| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2009 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_MAPS_H |
|---|
| 20 | #define LEMON_MAPS_H |
|---|
| 21 | |
|---|
| 22 | #include <iterator> |
|---|
| 23 | #include <functional> |
|---|
| 24 | #include <vector> |
|---|
| 25 | |
|---|
| 26 | #include <lemon/core.h> |
|---|
| 27 | |
|---|
| 28 | ///\file |
|---|
| 29 | ///\ingroup maps |
|---|
| 30 | ///\brief Miscellaneous property maps |
|---|
| 31 | |
|---|
| 32 | #include <map> |
|---|
| 33 | |
|---|
| 34 | namespace lemon { |
|---|
| 35 | |
|---|
| 36 | /// \addtogroup maps |
|---|
| 37 | /// @{ |
|---|
| 38 | |
|---|
| 39 | /// Base class of maps. |
|---|
| 40 | |
|---|
| 41 | /// Base class of maps. It provides the necessary type definitions |
|---|
| 42 | /// required by the map %concepts. |
|---|
| 43 | template<typename K, typename V> |
|---|
| 44 | class MapBase { |
|---|
| 45 | public: |
|---|
| 46 | /// \brief The key type of the map. |
|---|
| 47 | typedef K Key; |
|---|
| 48 | /// \brief The value type of the map. |
|---|
| 49 | /// (The type of objects associated with the keys). |
|---|
| 50 | typedef V Value; |
|---|
| 51 | }; |
|---|
| 52 | |
|---|
| 53 | |
|---|
| 54 | /// Null map. (a.k.a. DoNothingMap) |
|---|
| 55 | |
|---|
| 56 | /// This map can be used if you have to provide a map only for |
|---|
| 57 | /// its type definitions, or if you have to provide a writable map, |
|---|
| 58 | /// but data written to it is not required (i.e. it will be sent to |
|---|
| 59 | /// <tt>/dev/null</tt>). |
|---|
| 60 | /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|---|
| 61 | /// |
|---|
| 62 | /// \sa ConstMap |
|---|
| 63 | template<typename K, typename V> |
|---|
| 64 | class NullMap : public MapBase<K, V> { |
|---|
| 65 | public: |
|---|
| 66 | ///\e |
|---|
| 67 | typedef K Key; |
|---|
| 68 | ///\e |
|---|
| 69 | typedef V Value; |
|---|
| 70 | |
|---|
| 71 | /// Gives back a default constructed element. |
|---|
| 72 | Value operator[](const Key&) const { return Value(); } |
|---|
| 73 | /// Absorbs the value. |
|---|
| 74 | void set(const Key&, const Value&) {} |
|---|
| 75 | }; |
|---|
| 76 | |
|---|
| 77 | /// Returns a \c NullMap class |
|---|
| 78 | |
|---|
| 79 | /// This function just returns a \c NullMap class. |
|---|
| 80 | /// \relates NullMap |
|---|
| 81 | template <typename K, typename V> |
|---|
| 82 | NullMap<K, V> nullMap() { |
|---|
| 83 | return NullMap<K, V>(); |
|---|
| 84 | } |
|---|
| 85 | |
|---|
| 86 | |
|---|
| 87 | /// Constant map. |
|---|
| 88 | |
|---|
| 89 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
|---|
| 90 | /// value to each key. |
|---|
| 91 | /// |
|---|
| 92 | /// In other aspects it is equivalent to \c NullMap. |
|---|
| 93 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 94 | /// concept, but it absorbs the data written to it. |
|---|
| 95 | /// |
|---|
| 96 | /// The simplest way of using this map is through the constMap() |
|---|
| 97 | /// function. |
|---|
| 98 | /// |
|---|
| 99 | /// \sa NullMap |
|---|
| 100 | /// \sa IdentityMap |
|---|
| 101 | template<typename K, typename V> |
|---|
| 102 | class ConstMap : public MapBase<K, V> { |
|---|
| 103 | private: |
|---|
| 104 | V _value; |
|---|
| 105 | public: |
|---|
| 106 | ///\e |
|---|
| 107 | typedef K Key; |
