112 | explicit Col(int id) : _id(id) {} |
---|
[481] | 113 | public: |
---|
| 114 | typedef Value ExprValue; |
---|
[482] | 115 | typedef True LpCol; |
---|
| 116 | /// Default constructor |
---|
[956] | 117 | |
---|
[482] | 118 | /// \warning The default constructor sets the Col to an |
---|
| 119 | /// undefined value. |
---|
[481] | 120 | Col() {} |
---|
[482] | 121 | /// Invalid constructor \& conversion. |
---|
[956] | 122 | |
---|
[482] | 123 | /// This constructor initializes the Col to be invalid. |
---|
[956] | 124 | /// \sa Invalid for more details. |
---|
[482] | 125 | Col(const Invalid&) : _id(-1) {} |
---|
| 126 | /// Equality operator |
---|
| 127 | |
---|
| 128 | /// Two \ref Col "Col"s are equal if and only if they point to |
---|
| 129 | /// the same LP column or both are invalid. |
---|
| 130 | bool operator==(Col c) const {return _id == c._id;} |
---|
| 131 | /// Inequality operator |
---|
| 132 | |
---|
| 133 | /// \sa operator==(Col c) |
---|
| 134 | /// |
---|
| 135 | bool operator!=(Col c) const {return _id != c._id;} |
---|
| 136 | /// Artificial ordering operator. |
---|
| 137 | |
---|
| 138 | /// To allow the use of this object in std::map or similar |
---|
| 139 | /// associative container we require this. |
---|
| 140 | /// |
---|
| 141 | /// \note This operator only have to define some strict ordering of |
---|
| 142 | /// the items; this order has nothing to do with the iteration |
---|
| 143 | /// ordering of the items. |
---|
| 144 | bool operator<(Col c) const {return _id < c._id;} |
---|
[481] | 145 | }; |
---|
| 146 | |
---|
[482] | 147 | ///Iterator for iterate over the columns of an LP problem |
---|
| 148 | |
---|
[833] | 149 | /// Its usage is quite simple, for example, you can count the number |
---|
[482] | 150 | /// of columns in an LP \c lp: |
---|
| 151 | ///\code |
---|
| 152 | /// int count=0; |
---|
| 153 | /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
---|
| 154 | ///\endcode |
---|
[481] | 155 | class ColIt : public Col { |
---|
[482] | 156 | const LpBase *_solver; |
---|
[481] | 157 | public: |
---|
[482] | 158 | /// Default constructor |
---|
[956] | 159 | |
---|
[482] | 160 | /// \warning The default constructor sets the iterator |
---|
| 161 | /// to an undefined value. |
---|
[481] | 162 | ColIt() {} |
---|
[482] | 163 | /// Sets the iterator to the first Col |
---|
[956] | 164 | |
---|
[482] | 165 | /// Sets the iterator to the first Col. |
---|
| 166 | /// |
---|
| 167 | ColIt(const LpBase &solver) : _solver(&solver) |
---|
[481] | 168 | { |
---|
[482] | 169 | _solver->cols.firstItem(_id); |
---|
[481] | 170 | } |
---|
[482] | 171 | /// Invalid constructor \& conversion |
---|
[956] | 172 | |
---|
[482] | 173 | /// Initialize the iterator to be invalid. |
---|
| 174 | /// \sa Invalid for more details. |
---|
[481] | 175 | ColIt(const Invalid&) : Col(INVALID) {} |
---|
[482] | 176 | /// Next column |
---|
[956] | 177 | |
---|
[482] | 178 | /// Assign the iterator to the next column. |
---|
| 179 | /// |
---|
[481] | 180 | ColIt &operator++() |
---|
| 181 | { |
---|
[482] | 182 | _solver->cols.nextItem(_id); |
---|
[481] | 183 | return *this; |
---|
| 184 | } |
---|
| 185 | }; |
---|
| 186 | |
---|
[482] | 187 | /// \brief Returns the ID of the column. |
---|
| 188 | static int id(const Col& col) { return col._id; } |
---|
| 189 | /// \brief Returns the column with the given ID. |
---|
| 190 | /// |
---|
| 191 | /// \pre The argument should be a valid column ID in the LP problem. |
---|
| 192 | static Col colFromId(int id) { return Col(id); } |
---|
[481] | 193 | |
---|
| 194 | ///Refer to a row of the LP. |
---|
| 195 | |
---|
| 196 | ///This type is used to refer to a row of the LP. |
---|
| 197 | /// |
---|
| 198 | ///Its value remains valid and correct even after the addition or erase of |
---|
| 199 | ///other rows. |
---|
| 200 | /// |
---|
[482] | 201 | ///\note This class is similar to other Item types in LEMON, like |
---|
| 202 | ///Node and Arc types in digraph. |
---|
[481] | 203 | class Row { |
---|
[482] | 204 | friend class LpBase; |
---|
[481] | 205 | protected: |
---|
[482] | 206 | int _id; |
---|
| 207 | explicit Row(int id) : _id(id) {} |
---|
[481] | 208 | public: |
---|
| 209 | typedef Value ExprValue; |
---|
[482] | 210 | typedef True LpRow; |
---|
| 211 | /// Default constructor |
---|
[956] | 212 | |
---|
[482] | 213 | /// \warning The default constructor sets the Row to an |
---|
| 214 | /// undefined value. |
---|
[481] | 215 | Row() {} |
---|
[482] | 216 | /// Invalid constructor \& conversion. |
---|
[956] | 217 | |
---|
[482] | 218 | /// This constructor initializes the Row to be invalid. |
---|
[956] | 219 | /// \sa Invalid for more details. |
---|
[482] | 220 | Row(const Invalid&) : _id(-1) {} |
---|
| 221 | /// Equality operator |
---|
[481] | 222 | |
---|
[482] | 223 | /// Two \ref Row "Row"s are equal if and only if they point to |
---|
| 224 | /// the same LP row or both are invalid. |
---|
| 225 | bool operator==(Row r) const {return _id == r._id;} |
---|
| 226 | /// Inequality operator |
---|
[956] | 227 | |
---|
[482] | 228 | /// \sa operator==(Row r) |
---|
| 229 | /// |
---|
| 230 | bool operator!=(Row r) const {return _id != r._id;} |
---|
| 231 | /// Artificial ordering operator. |
---|
| 232 | |
---|
| 233 | /// To allow the use of this object in std::map or similar |
---|
| 234 | /// associative container we require this. |
---|
| 235 | /// |
---|
| 236 | /// \note This operator only have to define some strict ordering of |
---|
| 237 | /// the items; this order has nothing to do with the iteration |
---|
| 238 | /// ordering of the items. |
---|
| 239 | bool operator<(Row r) const {return _id < r._id;} |
---|
[481] | 240 | }; |
---|
| 241 | |
---|
[482] | 242 | ///Iterator for iterate over the rows of an LP problem |
---|
| 243 | |
---|
[833] | 244 | /// Its usage is quite simple, for example, you can count the number |
---|
[482] | 245 | /// of rows in an LP \c lp: |
---|
| 246 | ///\code |
---|
| 247 | /// int count=0; |
---|
| 248 | /// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
---|
| 249 | ///\endcode |
---|
[481] | 250 | class RowIt : public Row { |
---|
[482] | 251 | const LpBase *_solver; |
---|
[481] | 252 | public: |
---|
[482] | 253 | /// Default constructor |
---|
[956] | 254 | |
---|
[482] | 255 | /// \warning The default constructor sets the iterator |
---|
| 256 | /// to an undefined value. |
---|
[481] | 257 | RowIt() {} |
---|
[482] | 258 | /// Sets the iterator to the first Row |
---|
[956] | 259 | |
---|
[482] | 260 | /// Sets the iterator to the first Row. |
---|
| 261 | /// |
---|
| 262 | RowIt(const LpBase &solver) : _solver(&solver) |
---|
[481] | 263 | { |
---|
[482] | 264 | _solver->rows.firstItem(_id); |
---|
[481] | 265 | } |
---|
[482] | 266 | /// Invalid constructor \& conversion |
---|
[956] | 267 | |
---|
[482] | 268 | /// Initialize the iterator to be invalid. |
---|
| 269 | /// \sa Invalid for more details. |
---|
[481] | 270 | RowIt(const Invalid&) : Row(INVALID) {} |
---|
[482] | 271 | /// Next row |
---|
[956] | 272 | |
---|
[482] | 273 | /// Assign the iterator to the next row. |
---|
| 274 | /// |
---|
[481] | 275 | RowIt &operator++() |
---|
| 276 | { |
---|
[482] | 277 | _solver->rows.nextItem(_id); |
---|
[481] | 278 | return *this; |
---|
| 279 | } |
---|
| 280 | }; |
---|
| 281 | |
---|
[482] | 282 | /// \brief Returns the ID of the row. |
---|
| 283 | static int id(const Row& row) { return row._id; } |
---|
| 284 | /// \brief Returns the row with the given ID. |
---|
| 285 | /// |
---|
| 286 | /// \pre The argument should be a valid row ID in the LP problem. |
---|
| 287 | static Row rowFromId(int id) { return Row(id); } |
---|
[481] | 288 | |
---|
| 289 | public: |
---|
| 290 | |
---|
| 291 | ///Linear expression of variables and a constant component |
---|
| 292 | |
---|
| 293 | ///This data structure stores a linear expression of the variables |
---|
| 294 | ///(\ref Col "Col"s) and also has a constant component. |
---|
| 295 | /// |
---|
| 296 | ///There are several ways to access and modify the contents of this |
---|
| 297 | ///container. |
---|
| 298 | ///\code |
---|
| 299 | ///e[v]=5; |
---|
| 300 | ///e[v]+=12; |
---|
| 301 | ///e.erase(v); |
---|
| 302 | ///\endcode |
---|
| 303 | ///or you can also iterate through its elements. |
---|
| 304 | ///\code |
---|
| 305 | ///double s=0; |
---|
[482] | 306 | ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
---|
| 307 | /// s+=*i * primal(i); |
---|
[481] | 308 | ///\endcode |
---|
[482] | 309 | ///(This code computes the primal value of the expression). |
---|
[481] | 310 | ///- Numbers (<tt>double</tt>'s) |
---|
| 311 | ///and variables (\ref Col "Col"s) directly convert to an |
---|
| 312 | ///\ref Expr and the usual linear operations are defined, so |
---|
| 313 | ///\code |
---|
| 314 | ///v+w |
---|
| 315 | ///2*v-3.12*(v-w/2)+2 |
---|
| 316 | ///v*2.1+(3*v+(v*12+w+6)*3)/2 |
---|
| 317 | ///\endcode |
---|
[482] | 318 | ///are valid expressions. |
---|
[481] | 319 | ///The usual assignment operations are also defined. |
---|
| 320 | ///\code |
---|
| 321 | ///e=v+w; |
---|
| 322 | ///e+=2*v-3.12*(v-w/2)+2; |
---|
| 323 | ///e*=3.4; |
---|
| 324 | ///e/=5; |
---|
| 325 | ///\endcode |
---|
[482] | 326 | ///- The constant member can be set and read by dereference |
---|
| 327 | /// operator (unary *) |
---|
| 328 | /// |
---|
[481] | 329 | ///\code |
---|
[482] | 330 | ///*e=12; |
---|
| 331 | ///double c=*e; |
---|
[481] | 332 | ///\endcode |
---|
| 333 | /// |
---|
| 334 | ///\sa Constr |
---|
[482] | 335 | class Expr { |
---|
| 336 | friend class LpBase; |
---|
[481] | 337 | public: |
---|
[482] | 338 | /// The key type of the expression |
---|
| 339 | typedef LpBase::Col Key; |
---|
| 340 | /// The value type of the expression |
---|
| 341 | typedef LpBase::Value Value; |
---|
[481] | 342 | |
---|
| 343 | protected: |
---|
[482] | 344 | Value const_comp; |
---|
| 345 | std::map<int, Value> comps; |
---|
[481] | 346 | |
---|
| 347 | public: |
---|
[482] | 348 | typedef True SolverExpr; |
---|
| 349 | /// Default constructor |
---|
[956] | 350 | |
---|
[482] | 351 | /// Construct an empty expression, the coefficients and |
---|
| 352 | /// the constant component are initialized to zero. |
---|
| 353 | Expr() : const_comp(0) {} |
---|
| 354 | /// Construct an expression from a column |
---|
| 355 | |
---|
| 356 | /// Construct an expression, which has a term with \c c variable |
---|
| 357 | /// and 1.0 coefficient. |
