COIN-OR::LEMON - Graph Library

source: lemon/lemon/maps.h @ 741:71939d63ae77

Last change on this file since 741:71939d63ae77 was 741:71939d63ae77, checked in by Peter Kovacs <kpeter@…>, 10 years ago

Improvements for iterable maps (#73)

File size: 102.9 KB
RevLine 
[209]1/* -*- mode: C++; indent-tabs-mode: nil; -*-
[25]2 *
[209]3 * This file is a part of LEMON, a generic C++ optimization library.
[25]4 *
[463]5 * Copyright (C) 2003-2009
[25]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_MAPS_H
20#define LEMON_MAPS_H
21
22#include <iterator>
23#include <functional>
24#include <vector>
[741]25#include <map>
[25]26
[220]27#include <lemon/core.h>
[25]28
29///\file
30///\ingroup maps
31///\brief Miscellaneous property maps
[80]32
[25]33namespace lemon {
34
35  /// \addtogroup maps
36  /// @{
37
38  /// Base class of maps.
39
[80]40  /// Base class of maps. It provides the necessary type definitions
41  /// required by the map %concepts.
42  template<typename K, typename V>
[25]43  class MapBase {
44  public:
[313]45    /// \brief The key type of the map.
[25]46    typedef K Key;
[80]47    /// \brief The value type of the map.
48    /// (The type of objects associated with the keys).
49    typedef V Value;
[25]50  };
51
[80]52
[25]53  /// Null map. (a.k.a. DoNothingMap)
54
[29]55  /// This map can be used if you have to provide a map only for
[80]56  /// its type definitions, or if you have to provide a writable map,
57  /// but data written to it is not required (i.e. it will be sent to
[29]58  /// <tt>/dev/null</tt>).
[80]59  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
60  ///
61  /// \sa ConstMap
62  template<typename K, typename V>
63  class NullMap : public MapBase<K, V> {
[25]64  public:
[606]65    ///\e
66    typedef K Key;
67    ///\e
68    typedef V Value;
[80]69
[25]70    /// Gives back a default constructed element.
[80]71    Value operator[](const Key&) const { return Value(); }
[25]72    /// Absorbs the value.
[80]73    void set(const Key&, const Value&) {}
[25]74  };
75
[301]76  /// Returns a \c NullMap class
77
78  /// This function just returns a \c NullMap class.
[80]79  /// \relates NullMap
80  template <typename K, typename V>
[25]81  NullMap<K, V> nullMap() {
82    return NullMap<K, V>();
83  }
84
85
86  /// Constant map.
87
[82]88  /// This \ref concepts::ReadMap "readable map" assigns a specified
89  /// value to each key.
[80]90  ///
[301]91  /// In other aspects it is equivalent to \c NullMap.
[80]92  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
93  /// concept, but it absorbs the data written to it.
94  ///
95  /// The simplest way of using this map is through the constMap()
96  /// function.
97  ///
98  /// \sa NullMap
99  /// \sa IdentityMap
100  template<typename K, typename V>
101  class ConstMap : public MapBase<K, V> {
[25]102  private:
[80]103    V _value;
[25]104  public:
[606]105    ///\e
106    typedef K Key;
107    ///\e
108    typedef V Value;
[25]109
110    /// Default constructor
111
[29]112    /// Default constructor.
[80]113    /// The value of the map will be default constructed.
[25]114    ConstMap() {}
[80]115
[29]116    /// Constructor with specified initial value
[25]117
[29]118    /// Constructor with specified initial value.
[123]119    /// \param v The initial value of the map.
[80]120    ConstMap(const Value &v) : _value(v) {}
[25]121
[80]122    /// Gives back the specified value.
123    Value operator[](const Key&) const { return _value; }
[25]124
[80]125    /// Absorbs the value.
126    void set(const Key&, const Value&) {}
127
128    /// Sets the value that is assigned to each key.
129    void setAll(const Value &v) {
130      _value = v;
131    }
132
133    template<typename V1>
134    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
[25]135  };
136
[301]137  /// Returns a \c ConstMap class
138
139  /// This function just returns a \c ConstMap class.
[80]140  /// \relates ConstMap
141  template<typename K, typename V>
[25]142  inline ConstMap<K, V> constMap(const V &v) {
143    return ConstMap<K, V>(v);
144  }
145
[123]146  template<typename K, typename V>
147  inline ConstMap<K, V> constMap() {
148    return ConstMap<K, V>();
149  }
150
[25]151
152  template<typename T, T v>
[80]153  struct Const {};
[25]154
155  /// Constant map with inlined constant value.
156
[82]157  /// This \ref concepts::ReadMap "readable map" assigns a specified
158  /// value to each key.
[80]159  ///
[301]160  /// In other aspects it is equivalent to \c NullMap.
[80]161  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
162  /// concept, but it absorbs the data written to it.
163  ///
164  /// The simplest way of using this map is through the constMap()
165  /// function.
166  ///
167  /// \sa NullMap
168  /// \sa IdentityMap
[25]169  template<typename K, typename V, V v>
170  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
171  public:
[606]172    ///\e
173    typedef K Key;
174    ///\e
175    typedef V Value;
[25]176
[80]177    /// Constructor.
178    ConstMap() {}
179
180    /// Gives back the specified value.
181    Value operator[](const Key&) const { return v; }
182
183    /// Absorbs the value.
184    void set(const Key&, const Value&) {}
[25]185  };
186
[301]187  /// Returns a \c ConstMap class with inlined constant value
188
189  /// This function just returns a \c ConstMap class with inlined
[80]190  /// constant value.
191  /// \relates ConstMap
192  template<typename K, typename V, V v>
[25]193  inline ConstMap<K, Const<V, v> > constMap() {
194    return ConstMap<K, Const<V, v> >();
195  }
196
197
[82]198  /// Identity map.
199
200  /// This \ref concepts::ReadMap "read-only map" gives back the given
201  /// key as value without any modification.
[80]202  ///
203  /// \sa ConstMap
204  template <typename T>
205  class IdentityMap : public MapBase<T, T> {
206  public:
[606]207    ///\e
208    typedef T Key;
209    ///\e
210    typedef T Value;
[80]211
212    /// Gives back the given value without any modification.
[82]213    Value operator[](const Key &k) const {
214      return k;
[80]215    }
216  };
217
[301]218  /// Returns an \c IdentityMap class
219
220  /// This function just returns an \c IdentityMap class.
[80]221  /// \relates IdentityMap
222  template<typename T>
223  inline IdentityMap<T> identityMap() {
224    return IdentityMap<T>();
225  }
226
227
228  /// \brief Map for storing values for integer keys from the range
229  /// <tt>[0..size-1]</tt>.
230  ///
231  /// This map is essentially a wrapper for \c std::vector. It assigns
232  /// values to integer keys from the range <tt>[0..size-1]</tt>.
233  /// It can be used with some data structures, for example
[301]234  /// \c UnionFind, \c BinHeap, when the used items are small
[80]235  /// integers. This map conforms the \ref concepts::ReferenceMap
236  /// "ReferenceMap" concept.
237  ///
238  /// The simplest way of using this map is through the rangeMap()
239  /// function.
240  template <typename V>
241  class RangeMap : public MapBase<int, V> {
242    template <typename V1>
243    friend class RangeMap;
244  private:
245
246    typedef std::vector<V> Vector;
247    Vector _vector;
248
[25]249  public:
250
[80]251    /// Key type
[606]252    typedef int Key;
[80]253    /// Value type
[606]254    typedef V Value;
[80]255    /// Reference type
256    typedef typename Vector::reference Reference;
257    /// Const reference type
258    typedef typename Vector::const_reference ConstReference;
259
260    typedef True ReferenceMapTag;
261
262  public:
263
264    /// Constructor with specified default value.
265    RangeMap(int size = 0, const Value &value = Value())
266      : _vector(size, value) {}
267
268    /// Constructs the map from an appropriate \c std::vector.
269    template <typename V1>
270    RangeMap(const std::vector<V1>& vector)
271      : _vector(vector.begin(), vector.end()) {}
272
[301]273    /// Constructs the map from another \c RangeMap.
[80]274    template <typename V1>
275    RangeMap(const RangeMap<V1> &c)
276      : _vector(c._vector.begin(), c._vector.end()) {}
277
278    /// Returns the size of the map.
279    int size() {
280      return _vector.size();
281    }
282
283    /// Resizes the map.
284
285    /// Resizes the underlying \c std::vector container, so changes the
286    /// keyset of the map.
287    /// \param size The new size of the map. The new keyset will be the
288    /// range <tt>[0..size-1]</tt>.
289    /// \param value The default value to assign to the new keys.
290    void resize(int size, const Value &value = Value()) {
291      _vector.resize(size, value);
292    }
293
294  private:
295
296    RangeMap& operator=(const RangeMap&);
297
298  public:
299
300    ///\e
301    Reference operator[](const Key &k) {
302      return _vector[k];
303    }
304
305    ///\e
306    ConstReference operator[](const Key &k) const {
307      return _vector[k];
308    }
309
310    ///\e
311    void set(const Key &k, const Value &v) {
312      _vector[k] = v;
313    }
314  };
315
[301]316  /// Returns a \c RangeMap class
317
318  /// This function just returns a \c RangeMap class.
[80]319  /// \relates RangeMap
320  template<typename V>
321  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
322    return RangeMap<V>(size, value);
323  }
324
[301]325  /// \brief Returns a \c RangeMap class created from an appropriate
[80]326  /// \c std::vector
327
[301]328  /// This function just returns a \c RangeMap class created from an
[80]329  /// appropriate \c std::vector.
330  /// \relates RangeMap
331  template<typename V>
332  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
333    return RangeMap<V>(vector);
334  }
335
336
337  /// Map type based on \c std::map
338
339  /// This map is essentially a wrapper for \c std::map with addition
340  /// that you can specify a default value for the keys that are not
341  /// stored actually. This value can be different from the default
342  /// contructed value (i.e. \c %Value()).
343  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
344  /// concept.
345  ///
346  /// This map is useful if a default value should be assigned to most of
347  /// the keys and different values should be assigned only to a few
348  /// keys (i.e. the map is "sparse").
349  /// The name of this type also refers to this important usage.
350  ///
351  /// Apart form that this map can be used in many other cases since it
352  /// is based on \c std::map, which is a general associative container.
353  /// However keep in mind that it is usually not as efficient as other
354  /// maps.
355  ///
356  /// The simplest way of using this map is through the sparseMap()
357  /// function.
[606]358  template <typename K, typename V, typename Comp = std::less<K> >
[80]359  class SparseMap : public MapBase<K, V> {
360    template <typename K1, typename V1, typename C1>
361    friend class SparseMap;
362  public:
363
364    /// Key type
[606]365    typedef K Key;
[80]366    /// Value type
[606]367    typedef V Value;
[80]368    /// Reference type
369    typedef Value& Reference;
370    /// Const reference type
371    typedef const Value& ConstReference;
[25]372
[45]373    typedef True ReferenceMapTag;
374
[25]375  private:
[80]376
[606]377    typedef std::map<K, V, Comp> Map;
[80]378    Map _map;
[25]379    Value _value;
380
381  public:
382
[80]383    /// \brief Constructor with specified default value.
384    SparseMap(const Value &value = Value()) : _value(value) {}
385    /// \brief Constructs the map from an appropriate \c std::map, and
[47]386    /// explicitly specifies a default value.
[80]387    template <typename V1, typename Comp1>
388    SparseMap(const std::map<Key, V1, Comp1> &map,
389              const Value &value = Value())
[25]390      : _map(map.begin(), map.end()), _value(value) {}
[80]391
[301]392    /// \brief Constructs the map from another \c SparseMap.
[80]393    template<typename V1, typename Comp1>
394    SparseMap(const SparseMap<Key, V1, Comp1> &c)
[25]395      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
396
397  private:
398
[80]399    SparseMap& operator=(const SparseMap&);
[25]400
401  public:
402
403    ///\e
404    Reference operator[](const Key &k) {
405      typename Map::iterator it = _map.lower_bound(k);
406      if (it != _map.end() && !_map.key_comp()(k, it->first))
[209]407        return it->second;
[25]408      else
[209]409        return _map.insert(it, std::make_pair(k, _value))->second;
[25]410    }
411
[80]412    ///\e
[25]413    ConstReference operator[](const Key &k) const {
414      typename Map::const_iterator it = _map.find(k);
415      if (it != _map.end())
[209]416        return it->second;
[25]417      else
[209]418        return _value;
[25]419    }
420
[80]421    ///\e
422    void set(const Key &k, const Value &v) {
[25]423      typename Map::iterator it = _map.lower_bound(k);
424      if (it != _map.end() && !_map.key_comp()(k, it->first))
[209]425        it->second = v;
[25]426      else
[209]427        _map.insert(it, std::make_pair(k, v));
[25]428    }
429
[80]430    ///\e
431    void setAll(const Value &v) {
432      _value = v;
[25]433      _map.clear();
[80]434    }
435  };
[25]436
[301]437  /// Returns a \c SparseMap class
438
439  /// This function just returns a \c SparseMap class with specified
[80]440  /// default value.
441  /// \relates SparseMap
442  template<typename K, typename V, typename Compare>
443  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
444    return SparseMap<K, V, Compare>(value);
[54]445  }
[45]446
[80]447  template<typename K, typename V>
448  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
449    return SparseMap<K, V, std::less<K> >(value);
[45]450  }
[25]451
[301]452  /// \brief Returns a \c SparseMap class created from an appropriate
[80]453  /// \c std::map
[25]454
[301]455  /// This function just returns a \c SparseMap class created from an
[80]456  /// appropriate \c std::map.
457  /// \relates SparseMap
458  template<typename K, typename V, typename Compare>
459  inline SparseMap<K, V, Compare>
460    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
461  {
462    return SparseMap<K, V, Compare>(map, value);
[45]463  }
[25]464
465  /// @}
466
467  /// \addtogroup map_adaptors
468  /// @{
469
[80]470  /// Composition of two maps
471
[82]472  /// This \ref concepts::ReadMap "read-only map" returns the
[80]473  /// composition of two given maps. That is to say, if \c m1 is of
474  /// type \c M1 and \c m2 is of \c M2, then for
475  /// \code
476  ///   ComposeMap<M1, M2> cm(m1,m2);
477  /// \endcode
478  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
[25]479  ///
[80]480  /// The \c Key type of the map is inherited from \c M2 and the
481  /// \c Value type is from \c M1.