|---|
| 108 | ///\e |
|---|
| 109 | typedef V Value; |
|---|
| 110 | |
|---|
| 111 | /// Default constructor |
|---|
| 112 | |
|---|
| 113 | /// Default constructor. |
|---|
| 114 | /// The value of the map will be default constructed. |
|---|
| 115 | ConstMap() {} |
|---|
| 116 | |
|---|
| 117 | /// Constructor with specified initial value |
|---|
| 118 | |
|---|
| 119 | /// Constructor with specified initial value. |
|---|
| 120 | /// \param v The initial value of the map. |
|---|
| 121 | ConstMap(const Value &v) : _value(v) {} |
|---|
| 122 | |
|---|
| 123 | /// Gives back the specified value. |
|---|
| 124 | Value operator[](const Key&) const { return _value; } |
|---|
| 125 | |
|---|
| 126 | /// Absorbs the value. |
|---|
| 127 | void set(const Key&, const Value&) {} |
|---|
| 128 | |
|---|
| 129 | /// Sets the value that is assigned to each key. |
|---|
| 130 | void setAll(const Value &v) { |
|---|
| 131 | _value = v; |
|---|
| 132 | } |
|---|
| 133 | |
|---|
| 134 | template<typename V1> |
|---|
| 135 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
|---|
| 136 | }; |
|---|
| 137 | |
|---|
| 138 | /// Returns a \c ConstMap class |
|---|
| 139 | |
|---|
| 140 | /// This function just returns a \c ConstMap class. |
|---|
| 141 | /// \relates ConstMap |
|---|
| 142 | template<typename K, typename V> |
|---|
| 143 | inline ConstMap<K, V> constMap(const V &v) { |
|---|
| 144 | return ConstMap<K, V>(v); |
|---|
| 145 | } |
|---|
| 146 | |
|---|
| 147 | template<typename K, typename V> |
|---|
| 148 | inline ConstMap<K, V> constMap() { |
|---|
| 149 | return ConstMap<K, V>(); |
|---|
| 150 | } |
|---|
| 151 | |
|---|
| 152 | |
|---|
| 153 | template<typename T, T v> |
|---|
| 154 | struct Const {}; |
|---|
| 155 | |
|---|
| 156 | /// Constant map with inlined constant value. |
|---|
| 157 | |
|---|
| 158 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
|---|
| 159 | /// value to each key. |
|---|
| 160 | /// |
|---|
| 161 | /// In other aspects it is equivalent to \c NullMap. |
|---|
| 162 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 163 | /// concept, but it absorbs the data written to it. |
|---|
| 164 | /// |
|---|
| 165 | /// The simplest way of using this map is through the constMap() |
|---|
| 166 | /// function. |
|---|
| 167 | /// |
|---|
| 168 | /// \sa NullMap |
|---|
| 169 | /// \sa IdentityMap |
|---|
| 170 | template<typename K, typename V, V v> |
|---|
| 171 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
|---|
| 172 | public: |
|---|
| 173 | ///\e |
|---|
| 174 | typedef K Key; |
|---|
| 175 | ///\e |
|---|
| 176 | typedef V Value; |
|---|
| 177 | |
|---|
| 178 | /// Constructor. |
|---|
| 179 | ConstMap() {} |
|---|
| 180 | |
|---|
| 181 | /// Gives back the specified value. |
|---|
| 182 | Value operator[](const Key&) const { return v; } |
|---|
| 183 | |
|---|
| 184 | /// Absorbs the value. |
|---|
| 185 | void set(const Key&, const Value&) {} |
|---|
| 186 | }; |
|---|
| 187 | |
|---|
| 188 | /// Returns a \c ConstMap class with inlined constant value |
|---|
| 189 | |
|---|
| 190 | /// This function just returns a \c ConstMap class with inlined |
|---|
| 191 | /// constant value. |
|---|
| 192 | /// \relates ConstMap |
|---|
| 193 | template<typename K, typename V, V v> |
|---|