---|
| 358 | Expr(const Col &c) : const_comp(0) { |
---|
| 359 | typedef std::map<int, Value>::value_type pair_type; |
---|
| 360 | comps.insert(pair_type(id(c), 1)); |
---|
[481] | 361 | } |
---|
[482] | 362 | /// Construct an expression from a constant |
---|
| 363 | |
---|
| 364 | /// Construct an expression, which's constant component is \c v. |
---|
| 365 | /// |
---|
[481] | 366 | Expr(const Value &v) : const_comp(v) {} |
---|
[482] | 367 | /// Returns the coefficient of the column |
---|
| 368 | Value operator[](const Col& c) const { |
---|
| 369 | std::map<int, Value>::const_iterator it=comps.find(id(c)); |
---|
| 370 | if (it != comps.end()) { |
---|
| 371 | return it->second; |
---|
| 372 | } else { |
---|
| 373 | return 0; |
---|
[481] | 374 | } |
---|
| 375 | } |
---|
[482] | 376 | /// Returns the coefficient of the column |
---|
| 377 | Value& operator[](const Col& c) { |
---|
| 378 | return comps[id(c)]; |
---|
| 379 | } |
---|
| 380 | /// Sets the coefficient of the column |
---|
| 381 | void set(const Col &c, const Value &v) { |
---|
| 382 | if (v != 0.0) { |
---|
| 383 | typedef std::map<int, Value>::value_type pair_type; |
---|
| 384 | comps.insert(pair_type(id(c), v)); |
---|
| 385 | } else { |
---|
| 386 | comps.erase(id(c)); |
---|
| 387 | } |
---|
| 388 | } |
---|
| 389 | /// Returns the constant component of the expression |
---|
| 390 | Value& operator*() { return const_comp; } |
---|
| 391 | /// Returns the constant component of the expression |
---|
| 392 | const Value& operator*() const { return const_comp; } |
---|
| 393 | /// \brief Removes the coefficients which's absolute value does |
---|
| 394 | /// not exceed \c epsilon. It also sets to zero the constant |
---|
| 395 | /// component, if it does not exceed epsilon in absolute value. |
---|
| 396 | void simplify(Value epsilon = 0.0) { |
---|
| 397 | std::map<int, Value>::iterator it=comps.begin(); |
---|
| 398 | while (it != comps.end()) { |
---|
| 399 | std::map<int, Value>::iterator jt=it; |
---|
| 400 | ++jt; |
---|
| 401 | if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
---|
| 402 | it=jt; |
---|
| 403 | } |
---|
| 404 | if (std::fabs(const_comp) <= epsilon) const_comp = 0; |
---|
[481] | 405 | } |
---|
| 406 | |
---|
[482] | 407 | void simplify(Value epsilon = 0.0) const { |
---|
| 408 | const_cast<Expr*>(this)->simplify(epsilon); |
---|
[481] | 409 | } |
---|
| 410 | |
---|
| 411 | ///Sets all coefficients and the constant component to 0. |
---|
| 412 | void clear() { |
---|
[482] | 413 | comps.clear(); |
---|
[481] | 414 | const_comp=0; |
---|
| 415 | } |
---|
| 416 | |
---|
[482] | 417 | ///Compound assignment |
---|
[481] | 418 | Expr &operator+=(const Expr &e) { |
---|
[482] | 419 | for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
---|
| 420 | it!=e.comps.end(); ++it) |
---|
| 421 | comps[it->first]+=it->second; |
---|
[481] | 422 | const_comp+=e.const_comp; |
---|
| 423 | return *this; |
---|
| 424 | } |
---|
[482] | 425 | ///Compound assignment |
---|
[481] | 426 | Expr &operator-=(const Expr &e) { |
---|
[482] | 427 | for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
---|
| 428 | it!=e.comps.end(); ++it) |
---|
| 429 | comps[it->first]-=it->second; |
---|
[481] | 430 | const_comp-=e.const_comp; |
---|
| 431 | return *this; |
---|
| 432 | } |
---|
[482] | 433 | ///Multiply with a constant |
---|
| 434 | Expr &operator*=(const Value &v) { |
---|
| 435 | for (std::map<int, Value>::iterator it=comps.begin(); |
---|
| 436 | it!=comps.end(); ++it) |
---|
| 437 | it->second*=v; |
---|
| 438 | const_comp*=v; |
---|
[481] | 439 | return *this; |
---|
| 440 | } |
---|
[482] | 441 | ///Division with a constant |
---|
[481] | 442 | Expr &operator/=(const Value &c) { |
---|
[482] | 443 | for (std::map<int, Value>::iterator it=comps.begin(); |
---|
| 444 | it!=comps.end(); ++it) |
---|
| 445 | it->second/=c; |
---|
[481] | 446 | const_comp/=c; |
---|
| 447 | return *this; |
---|
| 448 | } |
---|
| 449 | |
---|
[482] | 450 | ///Iterator over the expression |
---|
[956] | 451 | |
---|
| 452 | ///The iterator iterates over the terms of the expression. |
---|
| 453 | /// |
---|
[482] | 454 | ///\code |
---|
| 455 | ///double s=0; |
---|
| 456 | ///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
---|
| 457 | /// s+= *i * primal(i); |
---|
| 458 | ///\endcode |
---|
| 459 | class CoeffIt { |
---|
| 460 | private: |
---|
| 461 | |
---|
| 462 | std::map<int, Value>::iterator _it, _end; |
---|
| 463 | |
---|
| 464 | public: |
---|
| 465 | |
---|
| 466 | /// Sets the iterator to the first term |
---|
[956] | 467 | |
---|
[482] | 468 | /// Sets the iterator to the first term of the expression. |
---|
| 469 | /// |
---|
| 470 | CoeffIt(Expr& e) |
---|
| 471 | : _it(e.comps.begin()), _end(e.comps.end()){} |
---|
| 472 | |
---|
| 473 | /// Convert the iterator to the column of the term |
---|
| 474 | operator Col() const { |
---|
| 475 | return colFromId(_it->first); |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | /// Returns the coefficient of the term |
---|
| 479 | Value& operator*() { return _it->second; } |
---|
| 480 | |
---|
| 481 | /// Returns the coefficient of the term |
---|
| 482 | const Value& operator*() const { return _it->second; } |
---|
| 483 | /// Next term |
---|
[956] | 484 | |
---|
[482] | 485 | /// Assign the iterator to the next term. |
---|
| 486 | /// |
---|
| 487 | CoeffIt& operator++() { ++_it; return *this; } |
---|
| 488 | |
---|
| 489 | /// Equality operator |
---|
| 490 | bool operator==(Invalid) const { return _it == _end; } |
---|
| 491 | /// Inequality operator |
---|
| 492 | bool operator!=(Invalid) const { return _it != _end; } |
---|
| 493 | }; |
---|
| 494 | |
---|
| 495 | /// Const iterator over the expression |
---|
[956] | 496 | |
---|
| 497 | ///The iterator iterates over the terms of the expression. |
---|
| 498 | /// |
---|
[482] | 499 | ///\code |
---|
| 500 | ///double s=0; |
---|
| 501 | ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
---|
| 502 | /// s+=*i * primal(i); |
---|
| 503 | ///\endcode |
---|
| 504 | class ConstCoeffIt { |
---|
| 505 | private: |
---|
| 506 | |
---|
| 507 | std::map<int, Value>::const_iterator _it, _end; |
---|
| 508 | |
---|
| 509 | public: |
---|
| 510 | |
---|
| 511 | /// Sets the iterator to the first term |
---|
[956] | 512 | |
---|
[482] | 513 | /// Sets the iterator to the first term of the expression. |
---|
| 514 | /// |
---|
| 515 | ConstCoeffIt(const Expr& e) |
---|
| 516 | : _it(e.comps.begin()), _end(e.comps.end()){} |
---|
| 517 | |
---|
| 518 | /// Convert the iterator to the column of the term |
---|
| 519 | operator Col() const { |
---|
| 520 | return colFromId(_it->first); |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | /// Returns the coefficient of the term |
---|
| 524 | const Value& operator*() const { return _it->second; } |
---|
| 525 | |
---|
| 526 | /// Next term |
---|
[956] | 527 | |
---|
[482] | 528 | /// Assign the iterator to the next term. |
---|
| 529 | /// |
---|
| 530 | ConstCoeffIt& operator++() { ++_it; return *this; } |
---|
| 531 | |
---|
| 532 | /// Equality operator |
---|
| 533 | bool operator==(Invalid) const { return _it == _end; } |
---|
| 534 | /// Inequality operator |
---|
| 535 | bool operator!=(Invalid) const { return _it != _end; } |
---|
| 536 | }; |
---|
| 537 | |
---|
[481] | 538 | }; |
---|
| 539 | |
---|
| 540 | ///Linear constraint |
---|
| 541 | |
---|
| 542 | ///This data stucture represents a linear constraint in the LP. |
---|
| 543 | ///Basically it is a linear expression with a lower or an upper bound |
---|
| 544 | ///(or both). These parts of the constraint can be obtained by the member |
---|
| 545 | ///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
---|
| 546 | ///respectively. |
---|
| 547 | ///There are two ways to construct a constraint. |
---|
| 548 | ///- You can set the linear expression and the bounds directly |
---|
| 549 | /// by the functions above. |
---|
| 550 | ///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
---|
| 551 | /// are defined between expressions, or even between constraints whenever |
---|
| 552 | /// it makes sense. Therefore if \c e and \c f are linear expressions and |
---|
| 553 | /// \c s and \c t are numbers, then the followings are valid expressions |
---|
| 554 | /// and thus they can be used directly e.g. in \ref addRow() whenever |
---|
| 555 | /// it makes sense. |
---|
| 556 | ///\code |
---|
| 557 | /// e<=s |
---|
| 558 | /// e<=f |
---|
| 559 | /// e==f |
---|
| 560 | /// s<=e<=t |
---|
| 561 | /// e>=t |
---|
| 562 | ///\endcode |
---|
[482] | 563 | ///\warning The validity of a constraint is checked only at run |
---|
| 564 | ///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
---|
| 565 | ///compile, but will fail an assertion. |
---|
[481] | 566 | class Constr |
---|
| 567 | { |
---|
| 568 | public: |
---|
[482] | 569 | typedef LpBase::Expr Expr; |
---|
[481] | 570 | typedef Expr::Key Key; |
---|
| 571 | typedef Expr::Value Value; |
---|
| 572 | |
---|
| 573 | protected: |
---|
| 574 | Expr _expr; |
---|
| 575 | Value _lb,_ub; |
---|
| 576 | public: |
---|
| 577 | ///\e |
---|
| 578 | Constr() : _expr(), _lb(NaN), _ub(NaN) {} |
---|
| 579 | ///\e |
---|
[482] | 580 | Constr(Value lb, const Expr &e, Value ub) : |
---|
[481] | 581 | _expr(e), _lb(lb), _ub(ub) {} |
---|
| 582 | Constr(const Expr &e) : |
---|
| 583 | _expr(e), _lb(NaN), _ub(NaN) {} |
---|
| 584 | ///\e |
---|
| 585 | void clear() |
---|
| 586 | { |
---|
| 587 | _expr.clear(); |
---|
| 588 | _lb=_ub=NaN; |
---|
| 589 | } |
---|
| 590 | |
---|
| 591 | ///Reference to the linear expression |
---|
| 592 | Expr &expr() { return _expr; } |
---|
| 593 | ///Cont reference to the linear expression |
---|
| 594 | const Expr &expr() const { return _expr; } |
---|
| 595 | ///Reference to the lower bound. |
---|
| 596 | |
---|
| 597 | ///\return |
---|
| 598 | ///- \ref INF "INF": the constraint is lower unbounded. |
---|
| 599 | ///- \ref NaN "NaN": lower bound has not been set. |
---|
| 600 | ///- finite number: the lower bound |
---|
| 601 | Value &lowerBound() { return _lb; } |
---|
| 602 | ///The const version of \ref lowerBound() |
---|
| 603 | const Value &lowerBound() const { return _lb; } |
---|
| 604 | ///Reference to the upper bound. |
---|
| 605 | |
---|
| 606 | ///\return |
---|
| 607 | ///- \ref INF "INF": the constraint is upper unbounded. |
---|
| 608 | ///- \ref NaN "NaN": upper bound has not been set. |
---|