482  /// \c M2::Value must be convertible to \c M1::Key.
483  ///
484  /// The simplest way of using this map is through the composeMap()
485  /// function.
486  ///
487  /// \sa CombineMap
488  template <typename M1, typename M2>
489  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
490    const M1 &_m1;
491    const M2 &_m2;
[25]492  public:
[606]493    ///\e
494    typedef typename M2::Key Key;
495    ///\e
496    typedef typename M1::Value Value;
[25]497
[80]498    /// Constructor
499    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
500
[606]501    ///\e
[80]502    typename MapTraits<M1>::ConstReturnValue
503    operator[](const Key &k) const { return _m1[_m2[k]]; }
[25]504  };
505
[301]506  /// Returns a \c ComposeMap class
507
508  /// This function just returns a \c ComposeMap class.
[80]509  ///
510  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
511  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
512  /// will be equal to <tt>m1[m2[x]]</tt>.
513  ///
514  /// \relates ComposeMap
515  template <typename M1, typename M2>
516  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
517    return ComposeMap<M1, M2>(m1, m2);
[25]518  }
519
[80]520
521  /// Combination of two maps using an STL (binary) functor.
522
[82]523  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
[80]524  /// binary functor and returns the combination of the two given maps
525  /// using the functor.
526  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
527  /// and \c f is of \c F, then for
528  /// \code
529  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
530  /// \endcode
531  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
[26]532  ///
[80]533  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
534  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
535  /// \c M2::Value and \c M1::Value must be convertible to the
536  /// corresponding input parameter of \c F and the return type of \c F
537  /// must be convertible to \c V.
538  ///
539  /// The simplest way of using this map is through the combineMap()
540  /// function.
541  ///
542  /// \sa ComposeMap
543  template<typename M1, typename M2, typename F,
[209]544           typename V = typename F::result_type>
[80]545  class CombineMap : public MapBase<typename M1::Key, V> {
546    const M1 &_m1;
547    const M2 &_m2;
548    F _f;
[25]549  public:
[606]550    ///\e
551    typedef typename M1::Key Key;
552    ///\e
553    typedef V Value;
[25]554
[80]555    /// Constructor
556    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
557      : _m1(m1), _m2(m2), _f(f) {}
[606]558    ///\e
[80]559    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
560  };
[25]561
[301]562  /// Returns a \c CombineMap class
563
564  /// This function just returns a \c CombineMap class.
[80]565  ///
566  /// For example, if \c m1 and \c m2 are both maps with \c double
567  /// values, then
568  /// \code
569  ///   combineMap(m1,m2,std::plus<double>())
570  /// \endcode
571  /// is equivalent to
572  /// \code
573  ///   addMap(m1,m2)
574  /// \endcode
575  ///
576  /// This function is specialized for adaptable binary function
577  /// classes and C++ functions.
578  ///
579  /// \relates CombineMap
580  template<typename M1, typename M2, typename F, typename V>
581  inline CombineMap<M1, M2, F, V>
582  combineMap(const M1 &m1, const M2 &m2, const F &f) {
583    return CombineMap<M1, M2, F, V>(m1,m2,f);
[25]584  }
585
[80]586  template<typename M1, typename M2, typename F>
587  inline CombineMap<M1, M2, F, typename F::result_type>
588  combineMap(const M1 &m1, const M2 &m2, const F &f) {
589    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
590  }
[25]591
[80]592  template<typename M1, typename M2, typename K1, typename K2, typename V>
593  inline CombineMap<M1, M2, V (*)(K1, K2), V>
594  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
595    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
596  }
597
598
599  /// Converts an STL style (unary) functor to a map
600
[82]601  /// This \ref concepts::ReadMap "read-only map" returns the value
[80]602  /// of a given functor. Actually, it just wraps the functor and
603  /// provides the \c Key and \c Value typedefs.
[26]604  ///
[80]605  /// Template parameters \c K and \c V will become its \c Key and
606  /// \c Value. In most cases they have to be given explicitly because
607  /// a functor typically does not provide \c argument_type and
608  /// \c result_type typedefs.
609  /// Parameter \c F is the type of the used functor.
[29]610  ///
[80]611  /// The simplest way of using this map is through the functorToMap()
612  /// function.
613  ///
614  /// \sa MapToFunctor
615  template<typename F,
[209]616           typename K = typename F::argument_type,
617           typename V = typename F::result_type>
[80]618  class FunctorToMap : public MapBase<K, V> {
[123]619    F _f;
[80]620  public:
[606]621    ///\e
622    typedef K Key;
623    ///\e
624    typedef V Value;
[25]625
[80]626    /// Constructor
627    FunctorToMap(const F &f = F()) : _f(f) {}
[606]628    ///\e
[80]629    Value operator[](const Key &k) const { return _f(k); }
630  };
631
[301]632  /// Returns a \c FunctorToMap class
633
634  /// This function just returns a \c FunctorToMap class.
[80]635  ///
636  /// This function is specialized for adaptable binary function
637  /// classes and C++ functions.
638  ///
639  /// \relates FunctorToMap
640  template<typename K, typename V, typename F>
641  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
642    return FunctorToMap<F, K, V>(f);
643  }
644
645  template <typename F>
646  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
647    functorToMap(const F &f)
648  {
649    return FunctorToMap<F, typename F::argument_type,
650      typename F::result_type>(f);
651  }
652
653  template <typename K, typename V>
654  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
655    return FunctorToMap<V (*)(K), K, V>(f);
656  }
657
658
659  /// Converts a map to an STL style (unary) functor
660
661  /// This class converts a map to an STL style (unary) functor.
662  /// That is it provides an <tt>operator()</tt> to read its values.
663  ///
664  /// For the sake of convenience it also works as a usual
665  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
666  /// and the \c Key and \c Value typedefs also exist.
667  ///
668  /// The simplest way of using this map is through the mapToFunctor()
669  /// function.
670  ///
671  ///\sa FunctorToMap
672  template <typename M>
673  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
674    const M &_m;
[25]675  public:
[606]676    ///\e
677    typedef typename M::Key Key;
678    ///\e
679    typedef typename M::Value Value;
680
681    typedef typename M::Key argument_type;
682    typedef typename M::Value result_type;
[80]683
684    /// Constructor
685    MapToFunctor(const M &m) : _m(m) {}
[606]686    ///\e
[80]687    Value operator()(const Key &k) const { return _m[k]; }
[606]688    ///\e
[80]689    Value operator[](const Key &k) const { return _m[k]; }
[25]690  };
[45]691
[301]692  /// Returns a \c MapToFunctor class
693
694  /// This function just returns a \c MapToFunctor class.
[80]695  /// \relates MapToFunctor
[45]696  template<typename M>
[80]697  inline MapToFunctor<M> mapToFunctor(const M &m) {
698    return MapToFunctor<M>(m);
[45]699  }
[25]700
701
[80]702  /// \brief Map adaptor to convert the \c Value type of a map to
703  /// another type using the default conversion.
704
705  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
706  /// "readable map" to another type using the default conversion.
707  /// The \c Key type of it is inherited from \c M and the \c Value
708  /// type is \c V.
709  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
[26]710  ///
[80]711  /// The simplest way of using this map is through the convertMap()
712  /// function.
713  template <typename M, typename V>
714  class ConvertMap : public MapBase<typename M::Key, V> {
715    const M &_m;
716  public:
[606]717    ///\e
718    typedef typename M::Key Key;
719    ///\e
720    typedef V Value;
[80]721
722    /// Constructor
723
724    /// Constructor.
725    /// \param m The underlying map.
726    ConvertMap(const M &m) : _m(m) {}
727
[606]728    ///\e
[80]729    Value operator[](const Key &k) const { return _m[k]; }
730  };
731
[301]732  /// Returns a \c ConvertMap class
733
734  /// This function just returns a \c ConvertMap class.
[80]735  /// \relates ConvertMap
736  template<typename V, typename M>
737  inline ConvertMap<M, V> convertMap(const M &map) {
738    return ConvertMap<M, V>(map);
739  }
740
741
742  /// Applies all map setting operations to two maps
743
744  /// This map has two \ref concepts::WriteMap "writable map" parameters
745  /// and each write request will be passed to both of them.
746  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
747  /// operations will return the corresponding values of \c M1.
[29]748  ///
[80]749  /// The \c Key and \c Value types are inherited from \c M1.
750  /// The \c Key and \c Value of \c M2 must be convertible from those
751  /// of \c M1.
752  ///
753  /// The simplest way of using this map is through the forkMap()
754  /// function.
755  template<typename  M1, typename M2>
756  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
757    M1 &_m1;
758    M2 &_m2;
759  public:
[606]760    ///\e
761    typedef typename M1::Key Key;
762    ///\e
763    typedef typename M1::Value Value;
[25]764
[80]765    /// Constructor
766    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
767    /// Returns the value associated with the given key in the first map.
768    Value operator[](const Key &k) const { return _m1[k]; }
769    /// Sets the value associated with the given key in both maps.
770    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
771  };
772
[301]773  /// Returns a \c ForkMap class
774
775  /// This function just returns a \c ForkMap class.
[80]776  /// \relates ForkMap
777  template <typename M1, typename M2>
778  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
779    return ForkMap<M1,M2>(m1,m2);
780  }
781
782
783  /// Sum of two maps
784
[82]785  /// This \ref concepts::ReadMap "read-only map" returns the sum
[80]786  /// of the values of the two given maps.
787  /// Its \c Key and \c Value types are inherited from \c M1.
788  /// The \c Key and \c Value of \c M2 must be convertible to those of
789  /// \c M1.
790  ///
791  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
792  /// \code
793  ///   AddMap<M1,M2> am(m1,m2);
794  /// \endcode
795  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
796  ///
797  /// The simplest way of using this map is through the addMap()
798  /// function.
799  ///
800  /// \sa SubMap, MulMap, DivMap
801  /// \sa ShiftMap, ShiftWriteMap
802  template<typename M1, typename M2>
[25]803  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
[80]804    const M1 &_m1;
805    const M2 &_m2;
[25]806  public:
[606]807    ///\e
808    typedef typename M1::Key Key;
809    ///\e
810    typedef typename M1::Value Value;
[25]811
[80]812    /// Constructor
813    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
[606]814    ///\e
[80]815    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
[25]816  };
817
[301]818  /// Returns an \c AddMap class
819
820  /// This function just returns an \c AddMap class.
[25]821  ///
[80]822  /// For example, if \c m1 and \c m2 are both maps with \c double
823  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
824  /// <tt>m1[x]+m2[x]</tt>.
825  ///
826  /// \relates AddMap
827  template<typename M1, typename M2>
828  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
[25]829    return AddMap<M1, M2>(m1,m2);
830  }
831
832
[80]833  /// Difference of two maps
834
[82]835  /// This \ref concepts::ReadMap "read-only map" returns the difference
[80]836  /// of the values of the two given maps.
837  /// Its \c Key and \c Value types are inherited from \c M1.
838  /// The \c Key and \c Value of \c M2 must be convertible to those of
839  /// \c M1.
[25]840  ///
[80]841  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
842  /// \code
843  ///   SubMap<M1,M2> sm(m1,m2);
844  /// \endcode
845  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
[29]846  ///
[80]847  /// The simplest way of using this map is through the subMap()
848  /// function.
849  ///
850  /// \sa AddMap, MulMap, DivMap
851  template<typename M1, typename M2>
852  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
853    const M1 &_m1;
854    const M2 &_m2;
855  public:
[606]856    ///\e
857    typedef typename M1::Key Key;
858    ///\e
859    typedef typename M1::Value Value;
[80]860
861    /// Constructor
862    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
[606]863    ///\e
[80]864    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
865  };
866
[301]867  /// Returns a \c SubMap class
868
869  /// This function just returns a \c SubMap class.
[80]870  ///
871  /// For example, if \c m1 and \c m2 are both maps with \c double
872  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
873  /// <tt>m1[x]-m2[x]</tt>.
874  ///
875  /// \relates SubMap
876  template<typename M1, typename M2>
877  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
878    return SubMap<M1, M2>(m1,m2);
879  }
880
881
882  /// Product of two maps
883
[82]884  /// This \ref concepts::ReadMap "read-only map" returns the product
[80]885  /// of the values of the two given maps.
886  /// Its \c Key and \c Value types are inherited from \c M1.
887  /// The \c Key and \c Value of \c M2 must be convertible to those of
888  /// \c M1.
889  ///
890  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
891  /// \code
892  ///   MulMap<M1,M2> mm(m1,m2);
893  /// \endcode
894  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
895  ///
896  /// The simplest way of using this map is through the mulMap()
897  /// function.
898  ///
899  /// \sa AddMap, SubMap, DivMap
900  /// \sa ScaleMap, ScaleWriteMap
901  template<typename M1, typename M2>
902  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
903    const M1 &_m1;
904    const M2 &_m2;
905  public:
[606]906    ///\e
907    typedef typename M1::Key Key;
908    ///\e
909    typedef typename M1::Value Value;
[80]910
911    /// Constructor
912    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
[606]913    ///\e
[80]914    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
915  };
916
[301]917  /// Returns a \c MulMap class
918
919  /// This function just returns a \c MulMap class.
[80]920  ///
921  /// For example, if \c m1 and \c m2 are both maps with \c double
922  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
923  /// <tt>m1[x]*m2[x]</tt>.
924  ///
925  /// \relates MulMap
926  template<typename M1, typename M2>
927  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
928    return MulMap<M1, M2>(m1,m2);
929  }
930
931
932  /// Quotient of two maps
933
[82]934  /// This \ref concepts::ReadMap "read-only map" returns the quotient
[80]935  /// of the values of the two given maps.
936  /// Its \c Key and \c Value types are inherited from \c M1.
937  /// The \c Key and \c Value of \c M2 must be convertible to those of
938  /// \c M1.
939  ///
940  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
941  /// \code
942  ///   DivMap<M1,M2> dm(m1,m2);
943  /// \endcode
944  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
945  ///
946  /// The simplest way of using this map is through the divMap()
947  /// function.
948  ///
949  /// \sa AddMap, SubMap, MulMap
950  template<typename M1, typename M2>
951  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
952    const M1 &_m1;
953    const M2 &_m2;
954  public:
[606]955    ///\e
956    typedef typename M1::Key Key;
957    ///\e
958    typedef typename M1::Value Value;
[80]959
960    /// Constructor
961    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
[606]962    ///\e
[80]963    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
964  };
965
[301]966  /// Returns a \c DivMap class
967
968  /// This function just returns a \c DivMap class.