| 194 | inline ConstMap<K, Const<V, v> > constMap() { |
|---|
| 195 | return ConstMap<K, Const<V, v> >(); |
|---|
| 196 | } |
|---|
| 197 | |
|---|
| 198 | |
|---|
| 199 | /// Identity map. |
|---|
| 200 | |
|---|
| 201 | /// This \ref concepts::ReadMap "read-only map" gives back the given |
|---|
| 202 | /// key as value without any modification. |
|---|
| 203 | /// |
|---|
| 204 | /// \sa ConstMap |
|---|
| 205 | template <typename T> |
|---|
| 206 | class IdentityMap : public MapBase<T, T> { |
|---|
| 207 | public: |
|---|
| 208 | ///\e |
|---|
| 209 | typedef T Key; |
|---|
| 210 | ///\e |
|---|
| 211 | typedef T Value; |
|---|
| 212 | |
|---|
| 213 | /// Gives back the given value without any modification. |
|---|
| 214 | Value operator[](const Key &k) const { |
|---|
| 215 | return k; |
|---|
| 216 | } |
|---|
| 217 | }; |
|---|
| 218 | |
|---|
| 219 | /// Returns an \c IdentityMap class |
|---|
| 220 | |
|---|
| 221 | /// This function just returns an \c IdentityMap class. |
|---|
| 222 | /// \relates IdentityMap |
|---|
| 223 | template<typename T> |
|---|
| 224 | inline IdentityMap<T> identityMap() { |
|---|
| 225 | return IdentityMap<T>(); |
|---|
| 226 | } |
|---|
| 227 | |
|---|
| 228 | |
|---|
| 229 | /// \brief Map for storing values for integer keys from the range |
|---|
| 230 | /// <tt>[0..size-1]</tt>. |
|---|
| 231 | /// |
|---|
| 232 | /// This map is essentially a wrapper for \c std::vector. It assigns |
|---|
| 233 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
|---|
| 234 | /// It can be used with some data structures, for example |
|---|
| 235 | /// \c UnionFind, \c BinHeap, when the used items are small |
|---|
| 236 | /// integers. This map conforms the \ref concepts::ReferenceMap |
|---|
| 237 | /// "ReferenceMap" concept. |
|---|
| 238 | /// |
|---|
| 239 | /// The simplest way of using this map is through the rangeMap() |
|---|
| 240 | /// function. |
|---|
| 241 | template <typename V> |
|---|
| 242 | class RangeMap : public MapBase<int, V> { |
|---|
| 243 | template <typename V1> |
|---|
| 244 | friend class RangeMap; |
|---|
| 245 | private: |
|---|
| 246 | |
|---|
| 247 | typedef std::vector<V> Vector; |
|---|
| 248 | Vector _vector; |
|---|
| 249 | |
|---|
| 250 | public: |
|---|
| 251 | |
|---|
| 252 | /// Key type |
|---|
| 253 | typedef int Key; |
|---|
| 254 | /// Value type |
|---|
| 255 | typedef V Value; |
|---|
| 256 | /// Reference type |
|---|
| 257 | typedef typename Vector::reference Reference; |
|---|
| 258 | /// Const reference type |
|---|
| 259 | typedef typename Vector::const_reference ConstReference; |
|---|
| 260 | |
|---|
| 261 | typedef True ReferenceMapTag; |
|---|
| 262 | |
|---|
| 263 | public: |
|---|
| 264 | |
|---|
| 265 | /// Constructor with specified default value. |
|---|
| 266 | RangeMap(int size = 0, const Value &value = Value()) |
|---|
| 267 | : _vector(size, value) {} |
|---|
| 268 | |
|---|
| 269 | /// Constructs the map from an appropriate \c std::vector. |
|---|
| 270 | template <typename V1> |
|---|
| 271 | RangeMap(const std::vector<V1>& vector) |
|---|
| 272 | : _vector(vector.begin(), vector.end()) {} |
|---|
| 273 | |
|---|
| 274 | /// Constructs the map from another \c RangeMap. |
|---|
| 275 | template <typename V1> |
|---|
| 276 | RangeMap(const RangeMap<V1> &c) |
|---|