| 609 | ///- finite number: the upper bound |
---|
| 610 | Value &upperBound() { return _ub; } |
---|
| 611 | ///The const version of \ref upperBound() |
---|
| 612 | const Value &upperBound() const { return _ub; } |
---|
| 613 | ///Is the constraint lower bounded? |
---|
| 614 | bool lowerBounded() const { |
---|
[558] | 615 | return _lb != -INF && !isNaN(_lb); |
---|
[481] | 616 | } |
---|
| 617 | ///Is the constraint upper bounded? |
---|
| 618 | bool upperBounded() const { |
---|
[558] | 619 | return _ub != INF && !isNaN(_ub); |
---|
[481] | 620 | } |
---|
| 621 | |
---|
| 622 | }; |
---|
| 623 | |
---|
| 624 | ///Linear expression of rows |
---|
| 625 | |
---|
| 626 | ///This data structure represents a column of the matrix, |
---|
| 627 | ///thas is it strores a linear expression of the dual variables |
---|
| 628 | ///(\ref Row "Row"s). |
---|
| 629 | /// |
---|
| 630 | ///There are several ways to access and modify the contents of this |
---|
| 631 | ///container. |
---|
| 632 | ///\code |
---|
| 633 | ///e[v]=5; |
---|
| 634 | ///e[v]+=12; |
---|
| 635 | ///e.erase(v); |
---|
| 636 | ///\endcode |
---|
| 637 | ///or you can also iterate through its elements. |
---|
| 638 | ///\code |
---|
| 639 | ///double s=0; |
---|
[482] | 640 | ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
---|
| 641 | /// s+=*i; |
---|
[481] | 642 | ///\endcode |
---|
| 643 | ///(This code computes the sum of all coefficients). |
---|
| 644 | ///- Numbers (<tt>double</tt>'s) |
---|
| 645 | ///and variables (\ref Row "Row"s) directly convert to an |
---|
| 646 | ///\ref DualExpr and the usual linear operations are defined, so |
---|
| 647 | ///\code |
---|
| 648 | ///v+w |
---|
| 649 | ///2*v-3.12*(v-w/2) |
---|
| 650 | ///v*2.1+(3*v+(v*12+w)*3)/2 |
---|
| 651 | ///\endcode |
---|
[482] | 652 | ///are valid \ref DualExpr dual expressions. |
---|
[481] | 653 | ///The usual assignment operations are also defined. |
---|
| 654 | ///\code |
---|
| 655 | ///e=v+w; |
---|
| 656 | ///e+=2*v-3.12*(v-w/2); |
---|
| 657 | ///e*=3.4; |
---|
| 658 | ///e/=5; |
---|
| 659 | ///\endcode |
---|
| 660 | /// |
---|
| 661 | ///\sa Expr |
---|
[482] | 662 | class DualExpr { |
---|
| 663 | friend class LpBase; |
---|
[481] | 664 | public: |
---|
[482] | 665 | /// The key type of the expression |
---|
| 666 | typedef LpBase::Row Key; |
---|
| 667 | /// The value type of the expression |
---|
| 668 | typedef LpBase::Value Value; |
---|
[481] | 669 | |
---|
| 670 | protected: |
---|
[482] | 671 | std::map<int, Value> comps; |
---|
[481] | 672 | |
---|
| 673 | public: |
---|
[482] | 674 | typedef True SolverExpr; |
---|
| 675 | /// Default constructor |
---|
[956] | 676 | |
---|
[482] | 677 | /// Construct an empty expression, the coefficients are |
---|
| 678 | /// initialized to zero. |
---|
| 679 | DualExpr() {} |
---|
| 680 | /// Construct an expression from a row |
---|
| 681 | |
---|
| 682 | /// Construct an expression, which has a term with \c r dual |
---|
| 683 | /// variable and 1.0 coefficient. |
---|
| 684 | DualExpr(const Row &r) { |
---|
| 685 | typedef std::map<int, Value>::value_type pair_type; |
---|
| 686 | comps.insert(pair_type(id(r), 1)); |
---|
[481] | 687 | } |
---|
[482] | 688 | /// Returns the coefficient of the row |
---|
| 689 | Value operator[](const Row& r) const { |
---|
| 690 | std::map<int, Value>::const_iterator it = comps.find(id(r)); |
---|
| 691 | if (it != comps.end()) { |
---|
| 692 | return it->second; |
---|
| 693 | } else { |
---|
| 694 | return 0; |
---|
| 695 | } |
---|
[481] | 696 | } |
---|
[482] | 697 | /// Returns the coefficient of the row |
---|
| 698 | Value& operator[](const Row& r) { |
---|
| 699 | return comps[id(r)]; |
---|
| 700 | } |
---|
| 701 | /// Sets the coefficient of the row |
---|
| 702 | void set(const Row &r, const Value &v) { |
---|
| 703 | if (v != 0.0) { |
---|
| 704 | typedef std::map<int, Value>::value_type pair_type; |
---|
| 705 | comps.insert(pair_type(id(r), v)); |
---|
| 706 | } else { |
---|
| 707 | comps.erase(id(r)); |
---|
| 708 | } |
---|
| 709 | } |
---|
| 710 | /// \brief Removes the coefficients which's absolute value does |
---|
[956] | 711 | /// not exceed \c epsilon. |
---|
[482] | 712 | void simplify(Value epsilon = 0.0) { |
---|
| 713 | std::map<int, Value>::iterator it=comps.begin(); |
---|
| 714 | while (it != comps.end()) { |
---|
| 715 | std::map<int, Value>::iterator jt=it; |
---|
| 716 | ++jt; |
---|
| 717 | if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
---|
| 718 | it=jt; |
---|
[481] | 719 | } |
---|
| 720 | } |
---|
| 721 | |
---|
[482] | 722 | void simplify(Value epsilon = 0.0) const { |
---|
| 723 | const_cast<DualExpr*>(this)->simplify(epsilon); |
---|
[481] | 724 | } |
---|
| 725 | |
---|
| 726 | ///Sets all coefficients to 0. |
---|
| 727 | void clear() { |
---|
[482] | 728 | comps.clear(); |
---|
| 729 | } |
---|
| 730 | ///Compound assignment |
---|
| 731 | DualExpr &operator+=(const DualExpr &e) { |
---|
| 732 | for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
---|
| 733 | it!=e.comps.end(); ++it) |
---|
| 734 | comps[it->first]+=it->second; |
---|
| 735 | return *this; |
---|
| 736 | } |
---|
| 737 | ///Compound assignment |
---|
| 738 | DualExpr &operator-=(const DualExpr &e) { |
---|
| 739 | for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
---|
| 740 | it!=e.comps.end(); ++it) |
---|
| 741 | comps[it->first]-=it->second; |
---|
| 742 | return *this; |
---|
| 743 | } |
---|
| 744 | ///Multiply with a constant |
---|
| 745 | DualExpr &operator*=(const Value &v) { |
---|
| 746 | for (std::map<int, Value>::iterator it=comps.begin(); |
---|
| 747 | it!=comps.end(); ++it) |
---|
| 748 | it->second*=v; |
---|
| 749 | return *this; |
---|
| 750 | } |
---|
| 751 | ///Division with a constant |
---|
| 752 | DualExpr &operator/=(const Value &v) { |
---|
| 753 | for (std::map<int, Value>::iterator it=comps.begin(); |
---|
| 754 | it!=comps.end(); ++it) |
---|
| 755 | it->second/=v; |
---|
| 756 | return *this; |
---|
[481] | 757 | } |
---|
| 758 | |
---|
[482] | 759 | ///Iterator over the expression |
---|
[956] | 760 | |
---|
| 761 | ///The iterator iterates over the terms of the expression. |
---|
| 762 | /// |
---|
[482] | 763 | ///\code |
---|
| 764 | ///double s=0; |
---|
| 765 | ///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
---|
| 766 | /// s+= *i * dual(i); |
---|
| 767 | ///\endcode |
---|
| 768 | class CoeffIt { |
---|
| 769 | private: |
---|
| 770 | |
---|
| 771 | std::map<int, Value>::iterator _it, _end; |
---|
| 772 | |
---|
| 773 | public: |
---|
| 774 | |
---|
| 775 | /// Sets the iterator to the first term |
---|
[956] | 776 | |
---|
[482] | 777 | /// Sets the iterator to the first term of the expression. |
---|
| 778 | /// |
---|
| 779 | CoeffIt(DualExpr& e) |
---|
| 780 | : _it(e.comps.begin()), _end(e.comps.end()){} |
---|
| 781 | |
---|
| 782 | /// Convert the iterator to the row of the term |
---|
| 783 | operator Row() const { |
---|
| 784 | return rowFromId(_it->first); |
---|
| 785 | } |
---|
| 786 | |
---|
| 787 | /// Returns the coefficient of the term |
---|
| 788 | Value& operator*() { return _it->second; } |
---|
| 789 | |
---|
| 790 | /// Returns the coefficient of the term |
---|
| 791 | const Value& operator*() const { return _it->second; } |
---|
| 792 | |
---|
| 793 | /// Next term |
---|
[956] | 794 | |
---|
[482] | 795 | /// Assign the iterator to the next term. |
---|
| 796 | /// |
---|
| 797 | CoeffIt& operator++() { ++_it; return *this; } |
---|
| 798 | |
---|
| 799 | /// Equality operator |
---|
| 800 | bool operator==(Invalid) const { return _it == _end; } |
---|
| 801 | /// Inequality operator |
---|
| 802 | bool operator!=(Invalid) const { return _it != _end; } |
---|
| 803 | }; |
---|
| 804 | |
---|
| 805 | ///Iterator over the expression |
---|
[956] | 806 | |
---|
| 807 | ///The iterator iterates over the terms of the expression. |
---|
| 808 | /// |
---|
[482] | 809 | ///\code |
---|
| 810 | ///double s=0; |
---|
| 811 | ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
---|
| 812 | /// s+= *i * dual(i); |
---|
| 813 | ///\endcode |
---|
| 814 | class ConstCoeffIt { |
---|
| 815 | private: |
---|
| 816 | |
---|
| 817 | std::map<int, Value>::const_iterator _it, _end; |
---|
| 818 | |
---|
| 819 | public: |
---|
| 820 | |
---|
| 821 | /// Sets the iterator to the first term |
---|
[956] | 822 | |
---|
[482] | 823 | /// Sets the iterator to the first term of the expression. |
---|
| 824 | /// |
---|
| 825 | ConstCoeffIt(const DualExpr& e) |
---|
| 826 | : _it(e.comps.begin()), _end(e.comps.end()){} |
---|
| 827 | |
---|
| 828 | /// Convert the iterator to the row of the term |
---|
| 829 | operator Row() const { |
---|
| 830 | return rowFromId(_it->first); |
---|
| 831 | } |
---|
| 832 | |
---|
| 833 | /// Returns the coefficient of the term |
---|
| 834 | const Value& operator*() const { return _it->second; } |
---|
| 835 | |
---|
| 836 | /// Next term |
---|
[956] | 837 | |
---|
[482] | 838 | /// Assign the iterator to the next term. |
---|
| 839 | /// |
---|
| 840 | ConstCoeffIt& operator++() { ++_it; return *this; } |
---|
| 841 | |
---|
| 842 | /// Equality operator |
---|
| 843 | bool operator==(Invalid) const { return _it == _end; } |
---|
| 844 | /// Inequality operator |
---|
| 845 | bool operator!=(Invalid) const { return _it != _end; } |
---|
| 846 | }; |
---|
[481] | 847 | }; |
---|
| 848 | |
---|
| 849 | |
---|
[482] | 850 | protected: |
---|
[481] | 851 | |
---|
[482] | 852 | class InsertIterator { |
---|
| 853 | private: |
---|
| 854 | |
---|
| 855 | std::map<int, Value>& _host; |
---|
| 856 | const _solver_bits::VarIndex& _index; |
---|
| 857 | |
---|
[481] | 858 | public: |
---|
| 859 | |
---|
| 860 | typedef std::output_iterator_tag iterator_category; |
---|
| 861 | typedef void difference_type; |
---|
| 862 | typedef void value_type; |
---|
| 863 | typedef void reference; |
---|
| 864 | typedef void pointer; |
---|
| 865 | |
---|
[482] | 866 | InsertIterator(std::map<int, Value>& host, |
---|
| 867 | const _solver_bits::VarIndex& index) |
---|
| 868 | : _host(host), _index(index) {} |
---|
[481] | 869 | |
---|
[482] | 870 | InsertIterator& operator=(const std::pair<int, Value>& value) { |
---|
| 871 | typedef std::map<int, Value>::value_type pair_type; |
---|
| 872 | _host.insert(pair_type(_index[value.first], value.second)); |
---|
[481] | 873 | return *this; |
---|
| 874 | } |
---|
| 875 | |
---|
[482] | 876 | InsertIterator& operator*() { return *this; } |
---|