[80]969  ///
970  /// For example, if \c m1 and \c m2 are both maps with \c double
971  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
972  /// <tt>m1[x]/m2[x]</tt>.
973  ///
974  /// \relates DivMap
975  template<typename M1, typename M2>
976  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
977    return DivMap<M1, M2>(m1,m2);
978  }
979
980
981  /// Shifts a map with a constant.
982
[82]983  /// This \ref concepts::ReadMap "read-only map" returns the sum of
[80]984  /// the given map and a constant value (i.e. it shifts the map with
985  /// the constant). Its \c Key and \c Value are inherited from \c M.
986  ///
987  /// Actually,
988  /// \code
989  ///   ShiftMap<M> sh(m,v);
990  /// \endcode
991  /// is equivalent to
992  /// \code
993  ///   ConstMap<M::Key, M::Value> cm(v);
994  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
995  /// \endcode
996  ///
997  /// The simplest way of using this map is through the shiftMap()
998  /// function.
999  ///
1000  /// \sa ShiftWriteMap
1001  template<typename M, typename C = typename M::Value>
[25]1002  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
[80]1003    const M &_m;
1004    C _v;
[25]1005  public:
[606]1006    ///\e
1007    typedef typename M::Key Key;
1008    ///\e
1009    typedef typename M::Value Value;
[25]1010
[80]1011    /// Constructor
[25]1012
[80]1013    /// Constructor.
1014    /// \param m The undelying map.
1015    /// \param v The constant value.
1016    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
[606]1017    ///\e
[80]1018    Value operator[](const Key &k) const { return _m[k]+_v; }
[25]1019  };
1020
[80]1021  /// Shifts a map with a constant (read-write version).
[25]1022
[80]1023  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1024  /// of the given map and a constant value (i.e. it shifts the map with
1025  /// the constant). Its \c Key and \c Value are inherited from \c M.
1026  /// It makes also possible to write the map.
[25]1027  ///
[80]1028  /// The simplest way of using this map is through the shiftWriteMap()
1029  /// function.
1030  ///
1031  /// \sa ShiftMap
1032  template<typename M, typename C = typename M::Value>
[25]1033  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
[80]1034    M &_m;
1035    C _v;
[25]1036  public:
[606]1037    ///\e
1038    typedef typename M::Key Key;
1039    ///\e
1040    typedef typename M::Value Value;
[25]1041
[80]1042    /// Constructor
[25]1043
[80]1044    /// Constructor.
1045    /// \param m The undelying map.
1046    /// \param v The constant value.
1047    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
[606]1048    ///\e
[80]1049    Value operator[](const Key &k) const { return _m[k]+_v; }
[606]1050    ///\e
[80]1051    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
[25]1052  };
1053
[301]1054  /// Returns a \c ShiftMap class
1055
1056  /// This function just returns a \c ShiftMap class.
[80]1057  ///
1058  /// For example, if \c m is a map with \c double values and \c v is
1059  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1060  /// <tt>m[x]+v</tt>.
1061  ///
1062  /// \relates ShiftMap
1063  template<typename M, typename C>
1064  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
[25]1065    return ShiftMap<M, C>(m,v);
1066  }
1067
[301]1068  /// Returns a \c ShiftWriteMap class
1069
1070  /// This function just returns a \c ShiftWriteMap class.
[80]1071  ///
1072  /// For example, if \c m is a map with \c double values and \c v is
1073  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1074  /// <tt>m[x]+v</tt>.
1075  /// Moreover it makes also possible to write the map.
1076  ///
1077  /// \relates ShiftWriteMap
1078  template<typename M, typename C>
1079  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
[25]1080    return ShiftWriteMap<M, C>(m,v);
1081  }
1082
1083
[80]1084  /// Scales a map with a constant.
1085
[82]1086  /// This \ref concepts::ReadMap "read-only map" returns the value of
[80]1087  /// the given map multiplied from the left side with a constant value.
1088  /// Its \c Key and \c Value are inherited from \c M.
[26]1089  ///
[80]1090  /// Actually,
1091  /// \code
1092  ///   ScaleMap<M> sc(m,v);
1093  /// \endcode
1094  /// is equivalent to
1095  /// \code
1096  ///   ConstMap<M::Key, M::Value> cm(v);
1097  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1098  /// \endcode
[25]1099  ///
[80]1100  /// The simplest way of using this map is through the scaleMap()
1101  /// function.
[25]1102  ///
[80]1103  /// \sa ScaleWriteMap
1104  template<typename M, typename C = typename M::Value>
[25]1105  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
[80]1106    const M &_m;
1107    C _v;
[25]1108  public:
[606]1109    ///\e
1110    typedef typename M::Key Key;
1111    ///\e
1112    typedef typename M::Value Value;
[25]1113
[80]1114    /// Constructor
[25]1115
[80]1116    /// Constructor.
1117    /// \param m The undelying map.
1118    /// \param v The constant value.
1119    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
[606]1120    ///\e
[80]1121    Value operator[](const Key &k) const { return _v*_m[k]; }
[25]1122  };
1123
[80]1124  /// Scales a map with a constant (read-write version).
[25]1125
[80]1126  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1127  /// the given map multiplied from the left side with a constant value.
1128  /// Its \c Key and \c Value are inherited from \c M.
1129  /// It can also be used as write map if the \c / operator is defined
1130  /// between \c Value and \c C and the given multiplier is not zero.
[29]1131  ///
[80]1132  /// The simplest way of using this map is through the scaleWriteMap()
1133  /// function.
1134  ///
1135  /// \sa ScaleMap
1136  template<typename M, typename C = typename M::Value>
[25]1137  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
[80]1138    M &_m;
1139    C _v;
[25]1140  public:
[606]1141    ///\e
1142    typedef typename M::Key Key;
1143    ///\e
1144    typedef typename M::Value Value;
[25]1145
[80]1146    /// Constructor
[25]1147
[80]1148    /// Constructor.
1149    /// \param m The undelying map.
1150    /// \param v The constant value.
1151    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
[606]1152    ///\e
[80]1153    Value operator[](const Key &k) const { return _v*_m[k]; }
[606]1154    ///\e
[80]1155    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
[25]1156  };
1157
[301]1158  /// Returns a \c ScaleMap class
1159
1160  /// This function just returns a \c ScaleMap class.
[80]1161  ///
1162  /// For example, if \c m is a map with \c double values and \c v is
1163  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1164  /// <tt>v*m[x]</tt>.
1165  ///
1166  /// \relates ScaleMap
1167  template<typename M, typename C>
1168  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
[25]1169    return ScaleMap<M, C>(m,v);
1170  }
1171
[301]1172  /// Returns a \c ScaleWriteMap class
1173
1174  /// This function just returns a \c ScaleWriteMap class.
[80]1175  ///
1176  /// For example, if \c m is a map with \c double values and \c v is
1177  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1178  /// <tt>v*m[x]</tt>.
1179  /// Moreover it makes also possible to write the map.
1180  ///
1181  /// \relates ScaleWriteMap
1182  template<typename M, typename C>
1183  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
[25]1184    return ScaleWriteMap<M, C>(m,v);
1185  }
1186
1187
[80]1188  /// Negative of a map
[25]1189
[82]1190  /// This \ref concepts::ReadMap "read-only map" returns the negative
[80]1191  /// of the values of the given map (using the unary \c - operator).
1192  /// Its \c Key and \c Value are inherited from \c M.
[25]1193  ///
[80]1194  /// If M::Value is \c int, \c double etc., then
1195  /// \code
1196  ///   NegMap<M> neg(m);
1197  /// \endcode
1198  /// is equivalent to
1199  /// \code
1200  ///   ScaleMap<M> neg(m,-1);
1201  /// \endcode
[29]1202  ///
[80]1203  /// The simplest way of using this map is through the negMap()
1204  /// function.
[29]1205  ///
[80]1206  /// \sa NegWriteMap
1207  template<typename M>
[25]1208  class NegMap : public MapBase<typename M::Key, typename M::Value> {
[80]1209    const M& _m;
[25]1210  public:
[606]1211    ///\e
1212    typedef typename M::Key Key;
1213    ///\e
1214    typedef typename M::Value Value;
[25]1215
[80]1216    /// Constructor
1217    NegMap(const M &m) : _m(m) {}
[606]1218    ///\e
[80]1219    Value operator[](const Key &k) const { return -_m[k]; }
[25]1220  };
1221
[80]1222  /// Negative of a map (read-write version)
1223
1224  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1225  /// negative of the values of the given map (using the unary \c -
1226  /// operator).
1227  /// Its \c Key and \c Value are inherited from \c M.
1228  /// It makes also possible to write the map.
1229  ///
1230  /// If M::Value is \c int, \c double etc., then
1231  /// \code
1232  ///   NegWriteMap<M> neg(m);
1233  /// \endcode
1234  /// is equivalent to
1235  /// \code
1236  ///   ScaleWriteMap<M> neg(m,-1);
1237  /// \endcode
1238  ///
1239  /// The simplest way of using this map is through the negWriteMap()
1240  /// function.
[29]1241  ///
1242  /// \sa NegMap
[80]1243  template<typename M>
[25]1244  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
[80]1245    M &_m;
[25]1246  public:
[606]1247    ///\e
1248    typedef typename M::Key Key;
1249    ///\e
1250    typedef typename M::Value Value;
[25]1251
[80]1252    /// Constructor
1253    NegWriteMap(M &m) : _m(m) {}
[606]1254    ///\e
[80]1255    Value operator[](const Key &k) const { return -_m[k]; }
[606]1256    ///\e
[80]1257    void set(const Key &k, const Value &v) { _m.set(k, -v); }
[25]1258  };
1259
[301]1260  /// Returns a \c NegMap class
1261
1262  /// This function just returns a \c NegMap class.
[80]1263  ///
1264  /// For example, if \c m is a map with \c double values, then
1265  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1266  ///
1267  /// \relates NegMap
1268  template <typename M>
[25]1269  inline NegMap<M> negMap(const M &m) {
1270    return NegMap<M>(m);
1271  }
1272
[301]1273  /// Returns a \c NegWriteMap class
1274
1275  /// This function just returns a \c NegWriteMap class.
[80]1276  ///
1277  /// For example, if \c m is a map with \c double values, then
1278  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1279  /// Moreover it makes also possible to write the map.
1280  ///
1281  /// \relates NegWriteMap
1282  template <typename M>
1283  inline NegWriteMap<M> negWriteMap(M &m) {
[25]1284    return NegWriteMap<M>(m);
1285  }
1286
1287
[80]1288  /// Absolute value of a map
1289
[82]1290  /// This \ref concepts::ReadMap "read-only map" returns the absolute
[80]1291  /// value of the values of the given map.
1292  /// Its \c Key and \c Value are inherited from \c M.
1293  /// \c Value must be comparable to \c 0 and the unary \c -
1294  /// operator must be defined for it, of course.
1295  ///
1296  /// The simplest way of using this map is through the absMap()
1297  /// function.
1298  template<typename M>
[25]1299  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
[80]1300    const M &_m;
[25]1301  public:
[606]1302    ///\e
1303    typedef typename M::Key Key;
1304    ///\e
1305    typedef typename M::Value Value;
[25]1306
[80]1307    /// Constructor
1308    AbsMap(const M &m) : _m(m) {}
[606]1309    ///\e
[80]1310    Value operator[](const Key &k) const {
1311      Value tmp = _m[k];
[25]1312      return tmp >= 0 ? tmp : -tmp;
1313    }
1314
1315  };
1316
[301]1317  /// Returns an \c AbsMap class
1318
1319  /// This function just returns an \c AbsMap class.
[80]1320  ///
1321  /// For example, if \c m is a map with \c double values, then
1322  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1323  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1324  /// negative.
1325  ///
1326  /// \relates AbsMap
1327  template<typename M>
[25]1328  inline AbsMap<M> absMap(const M &m) {
1329    return AbsMap<M>(m);
1330  }
1331
[82]1332  /// @}
[209]1333
[82]1334  // Logical maps and map adaptors:
1335
1336  /// \addtogroup maps
1337  /// @{
1338
1339  /// Constant \c true map.
1340
1341  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1342  /// each key.
1343  ///
1344  /// Note that
1345  /// \code
1346  ///   TrueMap<K> tm;
1347  /// \endcode
1348  /// is equivalent to
1349  /// \code
1350  ///   ConstMap<K,bool> tm(true);
1351  /// \endcode
1352  ///
1353  /// \sa FalseMap
1354  /// \sa ConstMap
1355  template <typename K>
1356  class TrueMap : public MapBase<K, bool> {
1357  public:
[606]1358    ///\e
1359    typedef K Key;
1360    ///\e
1361    typedef bool Value;
[82]1362
1363    /// Gives back \c true.
1364    Value operator[](const Key&) const { return true; }
1365  };
1366
[301]1367  /// Returns a \c TrueMap class
1368
1369  /// This function just returns a \c TrueMap class.
[82]1370  /// \relates TrueMap
1371  template<typename K>
1372  inline TrueMap<K> trueMap() {
1373    return TrueMap<K>();
1374  }
1375
1376
1377  /// Constant \c false map.
1378
1379  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1380  /// each key.
1381  ///
1382  /// Note that
1383  /// \code
1384  ///   FalseMap<K> fm;
1385  /// \endcode
1386  /// is equivalent to
1387  /// \code
1388  ///   ConstMap<K,bool> fm(false);
1389  /// \endcode
1390  ///
1391  /// \sa TrueMap
1392  /// \sa ConstMap
1393  template <typename K>
1394  class FalseMap : public MapBase<K, bool> {
1395  public:
[606]1396    ///\e
1397    typedef K Key;
1398    ///\e
1399    typedef bool Value;
[82]1400
1401    /// Gives back \c false.
1402    Value operator[](const Key&) const { return false; }
1403  };
1404
[301]1405  /// Returns a \c FalseMap class
1406
1407  /// This function just returns a \c FalseMap class.
[82]1408  /// \relates FalseMap
1409  template<typename K>
1410  inline FalseMap<K> falseMap() {
1411    return FalseMap<K>();
1412  }
1413
1414  /// @}
1415
1416  /// \addtogroup map_adaptors
1417  /// @{
1418
1419  /// Logical 'and' of two maps
1420
1421  /// This \ref concepts::ReadMap "read-only map" returns the logical
1422  /// 'and' of the values of the two given maps.