| 277 | : _vector(c._vector.begin(), c._vector.end()) {} |
|---|
| 278 | |
|---|
| 279 | /// Returns the size of the map. |
|---|
| 280 | int size() { |
|---|
| 281 | return _vector.size(); |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | /// Resizes the map. |
|---|
| 285 | |
|---|
| 286 | /// Resizes the underlying \c std::vector container, so changes the |
|---|
| 287 | /// keyset of the map. |
|---|
| 288 | /// \param size The new size of the map. The new keyset will be the |
|---|
| 289 | /// range <tt>[0..size-1]</tt>. |
|---|
| 290 | /// \param value The default value to assign to the new keys. |
|---|
| 291 | void resize(int size, const Value &value = Value()) { |
|---|
| 292 | _vector.resize(size, value); |
|---|
| 293 | } |
|---|
| 294 | |
|---|
| 295 | private: |
|---|
| 296 | |
|---|
| 297 | RangeMap& operator=(const RangeMap&); |
|---|
| 298 | |
|---|
| 299 | public: |
|---|
| 300 | |
|---|
| 301 | ///\e |
|---|
| 302 | Reference operator[](const Key &k) { |
|---|
| 303 | return _vector[k]; |
|---|
| 304 | } |
|---|
| 305 | |
|---|
| 306 | ///\e |
|---|
| 307 | ConstReference operator[](const Key &k) const { |
|---|
| 308 | return _vector[k]; |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | ///\e |
|---|
| 312 | void set(const Key &k, const Value &v) { |
|---|
| 313 | _vector[k] = v; |
|---|
| 314 | } |
|---|
| 315 | }; |
|---|
| 316 | |
|---|
| 317 | /// Returns a \c RangeMap class |
|---|
| 318 | |
|---|
| 319 | /// This function just returns a \c RangeMap class. |
|---|
| 320 | /// \relates RangeMap |
|---|
| 321 | template<typename V> |
|---|
| 322 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
|---|
| 323 | return RangeMap<V>(size, value); |
|---|
| 324 | } |
|---|
| 325 | |
|---|
| 326 | /// \brief Returns a \c RangeMap class created from an appropriate |
|---|
| 327 | /// \c std::vector |
|---|
| 328 | |
|---|
| 329 | /// This function just returns a \c RangeMap class created from an |
|---|
| 330 | /// appropriate \c std::vector. |
|---|
| 331 | /// \relates RangeMap |
|---|
| 332 | template<typename V> |
|---|
| 333 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
|---|
| 334 | return RangeMap<V>(vector); |
|---|
| 335 | } |
|---|
| 336 | |
|---|
| 337 | |
|---|
| 338 | /// Map type based on \c std::map |
|---|
| 339 | |
|---|
| 340 | /// This map is essentially a wrapper for \c std::map with addition |
|---|
| 341 | /// that you can specify a default value for the keys that are not |
|---|
| 342 | /// stored actually. This value can be different from the default |
|---|
| 343 | /// contructed value (i.e. \c %Value()). |
|---|
| 344 | /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|---|
| 345 | /// concept. |
|---|
| 346 | /// |
|---|
| 347 | /// This map is useful if a default value should be assigned to most of |
|---|
| 348 | /// the keys and different values should be assigned only to a few |
|---|
| 349 | /// keys (i.e. the map is "sparse"). |
|---|
| 350 | /// The name of this type also refers to this important usage. |
|---|
| 351 | /// |
|---|
| 352 | /// Apart form that this map can be used in many other cases since it |
|---|
| 353 | /// is based on \c std::map, which is a general associative container. |
|---|
| 354 | /// However keep in mind that it is usually not as efficient as other |
|---|
| 355 | /// maps. |