| 877 | InsertIterator& operator++() { return *this; } |
---|
| 878 | InsertIterator operator++(int) { return *this; } |
---|
[481] | 879 | |
---|
| 880 | }; |
---|
| 881 | |
---|
[482] | 882 | class ExprIterator { |
---|
| 883 | private: |
---|
| 884 | std::map<int, Value>::const_iterator _host_it; |
---|
| 885 | const _solver_bits::VarIndex& _index; |
---|
[481] | 886 | public: |
---|
| 887 | |
---|
[482] | 888 | typedef std::bidirectional_iterator_tag iterator_category; |
---|
| 889 | typedef std::ptrdiff_t difference_type; |
---|
[481] | 890 | typedef const std::pair<int, Value> value_type; |
---|
| 891 | typedef value_type reference; |
---|
[482] | 892 | |
---|
[481] | 893 | class pointer { |
---|
| 894 | public: |
---|
| 895 | pointer(value_type& _value) : value(_value) {} |
---|
| 896 | value_type* operator->() { return &value; } |
---|
| 897 | private: |
---|
| 898 | value_type value; |
---|
| 899 | }; |
---|
| 900 | |
---|
[482] | 901 | ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
---|
| 902 | const _solver_bits::VarIndex& index) |
---|
| 903 | : _host_it(host_it), _index(index) {} |
---|
[481] | 904 | |
---|
| 905 | reference operator*() { |
---|
[482] | 906 | return std::make_pair(_index(_host_it->first), _host_it->second); |
---|
[481] | 907 | } |
---|
| 908 | |
---|
| 909 | pointer operator->() { |
---|
| 910 | return pointer(operator*()); |
---|
| 911 | } |
---|
| 912 | |
---|
[482] | 913 | ExprIterator& operator++() { ++_host_it; return *this; } |
---|
| 914 | ExprIterator operator++(int) { |
---|
| 915 | ExprIterator tmp(*this); ++_host_it; return tmp; |
---|
[481] | 916 | } |
---|
| 917 | |
---|
[482] | 918 | ExprIterator& operator--() { --_host_it; return *this; } |
---|
| 919 | ExprIterator operator--(int) { |
---|
| 920 | ExprIterator tmp(*this); --_host_it; return tmp; |
---|
[481] | 921 | } |
---|
| 922 | |
---|
[482] | 923 | bool operator==(const ExprIterator& it) const { |
---|
| 924 | return _host_it == it._host_it; |
---|
[481] | 925 | } |
---|
| 926 | |
---|
[482] | 927 | bool operator!=(const ExprIterator& it) const { |
---|
| 928 | return _host_it != it._host_it; |
---|
[481] | 929 | } |
---|
| 930 | |
---|
| 931 | }; |
---|
| 932 | |
---|
| 933 | protected: |
---|
| 934 | |
---|
[482] | 935 | //Abstract virtual functions |
---|
[481] | 936 | |
---|
[482] | 937 | virtual int _addColId(int col) { return cols.addIndex(col); } |
---|
| 938 | virtual int _addRowId(int row) { return rows.addIndex(row); } |
---|
[481] | 939 | |
---|
[482] | 940 | virtual void _eraseColId(int col) { cols.eraseIndex(col); } |
---|
| 941 | virtual void _eraseRowId(int row) { rows.eraseIndex(row); } |
---|
[481] | 942 | |
---|
| 943 | virtual int _addCol() = 0; |
---|
| 944 | virtual int _addRow() = 0; |
---|
| 945 | |
---|
[793] | 946 | virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) { |
---|
| 947 | int row = _addRow(); |
---|
| 948 | _setRowCoeffs(row, b, e); |
---|
| 949 | _setRowLowerBound(row, l); |
---|
| 950 | _setRowUpperBound(row, u); |
---|
| 951 | return row; |
---|
| 952 | } |
---|
| 953 | |
---|
[481] | 954 | virtual void _eraseCol(int col) = 0; |
---|
| 955 | virtual void _eraseRow(int row) = 0; |
---|
| 956 | |
---|
[482] | 957 | virtual void _getColName(int col, std::string& name) const = 0; |
---|
| 958 | virtual void _setColName(int col, const std::string& name) = 0; |
---|
[481] | 959 | virtual int _colByName(const std::string& name) const = 0; |
---|
| 960 | |
---|
[482] | 961 | virtual void _getRowName(int row, std::string& name) const = 0; |
---|
| 962 | virtual void _setRowName(int row, const std::string& name) = 0; |
---|
| 963 | virtual int _rowByName(const std::string& name) const = 0; |
---|
| 964 | |
---|
| 965 | virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
---|
| 966 | virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
---|
| 967 | |
---|
| 968 | virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
---|
| 969 | virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
---|
| 970 | |
---|
[481] | 971 | virtual void _setCoeff(int row, int col, Value value) = 0; |
---|
| 972 | virtual Value _getCoeff(int row, int col) const = 0; |
---|
[482] | 973 | |
---|
[481] | 974 | virtual void _setColLowerBound(int i, Value value) = 0; |
---|
| 975 | virtual Value _getColLowerBound(int i) const = 0; |
---|
[482] | 976 | |
---|
[481] | 977 | virtual void _setColUpperBound(int i, Value value) = 0; |
---|
| 978 | virtual Value _getColUpperBound(int i) const = 0; |
---|
[482] | 979 | |
---|
| 980 | virtual void _setRowLowerBound(int i, Value value) = 0; |
---|
| 981 | virtual Value _getRowLowerBound(int i) const = 0; |
---|
| 982 | |
---|
| 983 | virtual void _setRowUpperBound(int i, Value value) = 0; |
---|
| 984 | virtual Value _getRowUpperBound(int i) const = 0; |
---|
| 985 | |
---|
| 986 | virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
---|
| 987 | virtual void _getObjCoeffs(InsertIterator b) const = 0; |
---|
[481] | 988 | |
---|
| 989 | virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
---|
| 990 | virtual Value _getObjCoeff(int i) const = 0; |
---|
| 991 | |
---|
[482] | 992 | virtual void _setSense(Sense) = 0; |
---|
| 993 | virtual Sense _getSense() const = 0; |
---|
[481] | 994 | |
---|
[482] | 995 | virtual void _clear() = 0; |
---|
[481] | 996 | |
---|
[482] | 997 | virtual const char* _solverName() const = 0; |
---|
[481] | 998 | |
---|
[623] | 999 | virtual void _messageLevel(MessageLevel level) = 0; |
---|
| 1000 | |
---|
[481] | 1001 | //Own protected stuff |
---|
| 1002 | |
---|
| 1003 | //Constant component of the objective function |
---|
| 1004 | Value obj_const_comp; |
---|
| 1005 | |
---|
[482] | 1006 | LpBase() : rows(), cols(), obj_const_comp(0) {} |
---|
| 1007 | |
---|
[481] | 1008 | public: |
---|
| 1009 | |
---|
[482] | 1010 | /// Virtual destructor |
---|
| 1011 | virtual ~LpBase() {} |
---|
[481] | 1012 | |
---|
[482] | 1013 | ///Gives back the name of the solver. |
---|
| 1014 | const char* solverName() const {return _solverName();} |
---|
[481] | 1015 | |
---|
[631] | 1016 | ///\name Build Up and Modify the LP |
---|
[481] | 1017 | |
---|
| 1018 | ///@{ |
---|
| 1019 | |
---|
| 1020 | ///Add a new empty column (i.e a new variable) to the LP |
---|
[482] | 1021 | Col addCol() { Col c; c._id = _addColId(_addCol()); return c;} |
---|
[481] | 1022 | |
---|
[482] | 1023 | ///\brief Adds several new columns (i.e variables) at once |
---|
[481] | 1024 | /// |
---|
[482] | 1025 | ///This magic function takes a container as its argument and fills |
---|
| 1026 | ///its elements with new columns (i.e. variables) |
---|
[481] | 1027 | ///\param t can be |
---|
| 1028 | ///- a standard STL compatible iterable container with |
---|
[482] | 1029 | ///\ref Col as its \c values_type like |
---|
[481] | 1030 | ///\code |
---|
[482] | 1031 | ///std::vector<LpBase::Col> |
---|
| 1032 | ///std::list<LpBase::Col> |
---|
[481] | 1033 | ///\endcode |
---|
| 1034 | ///- a standard STL compatible iterable container with |
---|
[482] | 1035 | ///\ref Col as its \c mapped_type like |
---|
[481] | 1036 | ///\code |
---|
[482] | 1037 | ///std::map<AnyType,LpBase::Col> |
---|
[481] | 1038 | ///\endcode |
---|
| 1039 | ///- an iterable lemon \ref concepts::WriteMap "write map" like |
---|
| 1040 | ///\code |
---|
[482] | 1041 | ///ListGraph::NodeMap<LpBase::Col> |
---|
| 1042 | ///ListGraph::ArcMap<LpBase::Col> |
---|
[481] | 1043 | ///\endcode |
---|
| 1044 | ///\return The number of the created column. |
---|
| 1045 | #ifdef DOXYGEN |
---|
| 1046 | template<class T> |
---|
| 1047 | int addColSet(T &t) { return 0;} |
---|
| 1048 | #else |
---|
| 1049 | template<class T> |
---|
[482] | 1050 | typename enable_if<typename T::value_type::LpCol,int>::type |
---|
[481] | 1051 | addColSet(T &t,dummy<0> = 0) { |
---|
| 1052 | int s=0; |
---|
| 1053 | for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} |
---|
| 1054 | return s; |
---|
| 1055 | } |
---|
| 1056 | template<class T> |
---|
[482] | 1057 | typename enable_if<typename T::value_type::second_type::LpCol, |
---|
[481] | 1058 | int>::type |
---|
| 1059 | addColSet(T &t,dummy<1> = 1) { |
---|
| 1060 | int s=0; |
---|
| 1061 | for(typename T::iterator i=t.begin();i!=t.end();++i) { |
---|
| 1062 | i->second=addCol(); |
---|
| 1063 | s++; |
---|
| 1064 | } |
---|
| 1065 | return s; |
---|
| 1066 | } |
---|
| 1067 | template<class T> |
---|
[482] | 1068 | typename enable_if<typename T::MapIt::Value::LpCol, |
---|
[481] | 1069 | int>::type |
---|
| 1070 | addColSet(T &t,dummy<2> = 2) { |
---|
| 1071 | int s=0; |
---|
| 1072 | for(typename T::MapIt i(t); i!=INVALID; ++i) |
---|
| 1073 | { |
---|
| 1074 | i.set(addCol()); |
---|
| 1075 | s++; |
---|
| 1076 | } |
---|
| 1077 | return s; |
---|
| 1078 | } |
---|
| 1079 | #endif |
---|
| 1080 | |
---|
| 1081 | ///Set a column (i.e a dual constraint) of the LP |
---|
| 1082 | |
---|
| 1083 | ///\param c is the column to be modified |
---|
| 1084 | ///\param e is a dual linear expression (see \ref DualExpr) |
---|
| 1085 | ///a better one. |
---|
[482] | 1086 | void col(Col c, const DualExpr &e) { |
---|
[481] | 1087 | e.simplify(); |
---|
[494] | 1088 | _setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
---|
| 1089 | ExprIterator(e.comps.end(), rows)); |
---|
[481] | 1090 | } |
---|
| 1091 | |
---|
| 1092 | ///Get a column (i.e a dual constraint) of the LP |
---|
| 1093 | |
---|
[482] | 1094 | ///\param c is the column to get |
---|
[481] | 1095 | ///\return the dual expression associated to the column |
---|
| 1096 | DualExpr col(Col c) const { |
---|
| 1097 | DualExpr e; |
---|
[482] | 1098 | _getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
---|
[481] | 1099 | return e; |
---|
| 1100 | } |
---|
| 1101 | |
---|
| 1102 | ///Add a new column to the LP |
---|
| 1103 | |
---|
| 1104 | ///\param e is a dual linear expression (see \ref DualExpr) |
---|
[482] | 1105 | ///\param o is the corresponding component of the objective |
---|
[481] | 1106 | ///function. It is 0 by default. |
---|
| 1107 | ///\return The created column. |
---|
| 1108 | Col addCol(const DualExpr &e, Value o = 0) { |
---|
| 1109 | Col c=addCol(); |
---|
| 1110 | col(c,e); |
---|
| 1111 | objCoeff(c,o); |
---|
| 1112 | return c; |
---|
| 1113 | } |
---|
| 1114 | |
---|
| 1115 | ///Add a new empty row (i.e a new constraint) to the LP |
---|
| 1116 | |
---|
| 1117 | ///This function adds a new empty row (i.e a new constraint) to the LP. |
---|
| 1118 | ///\return The created row |
---|