1423  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1424  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1425  ///
1426  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1427  /// \code
1428  ///   AndMap<M1,M2> am(m1,m2);
1429  /// \endcode
1430  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1431  ///
1432  /// The simplest way of using this map is through the andMap()
1433  /// function.
1434  ///
1435  /// \sa OrMap
1436  /// \sa NotMap, NotWriteMap
1437  template<typename M1, typename M2>
1438  class AndMap : public MapBase<typename M1::Key, bool> {
1439    const M1 &_m1;
1440    const M2 &_m2;
1441  public:
[606]1442    ///\e
1443    typedef typename M1::Key Key;
1444    ///\e
1445    typedef bool Value;
[82]1446
1447    /// Constructor
1448    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
[606]1449    ///\e
[82]1450    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1451  };
1452
[301]1453  /// Returns an \c AndMap class
1454
1455  /// This function just returns an \c AndMap class.
[82]1456  ///
1457  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1458  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1459  /// <tt>m1[x]&&m2[x]</tt>.
1460  ///
1461  /// \relates AndMap
1462  template<typename M1, typename M2>
1463  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1464    return AndMap<M1, M2>(m1,m2);
1465  }
1466
1467
1468  /// Logical 'or' of two maps
1469
1470  /// This \ref concepts::ReadMap "read-only map" returns the logical
1471  /// 'or' of the values of the two given maps.
1472  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1473  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1474  ///
1475  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1476  /// \code
1477  ///   OrMap<M1,M2> om(m1,m2);
1478  /// \endcode
1479  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1480  ///
1481  /// The simplest way of using this map is through the orMap()
1482  /// function.
1483  ///
1484  /// \sa AndMap
1485  /// \sa NotMap, NotWriteMap
1486  template<typename M1, typename M2>
1487  class OrMap : public MapBase<typename M1::Key, bool> {
1488    const M1 &_m1;
1489    const M2 &_m2;
1490  public:
[606]1491    ///\e
1492    typedef typename M1::Key Key;
1493    ///\e
1494    typedef bool Value;
[82]1495
1496    /// Constructor
1497    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
[606]1498    ///\e
[82]1499    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1500  };
1501
[301]1502  /// Returns an \c OrMap class
1503
1504  /// This function just returns an \c OrMap class.
[82]1505  ///
1506  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1507  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1508  /// <tt>m1[x]||m2[x]</tt>.
1509  ///
1510  /// \relates OrMap
1511  template<typename M1, typename M2>
1512  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1513    return OrMap<M1, M2>(m1,m2);
1514  }
1515
[25]1516
[80]1517  /// Logical 'not' of a map
1518
[82]1519  /// This \ref concepts::ReadMap "read-only map" returns the logical
[80]1520  /// negation of the values of the given map.
1521  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
[25]1522  ///
[80]1523  /// The simplest way of using this map is through the notMap()
1524  /// function.
[25]1525  ///
[80]1526  /// \sa NotWriteMap
1527  template <typename M>
[25]1528  class NotMap : public MapBase<typename M::Key, bool> {
[80]1529    const M &_m;
[25]1530  public:
[606]1531    ///\e
1532    typedef typename M::Key Key;
1533    ///\e
1534    typedef bool Value;
[25]1535
1536    /// Constructor
[80]1537    NotMap(const M &m) : _m(m) {}
[606]1538    ///\e
[80]1539    Value operator[](const Key &k) const { return !_m[k]; }
[25]1540  };
1541
[80]1542  /// Logical 'not' of a map (read-write version)
1543
1544  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1545  /// logical negation of the values of the given map.
1546  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1547  /// It makes also possible to write the map. When a value is set,
1548  /// the opposite value is set to the original map.
[29]1549  ///
[80]1550  /// The simplest way of using this map is through the notWriteMap()
1551  /// function.
1552  ///
1553  /// \sa NotMap
1554  template <typename M>
[25]1555  class NotWriteMap : public MapBase<typename M::Key, bool> {
[80]1556    M &_m;
[25]1557  public:
[606]1558    ///\e
1559    typedef typename M::Key Key;
1560    ///\e
1561    typedef bool Value;
[25]1562
1563    /// Constructor
[80]1564    NotWriteMap(M &m) : _m(m) {}
[606]1565    ///\e
[80]1566    Value operator[](const Key &k) const { return !_m[k]; }
[606]1567    ///\e
[80]1568    void set(const Key &k, bool v) { _m.set(k, !v); }
[25]1569  };
[80]1570
[301]1571  /// Returns a \c NotMap class
1572
1573  /// This function just returns a \c NotMap class.
[80]1574  ///
1575  /// For example, if \c m is a map with \c bool values, then
1576  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1577  ///
1578  /// \relates NotMap
1579  template <typename M>
[25]1580  inline NotMap<M> notMap(const M &m) {
1581    return NotMap<M>(m);
1582  }
[80]1583
[301]1584  /// Returns a \c NotWriteMap class
1585
1586  /// This function just returns a \c NotWriteMap class.
[80]1587  ///
1588  /// For example, if \c m is a map with \c bool values, then
1589  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1590  /// Moreover it makes also possible to write the map.
1591  ///
1592  /// \relates NotWriteMap
1593  template <typename M>
1594  inline NotWriteMap<M> notWriteMap(M &m) {
[25]1595    return NotWriteMap<M>(m);
1596  }
1597
[82]1598
1599  /// Combination of two maps using the \c == operator
1600
1601  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1602  /// the keys for which the corresponding values of the two maps are
1603  /// equal.
1604  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1605  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1606  ///
1607  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1608  /// \code
1609  ///   EqualMap<M1,M2> em(m1,m2);
1610  /// \endcode
1611  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1612  ///
1613  /// The simplest way of using this map is through the equalMap()
1614  /// function.
1615  ///
1616  /// \sa LessMap
1617  template<typename M1, typename M2>
1618  class EqualMap : public MapBase<typename M1::Key, bool> {
1619    const M1 &_m1;
1620    const M2 &_m2;
1621  public:
[606]1622    ///\e
1623    typedef typename M1::Key Key;
1624    ///\e
1625    typedef bool Value;
[82]1626
1627    /// Constructor
1628    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
[606]1629    ///\e
[82]1630    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1631  };
1632
[301]1633  /// Returns an \c EqualMap class
1634
1635  /// This function just returns an \c EqualMap class.
[82]1636  ///
1637  /// For example, if \c m1 and \c m2 are maps with keys and values of
1638  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1639  /// <tt>m1[x]==m2[x]</tt>.
1640  ///
1641  /// \relates EqualMap
1642  template<typename M1, typename M2>
1643  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1644    return EqualMap<M1, M2>(m1,m2);
1645  }
1646
1647
1648  /// Combination of two maps using the \c < operator
1649
1650  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1651  /// the keys for which the corresponding value of the first map is
1652  /// less then the value of the second map.
1653  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1654  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1655  ///
1656  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1657  /// \code
1658  ///   LessMap<M1,M2> lm(m1,m2);
1659  /// \endcode
1660  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1661  ///
1662  /// The simplest way of using this map is through the lessMap()
1663  /// function.
1664  ///
1665  /// \sa EqualMap
1666  template<typename M1, typename M2>
1667  class LessMap : public MapBase<typename M1::Key, bool> {
1668    const M1 &_m1;
1669    const M2 &_m2;
1670  public:
[606]1671    ///\e
1672    typedef typename M1::Key Key;
1673    ///\e
1674    typedef bool Value;
[82]1675
1676    /// Constructor
1677    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
[606]1678    ///\e
[82]1679    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1680  };
1681
[301]1682  /// Returns an \c LessMap class
1683
1684  /// This function just returns an \c LessMap class.
[82]1685  ///
1686  /// For example, if \c m1 and \c m2 are maps with keys and values of
1687  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1688  /// <tt>m1[x]<m2[x]</tt>.
1689  ///
1690  /// \relates LessMap
1691  template<typename M1, typename M2>
1692  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1693    return LessMap<M1, M2>(m1,m2);
1694  }
1695
[104]1696  namespace _maps_bits {
1697
1698    template <typename _Iterator, typename Enable = void>
1699    struct IteratorTraits {
1700      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1701    };
1702
1703    template <typename _Iterator>
1704    struct IteratorTraits<_Iterator,
1705      typename exists<typename _Iterator::container_type>::type>
1706    {
1707      typedef typename _Iterator::container_type::value_type Value;
1708    };
1709
1710  }
1711
[314]1712  /// @}
1713
1714  /// \addtogroup maps
1715  /// @{
1716
[104]1717  /// \brief Writable bool map for logging each \c true assigned element
1718  ///
[159]1719  /// A \ref concepts::WriteMap "writable" bool map for logging
[104]1720  /// each \c true assigned element, i.e it copies subsequently each
1721  /// keys set to \c true to the given iterator.
[159]1722  /// The most important usage of it is storing certain nodes or arcs
1723  /// that were marked \c true by an algorithm.
[104]1724  ///
[159]1725  /// There are several algorithms that provide solutions through bool
1726  /// maps and most of them assign \c true at most once for each key.
1727  /// In these cases it is a natural request to store each \c true
1728  /// assigned elements (in order of the assignment), which can be
[167]1729  /// easily done with LoggerBoolMap.
[159]1730  ///
[167]1731  /// The simplest way of using this map is through the loggerBoolMap()
[159]1732  /// function.
1733  ///
[606]1734  /// \tparam IT The type of the iterator.
1735  /// \tparam KEY The key type of the map. The default value set
[159]1736  /// according to the iterator type should work in most cases.
[104]1737  ///
1738  /// \note The container of the iterator must contain enough space
[159]1739  /// for the elements or the iterator should be an inserter iterator.
1740#ifdef DOXYGEN
[606]1741  template <typename IT, typename KEY>
[159]1742#else
[606]1743  template <typename IT,
1744            typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
[159]1745#endif
[606]1746  class LoggerBoolMap : public MapBase<KEY, bool> {
[104]1747  public:
[606]1748
1749    ///\e
1750    typedef KEY Key;
1751    ///\e
[104]1752    typedef bool Value;
[606]1753    ///\e
1754    typedef IT Iterator;
[104]1755
1756    /// Constructor
[167]1757    LoggerBoolMap(Iterator it)
[104]1758      : _begin(it), _end(it) {}
1759
1760    /// Gives back the given iterator set for the first key
1761    Iterator begin() const {
1762      return _begin;
1763    }
1764
1765    /// Gives back the the 'after the last' iterator
1766    Iterator end() const {
1767      return _end;
1768    }
1769
1770    /// The set function of the map
[159]1771    void set(const Key& key, Value value) {
[104]1772      if (value) {
[209]1773        *_end++ = key;
[104]1774      }
1775    }
1776
1777  private:
1778    Iterator _begin;
[159]1779    Iterator _end;
[104]1780  };
[209]1781
[301]1782  /// Returns a \c LoggerBoolMap class
1783
1784  /// This function just returns a \c LoggerBoolMap class.
[159]1785  ///
1786  /// The most important usage of it is storing certain nodes or arcs
1787  /// that were marked \c true by an algorithm.
1788  /// For example it makes easier to store the nodes in the processing
1789  /// order of Dfs algorithm, as the following examples show.
1790  /// \code
1791  ///   std::vector<Node> v;
[167]1792  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
[159]1793  /// \endcode
1794  /// \code
1795  ///   std::vector<Node> v(countNodes(g));
[167]1796  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
[159]1797  /// \endcode
1798  ///
1799  /// \note The container of the iterator must contain enough space
1800  /// for the elements or the iterator should be an inserter iterator.
1801  ///
[167]1802  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
[159]1803  /// it cannot be used when a readable map is needed, for example as
[301]1804  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
[159]1805  ///
[167]1806  /// \relates LoggerBoolMap
[159]1807  template<typename Iterator>
[167]1808  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1809    return LoggerBoolMap<Iterator>(it);
[159]1810  }
[104]1811
[314]1812  /// @}
1813
1814  /// \addtogroup graph_maps
1815  /// @{
1816
[606]1817  /// \brief Provides an immutable and unique id for each item in a graph.
1818  ///
1819  /// IdMap provides a unique and immutable id for each item of the
[740]1820  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
[606]1821  ///  - \b unique: different items get different ids,
1822  ///  - \b immutable: the id of an item does not change (even if you
1823  ///    delete other nodes).
1824  ///
1825  /// Using this map you get access (i.e. can read) the inner id values of
1826  /// the items stored in the graph, which is returned by the \c id()
1827  /// function of the graph. This map can be inverted with its member
[220]1828  /// class \c InverseMap or with the \c operator() member.
1829  ///
[606]1830  /// \tparam GR The graph type.
1831  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1832  /// \c GR::Edge).
1833  ///
[619]1834  /// \see RangeIdMap
[606]1835  template <typename GR, typename K>
1836  class IdMap : public MapBase<K, int> {
[220]1837  public:
[606]1838    /// The graph type of IdMap.
1839    typedef GR Graph;
[664]1840    typedef GR Digraph;
[606]1841    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1842    typedef K Item;
1843    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1844    typedef K Key;
1845    /// The value type of IdMap.
[220]1846    typedef int Value;
1847
1848    /// \brief Constructor.
1849    ///
1850    /// Constructor of the map.
1851    explicit IdMap(const Graph& graph) : _graph(&graph) {}
1852
1853    /// \brief Gives back the \e id of the item.
1854    ///
1855    /// Gives back the immutable and unique \e id of the item.
1856    int operator[](const Item& item) const { return _graph->id(item);}
1857
[606]1858    /// \brief Gives back the \e item by its id.
[220]1859    ///
[606]1860    /// Gives back the \e item by its id.
[220]1861    Item operator()(int id) { return _graph->fromId(id, Item()); }
1862
1863  private:
1864    const Graph* _graph;
1865
1866  public:
1867
[606]1868    /// \brief This class represents the inverse of its owner (IdMap).
[220]1869    ///
[606]1870    /// This class represents the inverse of its owner (IdMap).
[220]1871    /// \see inverse()
1872    class InverseMap {
1873    public:
1874
1875      /// \brief Constructor.
1876      ///
1877      /// Constructor for creating an id-to-item map.
1878      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
1879
1880      /// \brief Constructor.
1881      ///
1882      /// Constructor for creating an id-to-item map.
1883      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1884
1885      /// \brief Gives back the given item from its id.
1886      ///
1887      /// Gives back the given item from its id.
1888      Item operator[](int id) const { return _graph->fromId(id, Item());}
1889
1890    private:
1891      const Graph* _graph;
1892    };
1893
1894    /// \brief Gives back the inverse of the map.