[482] | 1119 | Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;} |
---|
[481] | 1120 | |
---|
[482] | 1121 | ///\brief Add several new rows (i.e constraints) at once |
---|
[481] | 1122 | /// |
---|
[482] | 1123 | ///This magic function takes a container as its argument and fills |
---|
| 1124 | ///its elements with new row (i.e. variables) |
---|
[481] | 1125 | ///\param t can be |
---|
| 1126 | ///- a standard STL compatible iterable container with |
---|
[482] | 1127 | ///\ref Row as its \c values_type like |
---|
[481] | 1128 | ///\code |
---|
[482] | 1129 | ///std::vector<LpBase::Row> |
---|
| 1130 | ///std::list<LpBase::Row> |
---|
[481] | 1131 | ///\endcode |
---|
| 1132 | ///- a standard STL compatible iterable container with |
---|
[482] | 1133 | ///\ref Row as its \c mapped_type like |
---|
[481] | 1134 | ///\code |
---|
[482] | 1135 | ///std::map<AnyType,LpBase::Row> |
---|
[481] | 1136 | ///\endcode |
---|
| 1137 | ///- an iterable lemon \ref concepts::WriteMap "write map" like |
---|
| 1138 | ///\code |
---|
[482] | 1139 | ///ListGraph::NodeMap<LpBase::Row> |
---|
| 1140 | ///ListGraph::ArcMap<LpBase::Row> |
---|
[481] | 1141 | ///\endcode |
---|
| 1142 | ///\return The number of rows created. |
---|
| 1143 | #ifdef DOXYGEN |
---|
| 1144 | template<class T> |
---|
| 1145 | int addRowSet(T &t) { return 0;} |
---|
| 1146 | #else |
---|
| 1147 | template<class T> |
---|
[482] | 1148 | typename enable_if<typename T::value_type::LpRow,int>::type |
---|
| 1149 | addRowSet(T &t, dummy<0> = 0) { |
---|
[481] | 1150 | int s=0; |
---|
| 1151 | for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} |
---|
| 1152 | return s; |
---|
| 1153 | } |
---|
| 1154 | template<class T> |
---|
[482] | 1155 | typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
---|
| 1156 | addRowSet(T &t, dummy<1> = 1) { |
---|
[481] | 1157 | int s=0; |
---|
| 1158 | for(typename T::iterator i=t.begin();i!=t.end();++i) { |
---|
| 1159 | i->second=addRow(); |
---|
| 1160 | s++; |
---|
| 1161 | } |
---|
| 1162 | return s; |
---|
| 1163 | } |
---|
| 1164 | template<class T> |
---|
[482] | 1165 | typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
---|
| 1166 | addRowSet(T &t, dummy<2> = 2) { |
---|
[481] | 1167 | int s=0; |
---|
| 1168 | for(typename T::MapIt i(t); i!=INVALID; ++i) |
---|
| 1169 | { |
---|
| 1170 | i.set(addRow()); |
---|
| 1171 | s++; |
---|
| 1172 | } |
---|
| 1173 | return s; |
---|
| 1174 | } |
---|
| 1175 | #endif |
---|
| 1176 | |
---|
| 1177 | ///Set a row (i.e a constraint) of the LP |
---|
| 1178 | |
---|
| 1179 | ///\param r is the row to be modified |
---|
| 1180 | ///\param l is lower bound (-\ref INF means no bound) |
---|
| 1181 | ///\param e is a linear expression (see \ref Expr) |
---|
| 1182 | ///\param u is the upper bound (\ref INF means no bound) |
---|
| 1183 | void row(Row r, Value l, const Expr &e, Value u) { |
---|
| 1184 | e.simplify(); |
---|
[482] | 1185 | _setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
---|
| 1186 | ExprIterator(e.comps.end(), cols)); |
---|
| 1187 | _setRowLowerBound(rows(id(r)),l - *e); |
---|
| 1188 | _setRowUpperBound(rows(id(r)),u - *e); |
---|
[481] | 1189 | } |
---|
| 1190 | |
---|
| 1191 | ///Set a row (i.e a constraint) of the LP |
---|
| 1192 | |
---|
| 1193 | ///\param r is the row to be modified |
---|
| 1194 | ///\param c is a linear expression (see \ref Constr) |
---|
| 1195 | void row(Row r, const Constr &c) { |
---|
| 1196 | row(r, c.lowerBounded()?c.lowerBound():-INF, |
---|
| 1197 | c.expr(), c.upperBounded()?c.upperBound():INF); |
---|
| 1198 | } |
---|
| 1199 | |
---|
| 1200 | |
---|
| 1201 | ///Get a row (i.e a constraint) of the LP |
---|
| 1202 | |
---|
| 1203 | ///\param r is the row to get |
---|
| 1204 | ///\return the expression associated to the row |
---|
| 1205 | Expr row(Row r) const { |
---|
| 1206 | Expr e; |
---|
[482] | 1207 | _getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
---|
[481] | 1208 | return e; |
---|
| 1209 | } |
---|
| 1210 | |
---|
| 1211 | ///Add a new row (i.e a new constraint) to the LP |
---|
| 1212 | |
---|
| 1213 | ///\param l is the lower bound (-\ref INF means no bound) |
---|
| 1214 | ///\param e is a linear expression (see \ref Expr) |
---|
| 1215 | ///\param u is the upper bound (\ref INF means no bound) |
---|
| 1216 | ///\return The created row. |
---|
| 1217 | Row addRow(Value l,const Expr &e, Value u) { |
---|
[793] | 1218 | Row r; |
---|
| 1219 | e.simplify(); |
---|
| 1220 | r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), |
---|
| 1221 | ExprIterator(e.comps.end(), cols), u - *e)); |
---|
[481] | 1222 | return r; |
---|
| 1223 | } |
---|
| 1224 | |
---|
| 1225 | ///Add a new row (i.e a new constraint) to the LP |
---|
| 1226 | |
---|
| 1227 | ///\param c is a linear expression (see \ref Constr) |
---|
| 1228 | ///\return The created row. |
---|
| 1229 | Row addRow(const Constr &c) { |
---|
[793] | 1230 | Row r; |
---|
| 1231 | c.expr().simplify(); |
---|
[956] | 1232 | r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, |
---|
[793] | 1233 | ExprIterator(c.expr().comps.begin(), cols), |
---|
| 1234 | ExprIterator(c.expr().comps.end(), cols), |
---|
[903] | 1235 | c.upperBounded()?c.upperBound()-*c.expr():INF)); |
---|
[481] | 1236 | return r; |
---|
| 1237 | } |
---|
[482] | 1238 | ///Erase a column (i.e a variable) from the LP |
---|
[481] | 1239 | |
---|
[482] | 1240 | ///\param c is the column to be deleted |
---|
| 1241 | void erase(Col c) { |
---|
| 1242 | _eraseCol(cols(id(c))); |
---|
| 1243 | _eraseColId(cols(id(c))); |
---|
[481] | 1244 | } |
---|
[482] | 1245 | ///Erase a row (i.e a constraint) from the LP |
---|
[481] | 1246 | |
---|
| 1247 | ///\param r is the row to be deleted |
---|
[482] | 1248 | void erase(Row r) { |
---|
| 1249 | _eraseRow(rows(id(r))); |
---|
| 1250 | _eraseRowId(rows(id(r))); |
---|
[481] | 1251 | } |
---|
| 1252 | |
---|
| 1253 | /// Get the name of a column |
---|
| 1254 | |
---|
[482] | 1255 | ///\param c is the coresponding column |
---|
[481] | 1256 | ///\return The name of the colunm |
---|
| 1257 | std::string colName(Col c) const { |
---|
| 1258 | std::string name; |
---|
[482] | 1259 | _getColName(cols(id(c)), name); |
---|
[481] | 1260 | return name; |
---|
| 1261 | } |
---|
| 1262 | |
---|
| 1263 | /// Set the name of a column |
---|
| 1264 | |
---|
[482] | 1265 | ///\param c is the coresponding column |
---|
[481] | 1266 | ///\param name The name to be given |
---|
| 1267 | void colName(Col c, const std::string& name) { |
---|
[482] | 1268 | _setColName(cols(id(c)), name); |
---|
[481] | 1269 | } |
---|
| 1270 | |
---|
| 1271 | /// Get the column by its name |
---|
| 1272 | |
---|
| 1273 | ///\param name The name of the column |
---|
| 1274 | ///\return the proper column or \c INVALID |
---|
| 1275 | Col colByName(const std::string& name) const { |
---|
| 1276 | int k = _colByName(name); |
---|
[482] | 1277 | return k != -1 ? Col(cols[k]) : Col(INVALID); |
---|
| 1278 | } |
---|
| 1279 | |
---|
| 1280 | /// Get the name of a row |
---|
| 1281 | |
---|
| 1282 | ///\param r is the coresponding row |
---|
| 1283 | ///\return The name of the row |
---|
| 1284 | std::string rowName(Row r) const { |
---|
| 1285 | std::string name; |
---|
| 1286 | _getRowName(rows(id(r)), name); |
---|
| 1287 | return name; |
---|
| 1288 | } |
---|
| 1289 | |
---|
| 1290 | /// Set the name of a row |
---|
| 1291 | |
---|
| 1292 | ///\param r is the coresponding row |
---|
| 1293 | ///\param name The name to be given |
---|
| 1294 | void rowName(Row r, const std::string& name) { |
---|
| 1295 | _setRowName(rows(id(r)), name); |
---|
| 1296 | } |
---|
| 1297 | |
---|
| 1298 | /// Get the row by its name |
---|
| 1299 | |
---|
| 1300 | ///\param name The name of the row |
---|
| 1301 | ///\return the proper row or \c INVALID |
---|
| 1302 | Row rowByName(const std::string& name) const { |
---|
| 1303 | int k = _rowByName(name); |
---|
| 1304 | return k != -1 ? Row(rows[k]) : Row(INVALID); |
---|
[481] | 1305 | } |
---|
| 1306 | |
---|
| 1307 | /// Set an element of the coefficient matrix of the LP |
---|
| 1308 | |
---|
| 1309 | ///\param r is the row of the element to be modified |
---|
[482] | 1310 | ///\param c is the column of the element to be modified |
---|
[481] | 1311 | ///\param val is the new value of the coefficient |
---|
| 1312 | void coeff(Row r, Col c, Value val) { |
---|
[482] | 1313 | _setCoeff(rows(id(r)),cols(id(c)), val); |
---|
[481] | 1314 | } |
---|
| 1315 | |
---|
| 1316 | /// Get an element of the coefficient matrix of the LP |
---|
| 1317 | |
---|
[482] | 1318 | ///\param r is the row of the element |
---|
| 1319 | ///\param c is the column of the element |
---|
[481] | 1320 | ///\return the corresponding coefficient |
---|
| 1321 | Value coeff(Row r, Col c) const { |
---|
[482] | 1322 | return _getCoeff(rows(id(r)),cols(id(c))); |
---|
[481] | 1323 | } |
---|
| 1324 | |
---|
| 1325 | /// Set the lower bound of a column (i.e a variable) |
---|
| 1326 | |
---|
| 1327 | /// The lower bound of a variable (column) has to be given by an |
---|
| 1328 | /// extended number of type Value, i.e. a finite number of type |
---|
| 1329 | /// Value or -\ref INF. |
---|
| 1330 | void colLowerBound(Col c, Value value) { |
---|
[482] | 1331 | _setColLowerBound(cols(id(c)),value); |
---|
[481] | 1332 | } |
---|
| 1333 | |
---|
| 1334 | /// Get the lower bound of a column (i.e a variable) |
---|
| 1335 | |
---|
[482] | 1336 | /// This function returns the lower bound for column (variable) \c c |
---|
[481] | 1337 | /// (this might be -\ref INF as well). |
---|
[482] | 1338 | ///\return The lower bound for column \c c |
---|
[481] | 1339 | Value colLowerBound(Col c) const { |
---|
[482] | 1340 | return _getColLowerBound(cols(id(c))); |
---|
[481] | 1341 | } |
---|
| 1342 | |
---|
| 1343 | ///\brief Set the lower bound of several columns |
---|
[482] | 1344 | ///(i.e variables) at once |
---|
[481] | 1345 | /// |
---|
| 1346 | ///This magic function takes a container as its argument |
---|
| 1347 | ///and applies the function on all of its elements. |
---|
[482] | 1348 | ///The lower bound of a variable (column) has to be given by an |
---|
| 1349 | ///extended number of type Value, i.e. a finite number of type |
---|
| 1350 | ///Value or -\ref INF. |
---|
[481] | 1351 | #ifdef DOXYGEN |
---|
| 1352 | template<class T> |
---|
| 1353 | void colLowerBound(T &t, Value value) { return 0;} |
---|
| 1354 | #else |
---|
| 1355 | template<class T> |
---|
[482] | 1356 | typename enable_if<typename T::value_type::LpCol,void>::type |
---|
[481] | 1357 | colLowerBound(T &t, Value value,dummy<0> = 0) { |
---|
| 1358 | for(typename T::iterator i=t.begin();i!=t.end();++i) { |
---|
| 1359 | colLowerBound(*i, value); |
---|
| 1360 | } |
---|
| 1361 | } |
---|
| 1362 | template<class T> |
---|
[482] | 1363 | typename enable_if<typename T::value_type::second_type::LpCol, |
---|
[481] | 1364 | void>::type |
---|
| 1365 | colLowerBound(T &t, Value value,dummy<1> = 1) { |
---|
| 1366 | for(typename T::iterator i=t.begin();i!=t.end();++i) { |
---|
| 1367 | colLowerBound(i->second, value); |
---|
| 1368 | } |
---|
| 1369 | } |
---|
| 1370 | template<class T> |
---|
[482] | 1371 | typename enable_if<typename T::MapIt::Value::LpCol, |
---|
[481] | 1372 | void>::type |
---|
| 1373 | colLowerBound(T &t, Value value,dummy<2> = 2) { |
---|
| 1374 | for(typename T::MapIt i(t); i!=INVALID; ++i){ |
---|
| 1375 | colLowerBound(*i, value); |
---|
| 1376 | } |
---|
| 1377 | } |
---|
| 1378 | #endif |
---|
| 1379 | |
---|
| 1380 | /// Set the upper bound of a column (i.e a variable) |
---|
| 1381 | |
---|
| 1382 | /// The upper bound of a variable (column) has to be given by an |
---|
| 1383 | /// extended number of type Value, i.e. a finite number of type |
---|
| 1384 | /// Value or \ref INF. |
---|
| 1385 | void colUpperBound(Col c, Value value) { |
---|
[482] | 1386 | _setColUpperBound(cols(id(c)),value); |
---|
[481] | 1387 | }; |
---|
| 1388 | |
---|
| 1389 | /// Get the upper bound of a column (i.e a variable) |
---|
| 1390 | |
---|
[482] | 1391 | /// This function returns the upper bound for column (variable) \c c |
---|
[481] | 1392 | /// (this might be \ref INF as well). |
---|
[482] | 1393 | /// \return The upper bound for column \c c |
---|
[481] | 1394 | Value colUpperBound(Col c) const { |
---|
[482] | 1395 | return _getColUpperBound(cols(id(c))); |
---|
[481] | 1396 | } |
---|
| 1397 | |
---|
| 1398 | ///\brief Set the upper bound of several columns |
---|
[482] | 1399 | ///(i.e variables) at once |
---|
[481] | 1400 | /// |
---|
| 1401 | ///This magic function takes a container as its argument |
---|
| 1402 | ///and applies the function on all of its elements. |
---|
[482] | 1403 | ///The upper bound of a variable (column) has to be given by an |
---|
| 1404 | ///extended number of type Value, i.e. a finite number of type |
---|
| 1405 | ///Value or \ref INF. |
---|
[481] | 1406 | #ifdef DOXYGEN |
---|
| 1407 | template<class T> |
---|
| 1408 | void colUpperBound(T &t, Value value) { return 0;} |
---|
| 1409 | #else |
---|
[561] | 1410 | template<class T1> |
---|
| 1411 | typename enable_if<typename T1::value_type::LpCol,void>::type |
---|
| 1412 | colUpperBound(T1 &t, Value value,dummy<0> = 0) { |
---|
| 1413 | for(typename T1::iterator i=t.begin();i!=t.end();++i) { |
---|
[481] | 1414 | colUpperBound(*i, value); |
---|
| 1415 | } |
---|
| 1416 | } |
---|
[561] | 1417 | template<class T1> |
---|
| 1418 | typename enable_if<typename T1::value_type::second_type::LpCol, |
---|
[481] | 1419 | void>::type |
---|
[561] | 1420 | colUpperBound(T1 &t, Value value,dummy<1> = 1) { |
---|
| 1421 | for(typename T1::iterator i=t.begin();i!=t.end();++i) { |
---|
[481] | 1422 | colUpperBound(i->second, value); |
---|
| 1423 | } |
---|
| 1424 | } |
---|
[561] | 1425 | template<class T1> |
---|
| 1426 | typename enable_if<typename T1::MapIt::Value::LpCol, |
---|
[481] | 1427 | void>::type |
---|
[561] | 1428 | colUpperBound(T1 &t, Value value,dummy<2> = 2) { |
---|
| 1429 | for(typename T1::MapIt i(t); i!=INVALID; ++i){ |
---|
[481] | 1430 | colUpperBound(*i, value); |
---|
| 1431 | } |
---|
| 1432 | } |
---|
| 1433 | #endif |
---|
| 1434 | |
---|
| 1435 | /// Set the lower and the upper bounds of a column (i.e a variable) |
---|
| 1436 | |
---|
| 1437 | /// The lower and the upper bounds of |
---|
| 1438 | /// a variable (column) have to be given by an |
---|
| 1439 | /// extended number of type Value, i.e. a finite number of type |
---|
| 1440 | /// Value, -\ref INF or \ref INF. |
---|
| 1441 | void colBounds(Col c, Value lower, Value upper) { |
---|
[482] | 1442 | _setColLowerBound(cols(id(c)),lower); |
---|
| 1443 | _setColUpperBound(cols(id(c)),upper); |
---|
[481] | 1444 | } |
---|
| 1445 | |
---|
| 1446 | ///\brief Set the lower and the upper bound of several columns |
---|
[482] | 1447 | ///(i.e variables) at once |
---|
[481] | 1448 | /// |
---|
| 1449 | ///This magic function takes a container as its argument |
---|
| 1450 | ///and applies the function on all of its elements. |
---|
| 1451 | /// The lower and the upper bounds of |
---|
| 1452 | /// a variable (column) have to be given by an |
---|
| 1453 | /// extended number of type Value, i.e. a finite number of type |
---|
| 1454 | /// Value, -\ref INF or \ref INF. |
---|
| 1455 | #ifdef DOXYGEN |
---|
| 1456 | template<class T> |
---|
| 1457 | void colBounds(T &t, Value lower, Value upper) { return 0;} |
---|
| 1458 | #else |
---|
[561] | 1459 | template<class T2> |
---|
| 1460 | typename enable_if<typename T2::value_type::LpCol,void>::type |
---|
| 1461 | colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) { |
---|
| 1462 | for(typename T2::iterator i=t.begin();i!=t.end();++i) { |
---|
[481] | 1463 | colBounds(*i, lower, upper); |
---|
| 1464 | } |
---|
| 1465 | } |
---|
[561] | 1466 | template<class T2> |
---|
| 1467 | typename enable_if<typename T2::value_type::second_type::LpCol, void>::type |
---|
| 1468 | colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) { |
---|
| 1469 | for(typename T2::iterator i=t.begin();i!=t.end();++i) { |
---|
[481] | 1470 | colBounds(i->second, lower, upper); |
---|
| 1471 | } |
---|
| 1472 | } |
---|
[561] | 1473 | template<class T2> |
---|
| 1474 | typename enable_if<typename T2::MapIt::Value::LpCol, void>::type |
---|
| 1475 | colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) { |
---|
| 1476 | for(typename T2::MapIt i(t); i!=INVALID; ++i){ |
---|
[481] | 1477 | colBounds(*i, lower, upper); |
---|
| 1478 | } |
---|
| 1479 | } |
---|
| 1480 | #endif |
---|
| 1481 | |
---|
[482] | 1482 | /// Set the lower bound of a row (i.e a constraint) |
---|
[481] | 1483 | |
---|
[482] | 1484 | /// The lower bound of a constraint (row) has to be given by an |
---|
| 1485 | /// extended number of type Value, i.e. a finite number of type |
---|
| 1486 | /// Value or -\ref INF. |
---|
| 1487 | void rowLowerBound(Row r, Value value) { |
---|
| 1488 | _setRowLowerBound(rows(id(r)),value); |
---|
[481] | 1489 | } |
---|
| 1490 | |
---|
[482] | 1491 | /// Get the lower bound of a row (i.e a constraint) |
---|
[481] | 1492 | |
---|
[482] | 1493 | /// This function returns the lower bound for row (constraint) \c c |
---|
| 1494 | /// (this might be -\ref INF as well). |
---|
| 1495 | ///\return The lower bound for row \c r |
---|
| 1496 | Value rowLowerBound(Row r) const { |
---|
| 1497 | return _getRowLowerBound(rows(id(r))); |
---|
| 1498 | } |
---|
| 1499 | |
---|
| 1500 | /// Set the upper bound of a row (i.e a constraint) |
---|
| 1501 | |
---|
| 1502 | /// The upper bound of a constraint (row) has to be given by an |
---|
| 1503 | /// extended number of type Value, i.e. a finite number of type |
---|
| 1504 | /// Value or -\ref INF. |
---|
| 1505 | void rowUpperBound(Row r, Value value) { |
---|
| 1506 | _setRowUpperBound(rows(id(r)),value); |
---|
| 1507 | } |
---|
| 1508 | |
---|
| 1509 | /// Get the upper bound of a row (i.e a constraint) |
---|
| 1510 | |
---|
| 1511 | /// This function returns the upper bound for row (constraint) \c c |
---|
| 1512 | /// (this might be -\ref INF as well). |
---|
| 1513 | ///\return The upper bound for row \c r |
---|
| 1514 | Value rowUpperBound(Row r) const { |
---|
| 1515 | return _getRowUpperBound(rows(id(r))); |
---|
[481] | 1516 | } |
---|
| 1517 | |
---|
| 1518 | ///Set an element of the objective function |
---|
[482] | 1519 | void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); }; |
---|
[481] | 1520 | |
---|
| 1521 | ///Get an element of the objective function |
---|
[482] | 1522 | Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); }; |
---|
[481] | 1523 | |
---|
| 1524 | ///Set the objective function |
---|
| 1525 | |
---|
| 1526 | ///\param e is a linear expression of type \ref Expr. |
---|
[482] | 1527 | /// |
---|
| 1528 | void obj(const Expr& e) { |
---|
| 1529 | _setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
---|
| 1530 | ExprIterator(e.comps.end(), cols)); |
---|
| 1531 | obj_const_comp = *e; |
---|
[481] | 1532 | } |
---|
| 1533 | |
---|
| 1534 | ///Get the objective function |
---|
| 1535 | |
---|
[482] | 1536 | ///\return the objective function as a linear expression of type |
---|
| 1537 | ///Expr. |
---|
[481] | 1538 | Expr obj() const { |
---|
| 1539 | Expr e; |
---|
[482] | 1540 | _getObjCoeffs(InsertIterator(e.comps, cols)); |
---|
| 1541 | *e = obj_const_comp; |
---|
[481] | 1542 | return e; |
---|
| 1543 | } |
---|
| 1544 | |
---|
| 1545 | |
---|
[482] | 1546 | ///Set the direction of optimization |
---|
| 1547 | void sense(Sense sense) { _setSense(sense); } |
---|
[481] | 1548 | |
---|
[482] | 1549 | ///Query the direction of the optimization |
---|
| 1550 | Sense sense() const {return _getSense(); } |
---|
[481] | 1551 | |
---|
[482] | 1552 | ///Set the sense to maximization |
---|
| 1553 | void max() { _setSense(MAX); } |
---|
| 1554 | |
---|
| 1555 | ///Set the sense to maximization |
---|
| 1556 | void min() { _setSense(MIN); } |
---|
| 1557 | |
---|
| 1558 | ///Clears the problem |
---|
| 1559 | void clear() { _clear(); } |
---|
[481] | 1560 | |
---|
[623] | 1561 | /// Sets the message level of the solver |
---|
| 1562 | void messageLevel(MessageLevel level) { _messageLevel(level); } |
---|
| 1563 | |
---|
[481] | 1564 | ///@} |
---|
| 1565 | |
---|
[482] | 1566 | }; |
---|
| 1567 | |
---|
| 1568 | /// Addition |
---|
| 1569 | |
---|
| 1570 | ///\relates LpBase::Expr |
---|
| 1571 | /// |
---|
| 1572 | inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) { |
---|
| 1573 | LpBase::Expr tmp(a); |
---|
| 1574 | tmp+=b; |
---|
| 1575 | return tmp; |
---|
| 1576 | } |
---|
| 1577 | ///Substraction |
---|
| 1578 | |
---|
| 1579 | ///\relates LpBase::Expr |
---|
| 1580 | /// |
---|
| 1581 | inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) { |
---|
| 1582 | LpBase::Expr tmp(a); |
---|
| 1583 | tmp-=b; |
---|
| 1584 | return tmp; |
---|
| 1585 | } |
---|
| 1586 | ///Multiply with constant |
---|
| 1587 | |
---|
| 1588 | ///\relates LpBase::Expr |