1895    ///
1896    /// Gives back the inverse of the IdMap.
1897    InverseMap inverse() const { return InverseMap(*_graph);}
1898  };
1899
1900
[619]1901  /// \brief General cross reference graph map type.
[606]1902
1903  /// This class provides simple invertable graph maps.
1904  /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
[220]1905  /// and if a key is set to a new value then store it
1906  /// in the inverse map.
1907  /// The values of the map can be accessed
1908  /// with stl compatible forward iterator.
1909  ///
[741]1910  /// This type is not reference map, so it cannot be modified with
1911  /// the subscription operator.
1912  ///
[606]1913  /// \tparam GR The graph type.
1914  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1915  /// \c GR::Edge).
1916  /// \tparam V The value type of the map.
[220]1917  ///
1918  /// \see IterableValueMap
[606]1919  template <typename GR, typename K, typename V>
[619]1920  class CrossRefMap
[606]1921    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
[220]1922  private:
1923
[606]1924    typedef typename ItemSetTraits<GR, K>::
1925      template Map<V>::Type Map;
1926
1927    typedef std::map<V, K> Container;
[220]1928    Container _inv_map;
1929
1930  public:
1931
[619]1932    /// The graph type of CrossRefMap.
[606]1933    typedef GR Graph;
[664]1934    typedef GR Digraph;
[619]1935    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
[606]1936    typedef K Item;
[619]1937    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
[606]1938    typedef K Key;
[619]1939    /// The value type of CrossRefMap.
[606]1940    typedef V Value;
[220]1941
1942    /// \brief Constructor.
1943    ///
[619]1944    /// Construct a new CrossRefMap for the given graph.
1945    explicit CrossRefMap(const Graph& graph) : Map(graph) {}
[220]1946
1947    /// \brief Forward iterator for values.
1948    ///
1949    /// This iterator is an stl compatible forward
1950    /// iterator on the values of the map. The values can
[606]1951    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
[220]1952    class ValueIterator
1953      : public std::iterator<std::forward_iterator_tag, Value> {
[619]1954      friend class CrossRefMap;
[220]1955    private:
1956      ValueIterator(typename Container::const_iterator _it)
1957        : it(_it) {}
1958    public:
1959
1960      ValueIterator() {}
1961
1962      ValueIterator& operator++() { ++it; return *this; }
1963      ValueIterator operator++(int) {
1964        ValueIterator tmp(*this);
1965        operator++();
1966        return tmp;
1967      }
1968
1969      const Value& operator*() const { return it->first; }
1970      const Value* operator->() const { return &(it->first); }
1971
1972      bool operator==(ValueIterator jt) const { return it == jt.it; }
1973      bool operator!=(ValueIterator jt) const { return it != jt.it; }
1974
1975    private:
1976      typename Container::const_iterator it;
1977    };
1978
1979    /// \brief Returns an iterator to the first value.
1980    ///
1981    /// Returns an stl compatible iterator to the
1982    /// first value of the map. The values of the
[606]1983    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
[220]1984    /// range.
1985    ValueIterator beginValue() const {
1986      return ValueIterator(_inv_map.begin());
1987    }
1988
1989    /// \brief Returns an iterator after the last value.
1990    ///
1991    /// Returns an stl compatible iterator after the
1992    /// last value of the map. The values of the
[606]1993    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
[220]1994    /// range.
1995    ValueIterator endValue() const {
1996      return ValueIterator(_inv_map.end());
1997    }
1998
[606]1999    /// \brief Sets the value associated with the given key.
[220]2000    ///
[606]2001    /// Sets the value associated with the given key.
[220]2002    void set(const Key& key, const Value& val) {
2003      Value oldval = Map::operator[](key);
2004      typename Container::iterator it = _inv_map.find(oldval);
2005      if (it != _inv_map.end() && it->second == key) {
2006        _inv_map.erase(it);
2007      }
[740]2008      _inv_map.insert(std::make_pair(val, key));
[220]2009      Map::set(key, val);
2010    }
2011
[606]2012    /// \brief Returns the value associated with the given key.
[220]2013    ///
[606]2014    /// Returns the value associated with the given key.
[220]2015    typename MapTraits<Map>::ConstReturnValue
2016    operator[](const Key& key) const {
2017      return Map::operator[](key);
2018    }
2019
2020    /// \brief Gives back the item by its value.
2021    ///
2022    /// Gives back the item by its value.
2023    Key operator()(const Value& key) const {
2024      typename Container::const_iterator it = _inv_map.find(key);
2025      return it != _inv_map.end() ? it->second : INVALID;
2026    }
2027
2028  protected:
2029
[606]2030    /// \brief Erase the key from the map and the inverse map.
[220]2031    ///
[606]2032    /// Erase the key from the map and the inverse map. It is called by the
[220]2033    /// \c AlterationNotifier.
2034    virtual void erase(const Key& key) {
2035      Value val = Map::operator[](key);
2036      typename Container::iterator it = _inv_map.find(val);
2037      if (it != _inv_map.end() && it->second == key) {
2038        _inv_map.erase(it);
2039      }
2040      Map::erase(key);
2041    }
2042
[606]2043    /// \brief Erase more keys from the map and the inverse map.
[220]2044    ///
[606]2045    /// Erase more keys from the map and the inverse map. It is called by the
[220]2046    /// \c AlterationNotifier.
2047    virtual void erase(const std::vector<Key>& keys) {
2048      for (int i = 0; i < int(keys.size()); ++i) {
2049        Value val = Map::operator[](keys[i]);
2050        typename Container::iterator it = _inv_map.find(val);
2051        if (it != _inv_map.end() && it->second == keys[i]) {
2052          _inv_map.erase(it);
2053        }
2054      }
2055      Map::erase(keys);
2056    }
2057
[606]2058    /// \brief Clear the keys from the map and the inverse map.
[220]2059    ///
[606]2060    /// Clear the keys from the map and the inverse map. It is called by the
[220]2061    /// \c AlterationNotifier.
2062    virtual void clear() {
2063      _inv_map.clear();
2064      Map::clear();
2065    }
2066
2067  public:
2068
2069    /// \brief The inverse map type.
2070    ///
2071    /// The inverse of this map. The subscript operator of the map
[606]2072    /// gives back the item that was last assigned to the value.
[220]2073    class InverseMap {
2074    public:
[606]2075      /// \brief Constructor
[220]2076      ///
2077      /// Constructor of the InverseMap.
[619]2078      explicit InverseMap(const CrossRefMap& inverted)
[220]2079        : _inverted(inverted) {}
2080
2081      /// The value type of the InverseMap.
[619]2082      typedef typename CrossRefMap::Key Value;
[220]2083      /// The key type of the InverseMap.
[619]2084      typedef typename CrossRefMap::Value Key;
[220]2085
2086      /// \brief Subscript operator.
2087      ///
[606]2088      /// Subscript operator. It gives back the item
2089      /// that was last assigned to the given value.
[220]2090      Value operator[](const Key& key) const {
2091        return _inverted(key);
2092      }
2093
2094    private:
[619]2095      const CrossRefMap& _inverted;
[220]2096    };
2097
[606]2098    /// \brief It gives back the read-only inverse map.
[220]2099    ///
[606]2100    /// It gives back the read-only inverse map.
[220]2101    InverseMap inverse() const {
2102      return InverseMap(*this);
2103    }
2104
2105  };
2106
[619]2107  /// \brief Provides continuous and unique ID for the
2108  /// items of a graph.
[220]2109  ///
[619]2110  /// RangeIdMap provides a unique and continuous
2111  /// ID for each item of a given type (\c Node, \c Arc or
[606]2112  /// \c Edge) in a graph. This id is
2113  ///  - \b unique: different items get different ids,
2114  ///  - \b continuous: the range of the ids is the set of integers
2115  ///    between 0 and \c n-1, where \c n is the number of the items of
[619]2116  ///    this type (\c Node, \c Arc or \c Edge).
2117  ///  - So, the ids can change when deleting an item of the same type.
[220]2118  ///
[606]2119  /// Thus this id is not (necessarily) the same as what can get using
2120  /// the \c id() function of the graph or \ref IdMap.
2121  /// This map can be inverted with its member class \c InverseMap,
2122  /// or with the \c operator() member.
2123  ///
2124  /// \tparam GR The graph type.
2125  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2126  /// \c GR::Edge).
2127  ///
2128  /// \see IdMap
2129  template <typename GR, typename K>
[619]2130  class RangeIdMap
[606]2131    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2132
2133    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
[220]2134
2135  public:
[619]2136    /// The graph type of RangeIdMap.
[606]2137    typedef GR Graph;
[664]2138    typedef GR Digraph;
[619]2139    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
[606]2140    typedef K Item;
[619]2141    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
[606]2142    typedef K Key;
[619]2143    /// The value type of RangeIdMap.
[606]2144    typedef int Value;
[220]2145
2146    /// \brief Constructor.
2147    ///
[619]2148    /// Constructor.
2149    explicit RangeIdMap(const Graph& gr) : Map(gr) {
[220]2150      Item it;
2151      const typename Map::Notifier* nf = Map::notifier();
2152      for (nf->first(it); it != INVALID; nf->next(it)) {
2153        Map::set(it, _inv_map.size());
2154        _inv_map.push_back(it);
2155      }
2156    }
2157
2158  protected:
2159
[606]2160    /// \brief Adds a new key to the map.
[220]2161    ///
2162    /// Add a new key to the map. It is called by the
2163    /// \c AlterationNotifier.
2164    virtual void add(const Item& item) {
2165      Map::add(item);
2166      Map::set(item, _inv_map.size());
2167      _inv_map.push_back(item);
2168    }
2169
2170    /// \brief Add more new keys to the map.
2171    ///
2172    /// Add more new keys to the map. It is called by the
2173    /// \c AlterationNotifier.
2174    virtual void add(const std::vector<Item>& items) {
2175      Map::add(items);
2176      for (int i = 0; i < int(items.size()); ++i) {
2177        Map::set(items[i], _inv_map.size());
2178        _inv_map.push_back(items[i]);
2179      }
2180    }
2181
2182    /// \brief Erase the key from the map.
2183    ///
2184    /// Erase the key from the map. It is called by the
2185    /// \c AlterationNotifier.
2186    virtual void erase(const Item& item) {
2187      Map::set(_inv_map.back(), Map::operator[](item));
2188      _inv_map[Map::operator[](item)] = _inv_map.back();
2189      _inv_map.pop_back();
2190      Map::erase(item);
2191    }
2192
2193    /// \brief Erase more keys from the map.
2194    ///
2195    /// Erase more keys from the map. It is called by the
2196    /// \c AlterationNotifier.
2197    virtual void erase(const std::vector<Item>& items) {
2198      for (int i = 0; i < int(items.size()); ++i) {
2199        Map::set(_inv_map.back(), Map::operator[](items[i]));
2200        _inv_map[Map::operator[](items[i])] = _inv_map.back();
2201        _inv_map.pop_back();
2202      }
2203      Map::erase(items);
2204    }
2205
2206    /// \brief Build the unique map.
2207    ///
2208    /// Build the unique map. It is called by the
2209    /// \c AlterationNotifier.
2210    virtual void build() {
2211      Map::build();
2212      Item it;
2213      const typename Map::Notifier* nf = Map::notifier();
2214      for (nf->first(it); it != INVALID; nf->next(it)) {
2215        Map::set(it, _inv_map.size());
2216        _inv_map.push_back(it);
2217      }
2218    }
2219
2220    /// \brief Clear the keys from the map.
2221    ///
2222    /// Clear the keys from the map. It is called by the
2223    /// \c AlterationNotifier.
2224    virtual void clear() {
2225      _inv_map.clear();
2226      Map::clear();
2227    }
2228
2229  public:
2230
2231    /// \brief Returns the maximal value plus one.
2232    ///
2233    /// Returns the maximal value plus one in the map.
2234    unsigned int size() const {
2235      return _inv_map.size();
2236    }
2237
2238    /// \brief Swaps the position of the two items in the map.
2239    ///
2240    /// Swaps the position of the two items in the map.
2241    void swap(const Item& p, const Item& q) {
2242      int pi = Map::operator[](p);
2243      int qi = Map::operator[](q);
2244      Map::set(p, qi);
2245      _inv_map[qi] = p;
2246      Map::set(q, pi);
2247      _inv_map[pi] = q;
2248    }
2249
[619]2250    /// \brief Gives back the \e RangeId of the item
[220]2251    ///
[619]2252    /// Gives back the \e RangeId of the item.
[220]2253    int operator[](const Item& item) const {
2254      return Map::operator[](item);
2255    }
2256
[619]2257    /// \brief Gives back the item belonging to a \e RangeId
[740]2258    ///
[619]2259    /// Gives back the item belonging to a \e RangeId.
[220]2260    Item operator()(int id) const {
2261      return _inv_map[id];
2262    }
2263
2264  private:
2265
2266    typedef std::vector<Item> Container;
2267    Container _inv_map;
2268
2269  public:
[606]2270
[619]2271    /// \brief The inverse map type of RangeIdMap.
[220]2272    ///
[619]2273    /// The inverse map type of RangeIdMap.
[220]2274    class InverseMap {
2275    public:
[606]2276      /// \brief Constructor
[220]2277      ///
2278      /// Constructor of the InverseMap.
[619]2279      explicit InverseMap(const RangeIdMap& inverted)
[220]2280        : _inverted(inverted) {}
2281
2282
2283      /// The value type of the InverseMap.
[619]2284      typedef typename RangeIdMap::Key Value;
[220]2285      /// The key type of the InverseMap.
[619]2286      typedef typename RangeIdMap::Value Key;
[220]2287
2288      /// \brief Subscript operator.
2289      ///
2290      /// Subscript operator. It gives back the item
[606]2291      /// that the descriptor currently belongs to.
[220]2292      Value operator[](const Key& key) const {
2293        return _inverted(key);
2294      }
2295
2296      /// \brief Size of the map.
2297      ///
2298      /// Returns the size of the map.
2299      unsigned int size() const {
2300        return _inverted.size();
2301      }
2302
2303    private:
[619]2304      const RangeIdMap& _inverted;
[220]2305    };
2306
2307    /// \brief Gives back the inverse of the map.
2308    ///
2309    /// Gives back the inverse of the map.
2310    const InverseMap inverse() const {
2311      return InverseMap(*this);
2312    }
2313  };
2314
[741]2315  /// \brief Dynamic iterable \c bool map.