---|
| 1589 | /// |
---|
| 1590 | inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) { |
---|
| 1591 | LpBase::Expr tmp(a); |
---|
| 1592 | tmp*=b; |
---|
| 1593 | return tmp; |
---|
| 1594 | } |
---|
| 1595 | |
---|
| 1596 | ///Multiply with constant |
---|
| 1597 | |
---|
| 1598 | ///\relates LpBase::Expr |
---|
| 1599 | /// |
---|
| 1600 | inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) { |
---|
| 1601 | LpBase::Expr tmp(b); |
---|
| 1602 | tmp*=a; |
---|
| 1603 | return tmp; |
---|
| 1604 | } |
---|
| 1605 | ///Divide with constant |
---|
| 1606 | |
---|
| 1607 | ///\relates LpBase::Expr |
---|
| 1608 | /// |
---|
| 1609 | inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) { |
---|
| 1610 | LpBase::Expr tmp(a); |
---|
| 1611 | tmp/=b; |
---|
| 1612 | return tmp; |
---|
| 1613 | } |
---|
| 1614 | |
---|
| 1615 | ///Create constraint |
---|
| 1616 | |
---|
| 1617 | ///\relates LpBase::Constr |
---|
| 1618 | /// |
---|
| 1619 | inline LpBase::Constr operator<=(const LpBase::Expr &e, |
---|
| 1620 | const LpBase::Expr &f) { |
---|
| 1621 | return LpBase::Constr(0, f - e, LpBase::INF); |
---|
| 1622 | } |
---|
| 1623 | |
---|
| 1624 | ///Create constraint |
---|
| 1625 | |
---|
| 1626 | ///\relates LpBase::Constr |
---|
| 1627 | /// |
---|
| 1628 | inline LpBase::Constr operator<=(const LpBase::Value &e, |
---|
| 1629 | const LpBase::Expr &f) { |
---|
| 1630 | return LpBase::Constr(e, f, LpBase::NaN); |
---|
| 1631 | } |
---|
| 1632 | |
---|
| 1633 | ///Create constraint |
---|
| 1634 | |
---|
| 1635 | ///\relates LpBase::Constr |
---|
| 1636 | /// |
---|
| 1637 | inline LpBase::Constr operator<=(const LpBase::Expr &e, |
---|
| 1638 | const LpBase::Value &f) { |
---|
| 1639 | return LpBase::Constr(- LpBase::INF, e, f); |
---|
| 1640 | } |
---|
| 1641 | |
---|
| 1642 | ///Create constraint |
---|
| 1643 | |
---|
| 1644 | ///\relates LpBase::Constr |
---|
| 1645 | /// |
---|
| 1646 | inline LpBase::Constr operator>=(const LpBase::Expr &e, |
---|
| 1647 | const LpBase::Expr &f) { |
---|
| 1648 | return LpBase::Constr(0, e - f, LpBase::INF); |
---|
| 1649 | } |
---|
| 1650 | |
---|
| 1651 | |
---|
| 1652 | ///Create constraint |
---|
| 1653 | |
---|
| 1654 | ///\relates LpBase::Constr |
---|
| 1655 | /// |
---|
| 1656 | inline LpBase::Constr operator>=(const LpBase::Value &e, |
---|
| 1657 | const LpBase::Expr &f) { |
---|
| 1658 | return LpBase::Constr(LpBase::NaN, f, e); |
---|
| 1659 | } |
---|
| 1660 | |
---|
| 1661 | |
---|
| 1662 | ///Create constraint |
---|
| 1663 | |
---|
| 1664 | ///\relates LpBase::Constr |
---|
| 1665 | /// |
---|
| 1666 | inline LpBase::Constr operator>=(const LpBase::Expr &e, |
---|
| 1667 | const LpBase::Value &f) { |
---|
| 1668 | return LpBase::Constr(f, e, LpBase::INF); |
---|
| 1669 | } |
---|
| 1670 | |
---|
| 1671 | ///Create constraint |
---|
| 1672 | |
---|
| 1673 | ///\relates LpBase::Constr |
---|
| 1674 | /// |
---|
| 1675 | inline LpBase::Constr operator==(const LpBase::Expr &e, |
---|
| 1676 | const LpBase::Value &f) { |
---|
| 1677 | return LpBase::Constr(f, e, f); |
---|
| 1678 | } |
---|
| 1679 | |
---|
| 1680 | ///Create constraint |
---|
| 1681 | |
---|
| 1682 | ///\relates LpBase::Constr |
---|
| 1683 | /// |
---|
| 1684 | inline LpBase::Constr operator==(const LpBase::Expr &e, |
---|
| 1685 | const LpBase::Expr &f) { |
---|
| 1686 | return LpBase::Constr(0, f - e, 0); |
---|
| 1687 | } |
---|
| 1688 | |
---|
| 1689 | ///Create constraint |
---|
| 1690 | |
---|
| 1691 | ///\relates LpBase::Constr |
---|
| 1692 | /// |
---|
| 1693 | inline LpBase::Constr operator<=(const LpBase::Value &n, |
---|
| 1694 | const LpBase::Constr &c) { |
---|
| 1695 | LpBase::Constr tmp(c); |
---|
[558] | 1696 | LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
---|
[482] | 1697 | tmp.lowerBound()=n; |
---|
| 1698 | return tmp; |
---|
| 1699 | } |
---|
| 1700 | ///Create constraint |
---|
| 1701 | |
---|
| 1702 | ///\relates LpBase::Constr |
---|
| 1703 | /// |
---|
| 1704 | inline LpBase::Constr operator<=(const LpBase::Constr &c, |
---|
| 1705 | const LpBase::Value &n) |
---|
| 1706 | { |
---|
| 1707 | LpBase::Constr tmp(c); |
---|
[558] | 1708 | LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
---|
[482] | 1709 | tmp.upperBound()=n; |
---|
| 1710 | return tmp; |
---|
| 1711 | } |
---|
| 1712 | |
---|
| 1713 | ///Create constraint |
---|
| 1714 | |
---|
| 1715 | ///\relates LpBase::Constr |
---|
| 1716 | /// |
---|
| 1717 | inline LpBase::Constr operator>=(const LpBase::Value &n, |
---|
| 1718 | const LpBase::Constr &c) { |
---|
| 1719 | LpBase::Constr tmp(c); |
---|
[558] | 1720 | LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
---|
[482] | 1721 | tmp.upperBound()=n; |
---|
| 1722 | return tmp; |
---|
| 1723 | } |
---|
| 1724 | ///Create constraint |
---|
| 1725 | |
---|
| 1726 | ///\relates LpBase::Constr |
---|
| 1727 | /// |
---|
| 1728 | inline LpBase::Constr operator>=(const LpBase::Constr &c, |
---|
| 1729 | const LpBase::Value &n) |
---|
| 1730 | { |
---|
| 1731 | LpBase::Constr tmp(c); |
---|
[558] | 1732 | LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
---|
[482] | 1733 | tmp.lowerBound()=n; |
---|
| 1734 | return tmp; |
---|
| 1735 | } |
---|
| 1736 | |
---|
| 1737 | ///Addition |
---|
| 1738 | |
---|
| 1739 | ///\relates LpBase::DualExpr |
---|
| 1740 | /// |
---|
| 1741 | inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
---|
| 1742 | const LpBase::DualExpr &b) { |
---|
| 1743 | LpBase::DualExpr tmp(a); |
---|
| 1744 | tmp+=b; |
---|
| 1745 | return tmp; |
---|
| 1746 | } |
---|
| 1747 | ///Substraction |
---|
| 1748 | |
---|
| 1749 | ///\relates LpBase::DualExpr |
---|
| 1750 | /// |
---|
| 1751 | inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
---|
| 1752 | const LpBase::DualExpr &b) { |
---|
| 1753 | LpBase::DualExpr tmp(a); |
---|
| 1754 | tmp-=b; |
---|
| 1755 | return tmp; |
---|
| 1756 | } |
---|
| 1757 | ///Multiply with constant |
---|
| 1758 | |
---|
| 1759 | ///\relates LpBase::DualExpr |
---|
| 1760 | /// |
---|
| 1761 | inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
---|
| 1762 | const LpBase::Value &b) { |
---|
| 1763 | LpBase::DualExpr tmp(a); |
---|
| 1764 | tmp*=b; |
---|
| 1765 | return tmp; |
---|
| 1766 | } |
---|
| 1767 | |
---|
| 1768 | ///Multiply with constant |
---|
| 1769 | |
---|
| 1770 | ///\relates LpBase::DualExpr |
---|
| 1771 | /// |
---|
| 1772 | inline LpBase::DualExpr operator*(const LpBase::Value &a, |
---|
| 1773 | const LpBase::DualExpr &b) { |
---|
| 1774 | LpBase::DualExpr tmp(b); |
---|
| 1775 | tmp*=a; |
---|
| 1776 | return tmp; |
---|
| 1777 | } |
---|
| 1778 | ///Divide with constant |
---|
| 1779 | |
---|
| 1780 | ///\relates LpBase::DualExpr |
---|
| 1781 | /// |
---|
| 1782 | inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
---|
| 1783 | const LpBase::Value &b) { |
---|
| 1784 | LpBase::DualExpr tmp(a); |
---|
| 1785 | tmp/=b; |
---|
| 1786 | return tmp; |
---|
| 1787 | } |
---|
| 1788 | |
---|
| 1789 | /// \ingroup lp_group |
---|
| 1790 | /// |
---|
| 1791 | /// \brief Common base class for LP solvers |
---|
| 1792 | /// |
---|
| 1793 | /// This class is an abstract base class for LP solvers. This class |
---|
| 1794 | /// provides a full interface for set and modify an LP problem, |
---|
| 1795 | /// solve it and retrieve the solution. You can use one of the |
---|
| 1796 | /// descendants as a concrete implementation, or the \c Lp |
---|
| 1797 | /// default LP solver. However, if you would like to handle LP |
---|
| 1798 | /// solvers as reference or pointer in a generic way, you can use |
---|
| 1799 | /// this class directly. |
---|
| 1800 | class LpSolver : virtual public LpBase { |
---|
| 1801 | public: |
---|
| 1802 | |
---|
| 1803 | /// The problem types for primal and dual problems |
---|
| 1804 | enum ProblemType { |
---|
[631] | 1805 | /// = 0. Feasible solution hasn't been found (but may exist). |
---|
[482] | 1806 | UNDEFINED = 0, |
---|
[631] | 1807 | /// = 1. The problem has no feasible solution. |
---|
[482] | 1808 | INFEASIBLE = 1, |
---|
[631] | 1809 | /// = 2. Feasible solution found. |
---|
[482] | 1810 | FEASIBLE = 2, |
---|
[631] | 1811 | /// = 3. Optimal solution exists and found. |
---|
[482] | 1812 | OPTIMAL = 3, |
---|
[631] | 1813 | /// = 4. The cost function is unbounded. |
---|
[482] | 1814 | UNBOUNDED = 4 |
---|
| 1815 | }; |
---|
| 1816 | |
---|
| 1817 | ///The basis status of variables |
---|
| 1818 | enum VarStatus { |
---|
| 1819 | /// The variable is in the basis |
---|
[956] | 1820 | BASIC, |
---|
[482] | 1821 | /// The variable is free, but not basic |
---|
| 1822 | FREE, |
---|
[956] | 1823 | /// The variable has active lower bound |
---|
[482] | 1824 | LOWER, |
---|
| 1825 | /// The variable has active upper bound |
---|
| 1826 | UPPER, |
---|
| 1827 | /// The variable is non-basic and fixed |
---|
| 1828 | FIXED |
---|
| 1829 | }; |
---|
| 1830 | |
---|
| 1831 | protected: |
---|
| 1832 | |
---|
| 1833 | virtual SolveExitStatus _solve() = 0; |
---|
| 1834 | |
---|
| 1835 | virtual Value _getPrimal(int i) const = 0; |
---|
| 1836 | virtual Value _getDual(int i) const = 0; |
---|
| 1837 | |
---|
| 1838 | virtual Value _getPrimalRay(int i) const = 0; |
---|
| 1839 | virtual Value _getDualRay(int i) const = 0; |
---|
| 1840 | |
---|
| 1841 | virtual Value _getPrimalValue() const = 0; |
---|
| 1842 | |
---|
| 1843 | virtual VarStatus _getColStatus(int i) const = 0; |
---|
| 1844 | virtual VarStatus _getRowStatus(int i) const = 0; |
---|
| 1845 | |
---|
| 1846 | virtual ProblemType _getPrimalType() const = 0; |
---|
| 1847 | virtual ProblemType _getDualType() const = 0; |
---|
| 1848 | |
---|
| 1849 | public: |
---|
[481] | 1850 | |
---|
[587] | 1851 | ///Allocate a new LP problem instance |
---|
| 1852 | virtual LpSolver* newSolver() const = 0; |
---|
| 1853 | ///Make a copy of the LP problem |
---|
| 1854 | virtual LpSolver* cloneSolver() const = 0; |
---|
| 1855 | |
---|
[481] | 1856 | ///\name Solve the LP |
---|
| 1857 | |
---|
| 1858 | ///@{ |
---|
| 1859 | |
---|
| 1860 | ///\e Solve the LP problem at hand |
---|
| 1861 | /// |
---|
| 1862 | ///\return The result of the optimization procedure. Possible |
---|
| 1863 | ///values and their meanings can be found in the documentation of |
---|
| 1864 | ///\ref SolveExitStatus. |
---|
| 1865 | SolveExitStatus solve() { return _solve(); } |
---|
| 1866 | |
---|
| 1867 | ///@} |
---|
| 1868 | |
---|
[631] | 1869 | ///\name Obtain the Solution |
---|
[481] | 1870 | |