[740]2316  ///
[741]2317  /// This class provides a special graph map type which can store a
2318  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
2319  /// For both \c true and \c false values it is possible to iterate on
2320  /// the keys.
[740]2321  ///
[741]2322  /// This type is a reference map, so it can be modified with the
2323  /// subscription operator.
2324  ///
2325  /// \tparam GR The graph type.
2326  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2327  /// \c GR::Edge).
2328  ///
2329  /// \see IterableIntMap, IterableValueMap
2330  /// \see CrossRefMap
2331  template <typename GR, typename K>
[740]2332  class IterableBoolMap
[741]2333    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
[740]2334  private:
2335    typedef GR Graph;
2336
[741]2337    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
2338    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
2339
2340    std::vector<K> _array;
[740]2341    int _sep;
2342
2343  public:
2344
[741]2345    /// Indicates that the map is reference map.
[740]2346    typedef True ReferenceMapTag;
2347
2348    /// The key type
[741]2349    typedef K Key;
[740]2350    /// The value type
2351    typedef bool Value;
2352    /// The const reference type.
2353    typedef const Value& ConstReference;
2354
2355  private:
2356
2357    int position(const Key& key) const {
2358      return Parent::operator[](key);
2359    }
2360
2361  public:
2362
[741]2363    /// \brief Reference to the value of the map.
[740]2364    ///
[741]2365    /// This class is similar to the \c bool type. It can be converted to
2366    /// \c bool and it provides the same operators.
[740]2367    class Reference {
2368      friend class IterableBoolMap;
2369    private:
2370      Reference(IterableBoolMap& map, const Key& key)
2371        : _key(key), _map(map) {}
2372    public:
2373
2374      Reference& operator=(const Reference& value) {
2375        _map.set(_key, static_cast<bool>(value));
2376         return *this;
2377      }
2378
2379      operator bool() const {
2380        return static_cast<const IterableBoolMap&>(_map)[_key];
2381      }
2382
2383      Reference& operator=(bool value) {
2384        _map.set(_key, value);
2385        return *this;
2386      }
2387      Reference& operator&=(bool value) {
2388        _map.set(_key, _map[_key] & value);
2389        return *this;
2390      }
2391      Reference& operator|=(bool value) {
2392        _map.set(_key, _map[_key] | value);
2393        return *this;
2394      }
2395      Reference& operator^=(bool value) {
2396        _map.set(_key, _map[_key] ^ value);
2397        return *this;
2398      }
2399    private:
2400      Key _key;
2401      IterableBoolMap& _map;
2402    };
2403
2404    /// \brief Constructor of the map with a default value.
2405    ///
2406    /// Constructor of the map with a default value.
2407    explicit IterableBoolMap(const Graph& graph, bool def = false)
2408      : Parent(graph) {
2409      typename Parent::Notifier* nf = Parent::notifier();
2410      Key it;
2411      for (nf->first(it); it != INVALID; nf->next(it)) {
2412        Parent::set(it, _array.size());
2413        _array.push_back(it);
2414      }
2415      _sep = (def ? _array.size() : 0);
2416    }
2417
2418    /// \brief Const subscript operator of the map.
2419    ///
2420    /// Const subscript operator of the map.
2421    bool operator[](const Key& key) const {
2422      return position(key) < _sep;
2423    }
2424
2425    /// \brief Subscript operator of the map.
2426    ///
2427    /// Subscript operator of the map.
2428    Reference operator[](const Key& key) {
2429      return Reference(*this, key);
2430    }
2431
2432    /// \brief Set operation of the map.
2433    ///
2434    /// Set operation of the map.
2435    void set(const Key& key, bool value) {
2436      int pos = position(key);
2437      if (value) {
2438        if (pos < _sep) return;
2439        Key tmp = _array[_sep];
2440        _array[_sep] = key;
2441        Parent::set(key, _sep);
2442        _array[pos] = tmp;
2443        Parent::set(tmp, pos);
2444        ++_sep;
2445      } else {
2446        if (pos >= _sep) return;
2447        --_sep;
2448        Key tmp = _array[_sep];
2449        _array[_sep] = key;
2450        Parent::set(key, _sep);
2451        _array[pos] = tmp;
2452        Parent::set(tmp, pos);
2453      }
2454    }
2455
2456    /// \brief Set all items.
2457    ///
2458    /// Set all items in the map.
2459    /// \note Constant time operation.
2460    void setAll(bool value) {
2461      _sep = (value ? _array.size() : 0);
2462    }
2463
[741]2464    /// \brief Returns the number of the keys mapped to \c true.
[740]2465    ///
[741]2466    /// Returns the number of the keys mapped to \c true.
[740]2467    int trueNum() const {
2468      return _sep;
2469    }
2470
[741]2471    /// \brief Returns the number of the keys mapped to \c false.
[740]2472    ///
[741]2473    /// Returns the number of the keys mapped to \c false.
[740]2474    int falseNum() const {
2475      return _array.size() - _sep;
2476    }
2477
[741]2478    /// \brief Iterator for the keys mapped to \c true.
[740]2479    ///
[741]2480    /// Iterator for the keys mapped to \c true. It works
2481    /// like a graph item iterator, it can be converted to
[740]2482    /// the key type of the map, incremented with \c ++ operator, and
[741]2483    /// if the iterator leaves the last valid key, it will be equal to
[740]2484    /// \c INVALID.
2485    class TrueIt : public Key {
2486    public:
2487      typedef Key Parent;
2488
2489      /// \brief Creates an iterator.
2490      ///
2491      /// Creates an iterator. It iterates on the
[741]2492      /// keys mapped to \c true.
2493      /// \param map The IterableBoolMap.
[740]2494      explicit TrueIt(const IterableBoolMap& map)
2495        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
2496          _map(&map) {}
2497
2498      /// \brief Invalid constructor \& conversion.
2499      ///
[741]2500      /// This constructor initializes the iterator to be invalid.
[740]2501      /// \sa Invalid for more details.
2502      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
2503
2504      /// \brief Increment operator.
2505      ///
[741]2506      /// Increment operator.
[740]2507      TrueIt& operator++() {
2508        int pos = _map->position(*this);
2509        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
2510        return *this;
2511      }
2512
2513    private:
2514      const IterableBoolMap* _map;
2515    };
2516
[741]2517    /// \brief Iterator for the keys mapped to \c false.
[740]2518    ///
[741]2519    /// Iterator for the keys mapped to \c false. It works
2520    /// like a graph item iterator, it can be converted to
[740]2521    /// the key type of the map, incremented with \c ++ operator, and
[741]2522    /// if the iterator leaves the last valid key, it will be equal to
[740]2523    /// \c INVALID.
2524    class FalseIt : public Key {
2525    public:
2526      typedef Key Parent;
2527
2528      /// \brief Creates an iterator.
2529      ///
2530      /// Creates an iterator. It iterates on the
[741]2531      /// keys mapped to \c false.
2532      /// \param map The IterableBoolMap.
[740]2533      explicit FalseIt(const IterableBoolMap& map)
2534        : Parent(map._sep < int(map._array.size()) ?
2535                 map._array.back() : INVALID), _map(&map) {}
2536
2537      /// \brief Invalid constructor \& conversion.
2538      ///
[741]2539      /// This constructor initializes the iterator to be invalid.
[740]2540      /// \sa Invalid for more details.
2541      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
2542
2543      /// \brief Increment operator.
2544      ///
[741]2545      /// Increment operator.
[740]2546      FalseIt& operator++() {
2547        int pos = _map->position(*this);
2548        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
2549        return *this;
2550      }
2551
2552    private:
2553      const IterableBoolMap* _map;
2554    };
2555
2556    /// \brief Iterator for the keys mapped to a given value.
2557    ///
2558    /// Iterator for the keys mapped to a given value. It works
[741]2559    /// like a graph item iterator, it can be converted to
[740]2560    /// the key type of the map, incremented with \c ++ operator, and
[741]2561    /// if the iterator leaves the last valid key, it will be equal to
[740]2562    /// \c INVALID.
2563    class ItemIt : public Key {
2564    public:
2565      typedef Key Parent;
2566
[741]2567      /// \brief Creates an iterator with a value.
[740]2568      ///
[741]2569      /// Creates an iterator with a value. It iterates on the
2570      /// keys mapped to the given value.
2571      /// \param map The IterableBoolMap.
2572      /// \param value The value.
[740]2573      ItemIt(const IterableBoolMap& map, bool value)
2574        : Parent(value ?
2575                 (map._sep > 0 ?
2576                  map._array[map._sep - 1] : INVALID) :
2577                 (map._sep < int(map._array.size()) ?
2578                  map._array.back() : INVALID)), _map(&map) {}
2579
2580      /// \brief Invalid constructor \& conversion.
2581      ///
[741]2582      /// This constructor initializes the iterator to be invalid.
[740]2583      /// \sa Invalid for more details.
2584      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2585
2586      /// \brief Increment operator.
2587      ///
[741]2588      /// Increment operator.
[740]2589      ItemIt& operator++() {
2590        int pos = _map->position(*this);
2591        int _sep = pos >= _map->_sep ? _map->_sep : 0;
2592        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
2593        return *this;
2594      }
2595
2596    private:
2597      const IterableBoolMap* _map;
2598    };
2599
2600  protected:
2601
2602    virtual void add(const Key& key) {
2603      Parent::add(key);
2604      Parent::set(key, _array.size());
2605      _array.push_back(key);
2606    }
2607
2608    virtual void add(const std::vector<Key>& keys) {
2609      Parent::add(keys);
2610      for (int i = 0; i < int(keys.size()); ++i) {
2611        Parent::set(keys[i], _array.size());
2612        _array.push_back(keys[i]);
2613      }
2614    }
2615
2616    virtual void erase(const Key& key) {
2617      int pos = position(key);
2618      if (pos < _sep) {
2619        --_sep;
2620        Parent::set(_array[_sep], pos);
2621        _array[pos] = _array[_sep];
2622        Parent::set(_array.back(), _sep);
2623        _array[_sep] = _array.back();
2624        _array.pop_back();
2625      } else {
2626        Parent::set(_array.back(), pos);
2627        _array[pos] = _array.back();
2628        _array.pop_back();
2629      }
2630      Parent::erase(key);
2631    }
2632
2633    virtual void erase(const std::vector<Key>& keys) {
2634      for (int i = 0; i < int(keys.size()); ++i) {
2635        int pos = position(keys[i]);
2636        if (pos < _sep) {
2637          --_sep;
2638          Parent::set(_array[_sep], pos);
2639          _array[pos] = _array[_sep];
2640          Parent::set(_array.back(), _sep);
2641          _array[_sep] = _array.back();
2642          _array.pop_back();
2643        } else {
2644          Parent::set(_array.back(), pos);
2645          _array[pos] = _array.back();
2646          _array.pop_back();
2647        }
2648      }
2649      Parent::erase(keys);
2650    }
2651
2652    virtual void build() {
2653      Parent::build();
2654      typename Parent::Notifier* nf = Parent::notifier();
2655      Key it;
2656      for (nf->first(it); it != INVALID; nf->next(it)) {
2657        Parent::set(it, _array.size());
2658        _array.push_back(it);
2659      }
2660      _sep = 0;
2661    }
2662
2663    virtual void clear() {
2664      _array.clear();
2665      _sep = 0;
2666      Parent::clear();
2667    }
2668
2669  };
2670
2671
2672  namespace _maps_bits {
2673    template <typename Item>
2674    struct IterableIntMapNode {
2675      IterableIntMapNode() : value(-1) {}
2676      IterableIntMapNode(int _value) : value(_value) {}
2677      Item prev, next;
2678      int value;
2679    };
2680  }
2681
2682  /// \brief Dynamic iterable integer map.
2683  ///
[741]2684  /// This class provides a special graph map type which can store an
2685  /// integer value for graph items (\c Node, \c Arc or \c Edge).
2686  /// For each non-negative value it is possible to iterate on the keys
2687  /// mapped to the value.
[740]2688  ///
[741]2689  /// This type is a reference map, so it can be modified with the
2690  /// subscription operator.
2691  ///
2692  /// \note The size of the data structure depends on the largest
[740]2693  /// value in the map.
2694  ///
[741]2695  /// \tparam GR The graph type.
2696  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2697  /// \c GR::Edge).
2698  ///
2699  /// \see IterableBoolMap, IterableValueMap
2700  /// \see CrossRefMap
2701  template <typename GR, typename K>
[740]2702  class IterableIntMap
[741]2703    : protected ItemSetTraits<GR, K>::
2704        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
[740]2705  public:
[741]2706    typedef typename ItemSetTraits<GR, K>::
2707      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
[740]2708
2709    /// The key type
[741]2710    typedef K Key;
[740]2711    /// The value type
2712    typedef int Value;
2713    /// The graph type
2714    typedef GR Graph;
2715
2716    /// \brief Constructor of the map.
2717    ///
[741]2718    /// Constructor of the map. It sets all values to -1.
[740]2719    explicit IterableIntMap(const Graph& graph)
2720      : Parent(graph) {}
2721
2722    /// \brief Constructor of the map with a given value.
2723    ///
2724    /// Constructor of the map with a given value.
2725    explicit IterableIntMap(const Graph& graph, int value)
[741]2726      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
[740]2727      if (value >= 0) {
2728        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
2729          lace(it);
2730        }
2731      }
2732    }
2733
2734  private:
2735
2736    void unlace(const Key& key) {
2737      typename Parent::Value& node = Parent::operator[](key);
2738      if (node.value < 0) return;
2739      if (node.prev != INVALID) {
2740        Parent::operator[](node.prev).next = node.next;
2741      } else {
2742        _first[node.value] = node.next;
2743      }
2744      if (node.next != INVALID) {
2745        Parent::operator[](node.next).prev = node.prev;
2746      }
2747      while (!_first.empty() && _first.back() == INVALID) {
2748        _first.pop_back();
2749      }
2750    }
2751
2752    void lace(const Key& key) {
2753      typename Parent::Value& node = Parent::operator[](key);
2754      if (node.value < 0) return;
2755      if (node.value >= int(_first.size())) {
2756        _first.resize(node.value + 1, INVALID);
2757      }
2758      node.prev = INVALID;
2759      node.next = _first[node.value];
2760      if (node.next != INVALID) {
2761        Parent::operator[](node.next).prev = key;
2762      }
2763      _first[node.value] = key;
2764    }
2765
2766  public:
2767
[741]2768    /// Indicates that the map is reference map.
[740]2769    typedef True ReferenceMapTag;
2770
[741]2771    /// \brief Reference to the value of the map.