---|
| 1871 | ///@{ |
---|
| 1872 | |
---|
[482] | 1873 | /// The type of the primal problem |
---|
| 1874 | ProblemType primalType() const { |
---|
| 1875 | return _getPrimalType(); |
---|
[481] | 1876 | } |
---|
| 1877 | |
---|
[482] | 1878 | /// The type of the dual problem |
---|
| 1879 | ProblemType dualType() const { |
---|
| 1880 | return _getDualType(); |
---|
[481] | 1881 | } |
---|
| 1882 | |
---|
[482] | 1883 | /// Return the primal value of the column |
---|
| 1884 | |
---|
| 1885 | /// Return the primal value of the column. |
---|
| 1886 | /// \pre The problem is solved. |
---|
| 1887 | Value primal(Col c) const { return _getPrimal(cols(id(c))); } |
---|
| 1888 | |
---|
| 1889 | /// Return the primal value of the expression |
---|
| 1890 | |
---|
| 1891 | /// Return the primal value of the expression, i.e. the dot |
---|
| 1892 | /// product of the primal solution and the expression. |
---|
| 1893 | /// \pre The problem is solved. |
---|
| 1894 | Value primal(const Expr& e) const { |
---|
| 1895 | double res = *e; |
---|
| 1896 | for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
---|
| 1897 | res += *c * primal(c); |
---|
| 1898 | } |
---|
| 1899 | return res; |
---|
[481] | 1900 | } |
---|
[482] | 1901 | /// Returns a component of the primal ray |
---|
[956] | 1902 | |
---|
[482] | 1903 | /// The primal ray is solution of the modified primal problem, |
---|
| 1904 | /// where we change each finite bound to 0, and we looking for a |
---|
| 1905 | /// negative objective value in case of minimization, and positive |
---|
| 1906 | /// objective value for maximization. If there is such solution, |
---|
| 1907 | /// that proofs the unsolvability of the dual problem, and if a |
---|
| 1908 | /// feasible primal solution exists, then the unboundness of |
---|
| 1909 | /// primal problem. |
---|
| 1910 | /// |
---|
| 1911 | /// \pre The problem is solved and the dual problem is infeasible. |
---|
| 1912 | /// \note Some solvers does not provide primal ray calculation |
---|
| 1913 | /// functions. |
---|
| 1914 | Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } |
---|
[481] | 1915 | |
---|
[482] | 1916 | /// Return the dual value of the row |
---|
| 1917 | |
---|
| 1918 | /// Return the dual value of the row. |
---|
| 1919 | /// \pre The problem is solved. |
---|
| 1920 | Value dual(Row r) const { return _getDual(rows(id(r))); } |
---|
| 1921 | |
---|
| 1922 | /// Return the dual value of the dual expression |
---|
| 1923 | |
---|
| 1924 | /// Return the dual value of the dual expression, i.e. the dot |
---|
| 1925 | /// product of the dual solution and the dual expression. |
---|
| 1926 | /// \pre The problem is solved. |
---|
| 1927 | Value dual(const DualExpr& e) const { |
---|
| 1928 | double res = 0.0; |
---|
| 1929 | for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { |
---|
| 1930 | res += *r * dual(r); |
---|
[481] | 1931 | } |
---|
| 1932 | return res; |
---|
| 1933 | } |
---|
| 1934 | |
---|
[482] | 1935 | /// Returns a component of the dual ray |
---|
[956] | 1936 | |
---|
[482] | 1937 | /// The dual ray is solution of the modified primal problem, where |
---|
| 1938 | /// we change each finite bound to 0 (i.e. the objective function |
---|
| 1939 | /// coefficients in the primal problem), and we looking for a |
---|
| 1940 | /// ositive objective value. If there is such solution, that |
---|
| 1941 | /// proofs the unsolvability of the primal problem, and if a |
---|
| 1942 | /// feasible dual solution exists, then the unboundness of |
---|
| 1943 | /// dual problem. |
---|
| 1944 | /// |
---|
| 1945 | /// \pre The problem is solved and the primal problem is infeasible. |
---|
| 1946 | /// \note Some solvers does not provide dual ray calculation |
---|
| 1947 | /// functions. |
---|
| 1948 | Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } |
---|
[481] | 1949 | |
---|
[482] | 1950 | /// Return the basis status of the column |
---|
[481] | 1951 | |
---|
[482] | 1952 | /// \see VarStatus |
---|
| 1953 | VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } |
---|
| 1954 | |
---|
| 1955 | /// Return the basis status of the row |
---|
| 1956 | |
---|
| 1957 | /// \see VarStatus |
---|
| 1958 | VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } |
---|
| 1959 | |
---|
| 1960 | ///The value of the objective function |
---|
[481] | 1961 | |
---|
| 1962 | ///\return |
---|
| 1963 | ///- \ref INF or -\ref INF means either infeasibility or unboundedness |
---|
| 1964 | /// of the primal problem, depending on whether we minimize or maximize. |
---|
| 1965 | ///- \ref NaN if no primal solution is found. |
---|
| 1966 | ///- The (finite) objective value if an optimal solution is found. |
---|
[482] | 1967 | Value primal() const { return _getPrimalValue()+obj_const_comp;} |
---|
[481] | 1968 | ///@} |
---|
| 1969 | |
---|
[482] | 1970 | protected: |
---|
| 1971 | |
---|
[481] | 1972 | }; |
---|
| 1973 | |
---|
| 1974 | |
---|
| 1975 | /// \ingroup lp_group |
---|
| 1976 | /// |
---|
| 1977 | /// \brief Common base class for MIP solvers |
---|
[482] | 1978 | /// |
---|
| 1979 | /// This class is an abstract base class for MIP solvers. This class |
---|
| 1980 | /// provides a full interface for set and modify an MIP problem, |
---|
| 1981 | /// solve it and retrieve the solution. You can use one of the |
---|
| 1982 | /// descendants as a concrete implementation, or the \c Lp |
---|
| 1983 | /// default MIP solver. However, if you would like to handle MIP |
---|
| 1984 | /// solvers as reference or pointer in a generic way, you can use |
---|
| 1985 | /// this class directly. |
---|
| 1986 | class MipSolver : virtual public LpBase { |
---|
[481] | 1987 | public: |
---|
| 1988 | |
---|
[482] | 1989 | /// The problem types for MIP problems |
---|
| 1990 | enum ProblemType { |
---|
[631] | 1991 | /// = 0. Feasible solution hasn't been found (but may exist). |
---|
[482] | 1992 | UNDEFINED = 0, |
---|
[631] | 1993 | /// = 1. The problem has no feasible solution. |
---|
[482] | 1994 | INFEASIBLE = 1, |
---|
[631] | 1995 | /// = 2. Feasible solution found. |
---|
[482] | 1996 | FEASIBLE = 2, |
---|
[631] | 1997 | /// = 3. Optimal solution exists and found. |
---|
[482] | 1998 | OPTIMAL = 3, |
---|
[631] | 1999 | /// = 4. The cost function is unbounded. |
---|
| 2000 | ///The Mip or at least the relaxed problem is unbounded. |
---|
[482] | 2001 | UNBOUNDED = 4 |
---|
| 2002 | }; |
---|
| 2003 | |
---|
[587] | 2004 | ///Allocate a new MIP problem instance |
---|
| 2005 | virtual MipSolver* newSolver() const = 0; |
---|
| 2006 | ///Make a copy of the MIP problem |
---|
| 2007 | virtual MipSolver* cloneSolver() const = 0; |
---|
| 2008 | |
---|
[482] | 2009 | ///\name Solve the MIP |
---|
| 2010 | |
---|
| 2011 | ///@{ |
---|
| 2012 | |
---|
| 2013 | /// Solve the MIP problem at hand |
---|
| 2014 | /// |
---|
| 2015 | ///\return The result of the optimization procedure. Possible |
---|
| 2016 | ///values and their meanings can be found in the documentation of |
---|
| 2017 | ///\ref SolveExitStatus. |
---|
| 2018 | SolveExitStatus solve() { return _solve(); } |
---|
| 2019 | |
---|
| 2020 | ///@} |
---|
| 2021 | |
---|
[631] | 2022 | ///\name Set Column Type |
---|
[482] | 2023 | ///@{ |
---|
| 2024 | |
---|
| 2025 | ///Possible variable (column) types (e.g. real, integer, binary etc.) |
---|
[481] | 2026 | enum ColTypes { |
---|
[631] | 2027 | /// = 0. Continuous variable (default). |
---|
[481] | 2028 | REAL = 0, |
---|
[631] | 2029 | /// = 1. Integer variable. |
---|
[482] | 2030 | INTEGER = 1 |
---|
[481] | 2031 | }; |
---|
| 2032 | |
---|
[482] | 2033 | ///Sets the type of the given column to the given type |
---|
| 2034 | |
---|
| 2035 | ///Sets the type of the given column to the given type. |
---|
[481] | 2036 | /// |
---|
| 2037 | void colType(Col c, ColTypes col_type) { |
---|
[482] | 2038 | _setColType(cols(id(c)),col_type); |
---|
[481] | 2039 | } |
---|
| 2040 | |
---|
| 2041 | ///Gives back the type of the column. |
---|
[482] | 2042 | |
---|
| 2043 | ///Gives back the type of the column. |
---|
[481] | 2044 | /// |
---|
| 2045 | ColTypes colType(Col c) const { |
---|
[482] | 2046 | return _getColType(cols(id(c))); |
---|
| 2047 | } |
---|
| 2048 | ///@} |
---|
| 2049 | |
---|
[631] | 2050 | ///\name Obtain the Solution |
---|
[482] | 2051 | |
---|
| 2052 | ///@{ |
---|
| 2053 | |
---|
| 2054 | /// The type of the MIP problem |
---|
| 2055 | ProblemType type() const { |
---|
| 2056 | return _getType(); |
---|
[481] | 2057 | } |
---|
| 2058 | |
---|
[482] | 2059 | /// Return the value of the row in the solution |
---|
| 2060 | |
---|
| 2061 | /// Return the value of the row in the solution. |
---|
| 2062 | /// \pre The problem is solved. |
---|
| 2063 | Value sol(Col c) const { return _getSol(cols(id(c))); } |
---|
| 2064 | |
---|
| 2065 | /// Return the value of the expression in the solution |
---|
| 2066 | |
---|
| 2067 | /// Return the value of the expression in the solution, i.e. the |
---|
| 2068 | /// dot product of the solution and the expression. |
---|
| 2069 | /// \pre The problem is solved. |
---|
| 2070 | Value sol(const Expr& e) const { |
---|
| 2071 | double res = *e; |
---|
| 2072 | for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
---|
| 2073 | res += *c * sol(c); |
---|
| 2074 | } |
---|
| 2075 | return res; |
---|
[481] | 2076 | } |
---|
[482] | 2077 | ///The value of the objective function |
---|
[956] | 2078 | |
---|
[482] | 2079 | ///\return |
---|
| 2080 | ///- \ref INF or -\ref INF means either infeasibility or unboundedness |
---|
| 2081 | /// of the problem, depending on whether we minimize or maximize. |
---|
| 2082 | ///- \ref NaN if no primal solution is found. |
---|
| 2083 | ///- The (finite) objective value if an optimal solution is found. |
---|
| 2084 | Value solValue() const { return _getSolValue()+obj_const_comp;} |
---|
| 2085 | ///@} |
---|
[481] | 2086 | |
---|
| 2087 | protected: |
---|
| 2088 | |
---|
[482] | 2089 | virtual SolveExitStatus _solve() = 0; |
---|
| 2090 | virtual ColTypes _getColType(int col) const = 0; |
---|
| 2091 | virtual void _setColType(int col, ColTypes col_type) = 0; |
---|
| 2092 | virtual ProblemType _getType() const = 0; |
---|
| 2093 | virtual Value _getSol(int i) const = 0; |
---|
| 2094 | virtual Value _getSolValue() const = 0; |
---|
[481] | 2095 | |
---|
| 2096 | }; |
---|
| 2097 | |
---|
| 2098 | |
---|
| 2099 | |
---|
| 2100 | } //namespace lemon |
---|
| 2101 | |
---|
| 2102 | #endif //LEMON_LP_BASE_H |
---|