[740]2772    ///
[741]2773    /// This class is similar to the \c int type. It can
2774    /// be converted to \c int and it has the same operators.
[740]2775    class Reference {
2776      friend class IterableIntMap;
2777    private:
2778      Reference(IterableIntMap& map, const Key& key)
2779        : _key(key), _map(map) {}
2780    public:
2781
2782      Reference& operator=(const Reference& value) {
2783        _map.set(_key, static_cast<const int&>(value));
2784         return *this;
2785      }
2786
2787      operator const int&() const {
2788        return static_cast<const IterableIntMap&>(_map)[_key];
2789      }
2790
2791      Reference& operator=(int value) {
2792        _map.set(_key, value);
2793        return *this;
2794      }
2795      Reference& operator++() {
2796        _map.set(_key, _map[_key] + 1);
2797        return *this;
2798      }
2799      int operator++(int) {
2800        int value = _map[_key];
2801        _map.set(_key, value + 1);
2802        return value;
2803      }
2804      Reference& operator--() {
2805        _map.set(_key, _map[_key] - 1);
2806        return *this;
2807      }
2808      int operator--(int) {
2809        int value = _map[_key];
2810        _map.set(_key, value - 1);
2811        return value;
2812      }
2813      Reference& operator+=(int value) {
2814        _map.set(_key, _map[_key] + value);
2815        return *this;
2816      }
2817      Reference& operator-=(int value) {
2818        _map.set(_key, _map[_key] - value);
2819        return *this;
2820      }
2821      Reference& operator*=(int value) {
2822        _map.set(_key, _map[_key] * value);
2823        return *this;
2824      }
2825      Reference& operator/=(int value) {
2826        _map.set(_key, _map[_key] / value);
2827        return *this;
2828      }
2829      Reference& operator%=(int value) {
2830        _map.set(_key, _map[_key] % value);
2831        return *this;
2832      }
2833      Reference& operator&=(int value) {
2834        _map.set(_key, _map[_key] & value);
2835        return *this;
2836      }
2837      Reference& operator|=(int value) {
2838        _map.set(_key, _map[_key] | value);
2839        return *this;
2840      }
2841      Reference& operator^=(int value) {
2842        _map.set(_key, _map[_key] ^ value);
2843        return *this;
2844      }
2845      Reference& operator<<=(int value) {
2846        _map.set(_key, _map[_key] << value);
2847        return *this;
2848      }
2849      Reference& operator>>=(int value) {
2850        _map.set(_key, _map[_key] >> value);
2851        return *this;
2852      }
2853
2854    private:
2855      Key _key;
2856      IterableIntMap& _map;
2857    };
2858
2859    /// The const reference type.
2860    typedef const Value& ConstReference;
2861
2862    /// \brief Gives back the maximal value plus one.
2863    ///
2864    /// Gives back the maximal value plus one.
2865    int size() const {
2866      return _first.size();
2867    }
2868
2869    /// \brief Set operation of the map.
2870    ///
2871    /// Set operation of the map.
2872    void set(const Key& key, const Value& value) {
2873      unlace(key);
2874      Parent::operator[](key).value = value;
2875      lace(key);
2876    }
2877
2878    /// \brief Const subscript operator of the map.
2879    ///
2880    /// Const subscript operator of the map.
2881    const Value& operator[](const Key& key) const {
2882      return Parent::operator[](key).value;
2883    }
2884
2885    /// \brief Subscript operator of the map.
2886    ///
2887    /// Subscript operator of the map.
2888    Reference operator[](const Key& key) {
2889      return Reference(*this, key);
2890    }
2891
2892    /// \brief Iterator for the keys with the same value.
2893    ///
2894    /// Iterator for the keys with the same value. It works
[741]2895    /// like a graph item iterator, it can be converted to
[740]2896    /// the item type of the map, incremented with \c ++ operator, and
[741]2897    /// if the iterator leaves the last valid item, it will be equal to
[740]2898    /// \c INVALID.
[741]2899    class ItemIt : public Key {
[740]2900    public:
[741]2901      typedef Key Parent;
[740]2902
2903      /// \brief Invalid constructor \& conversion.
2904      ///
[741]2905      /// This constructor initializes the iterator to be invalid.
[740]2906      /// \sa Invalid for more details.
2907      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2908
2909      /// \brief Creates an iterator with a value.
2910      ///
2911      /// Creates an iterator with a value. It iterates on the
[741]2912      /// keys mapped to the given value.
2913      /// \param map The IterableIntMap.
2914      /// \param value The value.
[740]2915      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
2916        if (value < 0 || value >= int(_map->_first.size())) {
2917          Parent::operator=(INVALID);
2918        } else {
2919          Parent::operator=(_map->_first[value]);
2920        }
2921      }
2922
2923      /// \brief Increment operator.
2924      ///
[741]2925      /// Increment operator.
[740]2926      ItemIt& operator++() {
2927        Parent::operator=(_map->IterableIntMap::Parent::
2928                          operator[](static_cast<Parent&>(*this)).next);
2929        return *this;
2930      }
2931
2932    private:
2933      const IterableIntMap* _map;
2934    };
2935
2936  protected:
2937
2938    virtual void erase(const Key& key) {
2939      unlace(key);
2940      Parent::erase(key);
2941    }
2942
2943    virtual void erase(const std::vector<Key>& keys) {
2944      for (int i = 0; i < int(keys.size()); ++i) {
2945        unlace(keys[i]);
2946      }
2947      Parent::erase(keys);
2948    }
2949
2950    virtual void clear() {
2951      _first.clear();
2952      Parent::clear();
2953    }
2954
2955  private:
[741]2956    std::vector<Key> _first;
[740]2957  };
2958
2959  namespace _maps_bits {
2960    template <typename Item, typename Value>
2961    struct IterableValueMapNode {
2962      IterableValueMapNode(Value _value = Value()) : value(_value) {}
2963      Item prev, next;
2964      Value value;
2965    };
2966  }
2967
2968  /// \brief Dynamic iterable map for comparable values.
2969  ///
[741]2970  /// This class provides a special graph map type which can store an
2971  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
2972  /// For each value it is possible to iterate on the keys mapped to
2973  /// the value.
2974  ///
2975  /// The map stores for each value a linked list with
[740]2976  /// the items which mapped to the value, and the values are stored
2977  /// in balanced binary tree. The values of the map can be accessed
2978  /// with stl compatible forward iterator.
2979  ///
[741]2980  /// This type is not reference map, so it cannot be modified with
[740]2981  /// the subscription operator.
2982  ///
[741]2983  /// \tparam GR The graph type.
2984  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2985  /// \c GR::Edge).
2986  /// \tparam V The value type of the map. It can be any comparable
2987  /// value type.
[740]2988  ///
[741]2989  /// \see IterableBoolMap, IterableIntMap
2990  /// \see CrossRefMap
2991  template <typename GR, typename K, typename V>
[740]2992  class IterableValueMap
[741]2993    : protected ItemSetTraits<GR, K>::
2994        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
[740]2995  public:
[741]2996    typedef typename ItemSetTraits<GR, K>::
2997      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
[740]2998
2999    /// The key type
[741]3000    typedef K Key;
[740]3001    /// The value type
[741]3002    typedef V Value;
[740]3003    /// The graph type
3004    typedef GR Graph;
3005
3006  public:
3007
[741]3008    /// \brief Constructor of the map with a given value.
[740]3009    ///
[741]3010    /// Constructor of the map with a given value.
[740]3011    explicit IterableValueMap(const Graph& graph,
3012                              const Value& value = Value())
[741]3013      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
[740]3014      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3015        lace(it);
3016      }
3017    }
3018
3019  protected:
3020
3021    void unlace(const Key& key) {
3022      typename Parent::Value& node = Parent::operator[](key);
3023      if (node.prev != INVALID) {
3024        Parent::operator[](node.prev).next = node.next;
3025      } else {
3026        if (node.next != INVALID) {
3027          _first[node.value] = node.next;
3028        } else {
3029          _first.erase(node.value);
3030        }
3031      }
3032      if (node.next != INVALID) {
3033        Parent::operator[](node.next).prev = node.prev;
3034      }
3035    }
3036
3037    void lace(const Key& key) {
3038      typename Parent::Value& node = Parent::operator[](key);
3039      typename std::map<Value, Key>::iterator it = _first.find(node.value);
3040      if (it == _first.end()) {
3041        node.prev = node.next = INVALID;
3042        _first.insert(std::make_pair(node.value, key));
3043      } else {
3044        node.prev = INVALID;
3045        node.next = it->second;
3046        if (node.next != INVALID) {
3047          Parent::operator[](node.next).prev = key;
3048        }
3049        it->second = key;
3050      }
3051    }
3052
3053  public:
3054
3055    /// \brief Forward iterator for values.
3056    ///
3057    /// This iterator is an stl compatible forward
3058    /// iterator on the values of the map. The values can
[741]3059    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
[740]3060    class ValueIterator
3061      : public std::iterator<std::forward_iterator_tag, Value> {
3062      friend class IterableValueMap;
3063    private:
3064      ValueIterator(typename std::map<Value, Key>::const_iterator _it)
3065        : it(_it) {}
3066    public:
3067
3068      ValueIterator() {}
3069
3070      ValueIterator& operator++() { ++it; return *this; }
3071      ValueIterator operator++(int) {
3072        ValueIterator tmp(*this);
3073        operator++();
3074        return tmp;
3075      }
3076
3077      const Value& operator*() const { return it->first; }
3078      const Value* operator->() const { return &(it->first); }
3079
3080      bool operator==(ValueIterator jt) const { return it == jt.it; }
3081      bool operator!=(ValueIterator jt) const { return it != jt.it; }
3082
3083    private:
3084      typename std::map<Value, Key>::const_iterator it;
3085    };
3086
3087    /// \brief Returns an iterator to the first value.
3088    ///
3089    /// Returns an stl compatible iterator to the
3090    /// first value of the map. The values of the
[741]3091    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
[740]3092    /// range.
3093    ValueIterator beginValue() const {
3094      return ValueIterator(_first.begin());
3095    }
3096
3097    /// \brief Returns an iterator after the last value.
3098    ///
3099    /// Returns an stl compatible iterator after the
3100    /// last value of the map. The values of the
[741]3101    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
[740]3102    /// range.
3103    ValueIterator endValue() const {
3104      return ValueIterator(_first.end());
3105    }
3106
3107    /// \brief Set operation of the map.
3108    ///
3109    /// Set operation of the map.
3110    void set(const Key& key, const Value& value) {
3111      unlace(key);
3112      Parent::operator[](key).value = value;
3113      lace(key);
3114    }
3115
3116    /// \brief Const subscript operator of the map.
3117    ///
3118    /// Const subscript operator of the map.
3119    const Value& operator[](const Key& key) const {
3120      return Parent::operator[](key).value;
3121    }
3122
3123    /// \brief Iterator for the keys with the same value.
3124    ///
3125    /// Iterator for the keys with the same value. It works
[741]3126    /// like a graph item iterator, it can be converted to
[740]3127    /// the item type of the map, incremented with \c ++ operator, and
[741]3128    /// if the iterator leaves the last valid item, it will be equal to
[740]3129    /// \c INVALID.
[741]3130    class ItemIt : public Key {
[740]3131    public:
[741]3132      typedef Key Parent;
[740]3133
3134      /// \brief Invalid constructor \& conversion.
3135      ///
[741]3136      /// This constructor initializes the iterator to be invalid.
[740]3137      /// \sa Invalid for more details.
3138      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
3139
3140      /// \brief Creates an iterator with a value.
3141      ///
3142      /// Creates an iterator with a value. It iterates on the
3143      /// keys which have the given value.
3144      /// \param map The IterableValueMap
3145      /// \param value The value
3146      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
3147        typename std::map<Value, Key>::const_iterator it =
3148          map._first.find(value);
3149        if (it == map._first.end()) {
3150          Parent::operator=(INVALID);
3151        } else {
3152          Parent::operator=(it->second);
3153        }
3154      }
3155
3156      /// \brief Increment operator.
3157      ///
3158      /// Increment Operator.
3159      ItemIt& operator++() {
3160        Parent::operator=(_map->IterableValueMap::Parent::
3161                          operator[](static_cast<Parent&>(*this)).next);
3162        return *this;
3163      }
3164
3165
3166    private:
3167      const IterableValueMap* _map;
3168    };
3169
3170  protected:
3171
3172    virtual void add(const Key& key) {
3173      Parent::add(key);
3174      unlace(key);
3175    }
3176
3177    virtual void add(const std::vector<Key>& keys) {
3178      Parent::add(keys);
3179      for (int i = 0; i < int(keys.size()); ++i) {
3180        lace(keys[i]);
3181      }
3182    }
3183
3184    virtual void erase(const Key& key) {
3185      unlace(key);
3186      Parent::erase(key);
3187    }
3188
3189    virtual void erase(const std::vector<Key>& keys) {
3190      for (int i = 0; i < int(keys.size()); ++i) {
3191        unlace(keys[i]);
3192      }
3193      Parent::erase(keys);
3194    }
3195
3196    virtual void build() {
3197      Parent::build();
3198      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3199        lace(it);
3200      }
3201    }
3202
3203    virtual void clear() {
3204      _first.clear();
3205      Parent::clear();
3206    }
3207
3208  private:
3209    std::map<Value, Key> _first;
3210  };
3211
[606]3212  /// \brief Map of the source nodes of arcs in a digraph.
[220]3213  ///
[606]3214  /// SourceMap provides access for the source node of each arc in a digraph,
3215  /// which is returned by the \c source() function of the digraph.
3216  /// \tparam GR The digraph type.
[220]3217  /// \see TargetMap
[606]3218  template <typename GR>
[220]3219  class SourceMap {
3220  public:
3221
[606]3222    ///\e
3223    typedef typename GR::Arc Key;
3224    ///\e
3225    typedef typename GR::Node Value;
[220]3226
3227    /// \brief Constructor
3228    ///
[606]3229    /// Constructor.
[313]3230    /// \param digraph The digraph that the map belongs to.
[606]3231    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
3232
3233    /// \brief Returns the source node of the given arc.
[220]3234    ///
[606]3235    /// Returns the source node of the given arc.
[220]3236    Value operator[](const Key& arc) const {
[606]3237      return _graph.source(arc);
[220]3238    }
3239
3240  private:
[606]3241    const GR& _graph;
[220]3242  };
3243
[301]3244  /// \brief Returns a \c SourceMap class.
[220]3245  ///
[301]3246  /// This function just returns an \c SourceMap class.
[220]3247  /// \relates SourceMap
[606]3248  template <typename GR>
3249  inline SourceMap<GR> sourceMap(const GR& graph) {
3250    return SourceMap<GR>(graph);
[220]3251  }
3252
[606]3253  /// \brief Map of the target nodes of arcs in a digraph.
[220]3254  ///
[606]3255  /// TargetMap provides access for the target node of each arc in a digraph,
3256  /// which is returned by the \c target() function of the digraph.
3257  /// \tparam GR The digraph type.
[220]3258  /// \see SourceMap
[606]3259  template <typename GR>
[220]3260  class TargetMap {
3261  public:
3262
[606]3263    ///\e
3264    typedef typename GR::Arc Key;
3265    ///\e
3266    typedef typename GR::Node Value;
[220]3267
3268    /// \brief Constructor
3269    ///
[606]3270    /// Constructor.
[313]3271    /// \param digraph The digraph that the map belongs to.
[606]3272    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
3273
3274    /// \brief Returns the target node of the given arc.
[220]3275    ///
[606]3276    /// Returns the target node of the given arc.
[220]3277    Value operator[](const Key& e) const {
[606]3278      return _graph.target(e);
[220]3279    }
3280
3281  private:
[606]3282    const GR& _graph;
[220]3283  };
3284
[301]3285  /// \brief Returns a \c TargetMap class.
[220]3286  ///
[301]3287  /// This function just returns a \c TargetMap class.
[220]3288  /// \relates TargetMap
[606]3289  template <typename GR>
3290  inline TargetMap<GR> targetMap(const GR& graph) {
3291    return TargetMap<GR>(graph);
[220]3292  }
3293
[606]3294  /// \brief Map of the "forward" directed arc view of edges in a graph.
[220]3295  ///
[606]3296  /// ForwardMap provides access for the "forward" directed arc view of
3297  /// each edge in a graph, which is returned by the \c direct() function
3298  /// of the graph with \c true parameter.
3299  /// \tparam GR The graph type.
[220]3300  /// \see BackwardMap
[606]3301  template <typename GR>
[220]3302  class ForwardMap {
3303  public:
3304
[606]3305    typedef typename GR::Arc Value;
3306    typedef typename GR::Edge Key;
[220]3307
3308    /// \brief Constructor
3309    ///
[606]3310    /// Constructor.
[313]3311    /// \param graph The graph that the map belongs to.
[606]3312    explicit ForwardMap(const GR& graph) : _graph(graph) {}
3313
3314    /// \brief Returns the "forward" directed arc view of the given edge.
[220]3315    ///
[606]3316    /// Returns the "forward" directed arc view of the given edge.
[220]3317    Value operator[](const Key& key) const {
3318      return _graph.direct(key, true);
3319    }
3320
3321  private:
[606]3322    const GR& _graph;
[220]3323  };
3324
[301]3325  /// \brief Returns a \c ForwardMap class.
[220]3326  ///
[301]3327  /// This function just returns an \c ForwardMap class.
[220]3328  /// \relates ForwardMap
[606]3329  template <typename GR>
3330  inline ForwardMap<GR> forwardMap(const GR& graph) {
3331    return ForwardMap<GR>(graph);
[220]3332  }
3333
[606]3334  /// \brief Map of the "backward" directed arc view of edges in a graph.
[220]3335  ///
[606]3336  /// BackwardMap provides access for the "backward" directed arc view of
3337  /// each edge in a graph, which is returned by the \c direct() function
3338  /// of the graph with \c false parameter.
3339  /// \tparam GR The graph type.
[220]3340  /// \see ForwardMap
[606]3341  template <typename GR>
[220]3342  class BackwardMap {
3343  public:
3344
[606]3345    typedef typename GR::Arc Value;
3346    typedef typename GR::Edge Key;
[220]3347
3348    /// \brief Constructor
3349    ///
[606]3350    /// Constructor.
[313]3351    /// \param graph The graph that the map belongs to.
[606]3352    explicit BackwardMap(const GR& graph) : _graph(graph) {}
3353
3354    /// \brief Returns the "backward" directed arc view of the given edge.
[220]3355    ///
[606]3356    /// Returns the "backward" directed arc view of the given edge.
[220]3357    Value operator[](const Key& key) const {
3358      return _graph.direct(key, false);
3359    }
3360
3361  private:
[606]3362    const GR& _graph;
[220]3363  };
3364
[301]3365  /// \brief Returns a \c BackwardMap class
3366
3367  /// This function just returns a \c BackwardMap class.
[220]3368  /// \relates BackwardMap
[606]3369  template <typename GR>
3370  inline BackwardMap<GR> backwardMap(const GR& graph) {
3371    return BackwardMap<GR>(graph);
[220]3372  }
3373
[606]3374  /// \brief Map of the in-degrees of nodes in a digraph.
[220]3375  ///
3376  /// This map returns the in-degree of a node. Once it is constructed,
[606]3377  /// the degrees are stored in a standard \c NodeMap, so each query is done
[220]3378  /// in constant time. On the other hand, the values are updated automatically
3379  /// whenever the digraph changes.
3380  ///
[740]3381  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
[606]3382  /// may provide alternative ways to modify the digraph.
3383  /// The correct behavior of InDegMap is not guarantied if these additional
3384  /// features are used. For example the functions
3385  /// \ref ListDigraph::changeSource() "changeSource()",
[220]3386  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3387  /// \ref ListDigraph::reverseArc() "reverseArc()"
3388  /// of \ref ListDigraph will \e not update the degree values correctly.
3389  ///
3390  /// \sa OutDegMap
[606]3391  template <typename GR>
[220]3392  class InDegMap
[606]3393    : protected ItemSetTraits<GR, typename GR::Arc>
[220]3394      ::ItemNotifier::ObserverBase {
3395
3396  public:
[740]3397
[664]3398    /// The graph type of InDegMap
3399    typedef GR Graph;
[606]3400    typedef GR Digraph;
3401    /// The key type
3402    typedef typename Digraph::Node Key;
3403    /// The value type
[220]3404    typedef int Value;
3405
3406    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3407    ::ItemNotifier::ObserverBase Parent;
3408
3409  private:
3410
3411    class AutoNodeMap
3412      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3413    public:
3414
3415      typedef typename ItemSetTraits<Digraph, Key>::
3416      template Map<int>::Type Parent;
3417
3418      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3419
3420      virtual void add(const Key& key) {
3421        Parent::add(key);
3422        Parent::set(key, 0);
3423      }
3424
3425      virtual void add(const std::vector<Key>& keys) {
3426        Parent::add(keys);
3427        for (int i = 0; i < int(keys.size()); ++i) {
3428          Parent::set(keys[i], 0);
3429        }
3430      }
3431
3432      virtual void build() {
3433        Parent::build();
3434        Key it;
3435        typename Parent::Notifier* nf = Parent::notifier();
3436        for (nf->first(it); it != INVALID; nf->next(it)) {
3437          Parent::set(it, 0);
3438        }
3439      }
3440    };
3441
3442  public:
3443
3444    /// \brief Constructor.
3445    ///
[606]3446    /// Constructor for creating an in-degree map.
3447    explicit InDegMap(const Digraph& graph)
3448      : _digraph(graph), _deg(graph) {
[220]3449      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3450
3451      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3452        _deg[it] = countInArcs(_digraph, it);
3453      }
3454    }
3455
[606]3456    /// \brief Gives back the in-degree of a Node.
3457    ///
[220]3458    /// Gives back the in-degree of a Node.
3459    int operator[](const Key& key) const {
3460      return _deg[key];
3461    }
3462
3463  protected:
3464
3465    typedef typename Digraph::Arc Arc;
3466
3467    virtual void add(const Arc& arc) {
3468      ++_deg[_digraph.target(arc)];
3469    }
3470
3471    virtual void add(const std::vector<Arc>& arcs) {
3472      for (int i = 0; i < int(arcs.size()); ++i) {
3473        ++_deg[_digraph.target(arcs[i])];
3474      }
3475    }
3476
3477    virtual void erase(const Arc& arc) {
3478      --_deg[_digraph.target(arc)];
3479    }
3480
3481    virtual void erase(const std::vector<Arc>& arcs) {
3482      for (int i = 0; i < int(arcs.size()); ++i) {
3483        --_deg[_digraph.target(arcs[i])];
3484      }
3485    }
3486
3487    virtual void build() {
3488      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3489        _deg[it] = countInArcs(_digraph, it);
3490      }
3491    }
3492
3493    virtual void clear() {
3494      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3495        _deg[it] = 0;
3496      }
3497    }
3498  private:
3499
3500    const Digraph& _digraph;
3501    AutoNodeMap _deg;
3502  };
3503
[606]3504  /// \brief Map of the out-degrees of nodes in a digraph.
[220]3505  ///
3506  /// This map returns the out-degree of a node. Once it is constructed,
[606]3507  /// the degrees are stored in a standard \c NodeMap, so each query is done
[220]3508  /// in constant time. On the other hand, the values are updated automatically
3509  /// whenever the digraph changes.
3510  ///
[740]3511  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
[606]3512  /// may provide alternative ways to modify the digraph.
3513  /// The correct behavior of OutDegMap is not guarantied if these additional
3514  /// features are used. For example the functions
3515  /// \ref ListDigraph::changeSource() "changeSource()",
[220]3516  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3517  /// \ref ListDigraph::reverseArc() "reverseArc()"
3518  /// of \ref ListDigraph will \e not update the degree values correctly.
3519  ///
3520  /// \sa InDegMap
[606]3521  template <typename GR>
[220]3522  class OutDegMap
[606]3523    : protected ItemSetTraits<GR, typename GR::Arc>
[220]3524      ::ItemNotifier::ObserverBase {
3525
3526  public:
3527
[664]3528    /// The graph type of OutDegMap
3529    typedef GR Graph;
[606]3530    typedef GR Digraph;
3531    /// The key type
3532    typedef typename Digraph::Node Key;
3533    /// The value type
[220]3534    typedef int Value;
3535
3536    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3537    ::ItemNotifier::ObserverBase Parent;
3538
3539  private:
3540
3541    class AutoNodeMap
3542      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3543    public:
3544
3545      typedef typename ItemSetTraits<Digraph, Key>::
3546      template Map<int>::Type Parent;
3547
3548      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3549
3550      virtual void add(const Key& key) {
3551        Parent::add(key);
3552        Parent::set(key, 0);
3553      }
3554      virtual void add(const std::vector<Key>& keys) {
3555        Parent::add(keys);
3556        for (int i = 0; i < int(keys.size()); ++i) {
3557          Parent::set(keys[i], 0);
3558        }
3559      }
3560      virtual void build() {
3561        Parent::build();
3562        Key it;
3563        typename Parent::Notifier* nf = Parent::notifier();
3564        for (nf->first(it); it != INVALID; nf->next(it)) {
3565          Parent::set(it, 0);
3566        }
3567      }
3568    };
3569
3570  public:
3571
3572    /// \brief Constructor.
3573    ///
[606]3574    /// Constructor for creating an out-degree map.
3575    explicit OutDegMap(const Digraph& graph)
3576      : _digraph(graph), _deg(graph) {
[220]3577      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3578
3579      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3580        _deg[it] = countOutArcs(_digraph, it);
3581      }
3582    }
3583
[606]3584    /// \brief Gives back the out-degree of a Node.
3585    ///
[220]3586    /// Gives back the out-degree of a Node.
3587    int operator[](const Key& key) const {
3588      return _deg[key];
3589    }
3590
3591  protected:
3592
3593    typedef typename Digraph::Arc Arc;
3594
3595    virtual void add(const Arc& arc) {
3596      ++_deg[_digraph.source(arc)];
3597    }
3598
3599    virtual void add(const std::vector<Arc>& arcs) {
3600      for (int i = 0; i < int(arcs.size()); ++i) {
3601        ++_deg[_digraph.source(arcs[i])];
3602      }
3603    }
3604
3605    virtual void erase(const Arc& arc) {
3606      --_deg[_digraph.source(arc)];
3607    }
3608
3609    virtual void erase(const std::vector<Arc>& arcs) {
3610      for (int i = 0; i < int(arcs.size()); ++i) {
3611        --_deg[_digraph.source(arcs[i])];
3612      }
3613    }
3614
3615    virtual void build() {
3616      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3617        _deg[it] = countOutArcs(_digraph, it);
3618      }
3619    }
3620
3621    virtual void clear() {
3622      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3623        _deg[it] = 0;
3624      }
3625    }
3626  private:
3627
3628    const Digraph& _digraph;
3629    AutoNodeMap _deg;
3630  };
3631
[606]3632  /// \brief Potential difference map
3633  ///
[631]3634  /// PotentialDifferenceMap returns the difference between the potentials of
3635  /// the source and target nodes of each arc in a digraph, i.e. it returns
[606]3636  /// \code
3637  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3638  /// \endcode
3639  /// \tparam GR The digraph type.
3640  /// \tparam POT A node map storing the potentials.
3641  template <typename GR, typename POT>
3642  class PotentialDifferenceMap {
3643  public:
3644    /// Key type
3645    typedef typename GR::Arc Key;
3646    /// Value type
3647    typedef typename POT::Value Value;
3648
3649    /// \brief Constructor
3650    ///
3651    /// Contructor of the map.
3652    explicit PotentialDifferenceMap(const GR& gr,
3653                                    const POT& potential)
3654      : _digraph(gr), _potential(potential) {}
3655
3656    /// \brief Returns the potential difference for the given arc.
3657    ///
3658    /// Returns the potential difference for the given arc, i.e.
3659    /// \code
3660    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3661    /// \endcode
3662    Value operator[](const Key& arc) const {
3663      return _potential[_digraph.target(arc)] -
3664        _potential[_digraph.source(arc)];
3665    }
3666
3667  private:
3668    const GR& _digraph;
3669    const POT& _potential;
3670  };
3671
3672  /// \brief Returns a PotentialDifferenceMap.
3673  ///
3674  /// This function just returns a PotentialDifferenceMap.
3675  /// \relates PotentialDifferenceMap
3676  template <typename GR, typename POT>
3677  PotentialDifferenceMap<GR, POT>
3678  potentialDifferenceMap(const GR& gr, const POT& potential) {
3679    return PotentialDifferenceMap<GR, POT>(gr, potential);
3680  }
3681
[25]3682  /// @}
3683}
3684
3685#endif // LEMON_MAPS_H
Note: See TracBrowser for help on using the repository browser.