|---|
| 356 | /// |
|---|
| 357 | /// The simplest way of using this map is through the sparseMap() |
|---|
| 358 | /// function. |
|---|
| 359 | template <typename K, typename V, typename Comp = std::less<K> > |
|---|
| 360 | class SparseMap : public MapBase<K, V> { |
|---|
| 361 | template <typename K1, typename V1, typename C1> |
|---|
| 362 | friend class SparseMap; |
|---|
| 363 | public: |
|---|
| 364 | |
|---|
| 365 | /// Key type |
|---|
| 366 | typedef K Key; |
|---|
| 367 | /// Value type |
|---|
| 368 | typedef V Value; |
|---|
| 369 | /// Reference type |
|---|
| 370 | typedef Value& Reference; |
|---|
| 371 | /// Const reference type |
|---|
| 372 | typedef const Value& ConstReference; |
|---|
| 373 | |
|---|
| 374 | typedef True ReferenceMapTag; |
|---|
| 375 | |
|---|
| 376 | private: |
|---|
| 377 | |
|---|
| 378 | typedef std::map<K, V, Comp> Map; |
|---|
| 379 | Map _map; |
|---|
| 380 | Value _value; |
|---|
| 381 | |
|---|
| 382 | public: |
|---|
| 383 | |
|---|
| 384 | /// \brief Constructor with specified default value. |
|---|
| 385 | SparseMap(const Value &value = Value()) : _value(value) {} |
|---|
| 386 | /// \brief Constructs the map from an appropriate \c std::map, and |
|---|
| 387 | /// explicitly specifies a default value. |
|---|
| 388 | template <typename V1, typename Comp1> |
|---|
| 389 | SparseMap(const std::map<Key, V1, Comp1> &map, |
|---|
| 390 | const Value &value = Value()) |
|---|
| 391 | : _map(map.begin(), map.end()), _value(value) {} |
|---|
| 392 | |
|---|
| 393 | /// \brief Constructs the map from another \c SparseMap. |
|---|
| 394 | template<typename V1, typename Comp1> |
|---|
| 395 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
|---|
| 396 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
|---|
| 397 | |
|---|
| 398 | private: |
|---|
| 399 | |
|---|
| 400 | SparseMap& operator=(const SparseMap&); |
|---|
| 401 | |
|---|
| 402 | public: |
|---|
| 403 | |
|---|
| 404 | ///\e |
|---|
| 405 | Reference operator[](const Key &k) { |
|---|
| 406 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 407 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 408 | return it->second; |
|---|
| 409 | else |
|---|
| 410 | return _map.insert(it, std::make_pair(k, _value))->second; |
|---|
| 411 | } |
|---|
| 412 | |
|---|
| 413 | ///\e |
|---|
| 414 | ConstReference operator[](const Key &k) const { |
|---|
| 415 | typename Map::const_iterator it = _map.find(k); |
|---|
| 416 | if (it != _map.end()) |
|---|
| 417 | return it->second; |
|---|
| 418 | else |
|---|
| 419 | return _value; |
|---|
| 420 | } |
|---|
| 421 | |
|---|
| 422 | ///\e |
|---|
| 423 | void set(const Key &k, const Value &v) { |
|---|
| 424 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 425 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 426 | it->second = v; |
|---|
| 427 | else |
|---|
| 428 | _map.insert(it, std::make_pair(k, v)); |
|---|
| 429 | } |
|---|
| 430 | |
|---|
| 431 | ///\e |
|---|
| 432 | void setAll(const Value &v) { |
|---|
| 433 | _value = v; |
|---|
| 434 | _map.clear(); |
|---|
| 435 | } |
|---|
| 436 | }; |
|---|
| 437 | |
|---|
| 438 | /// Returns a \c SparseMap class |
|---|
| 439 | |
|---|
| 440 | /// This function just returns a \c SparseMap class with specified |
|---|
| 441 | /// default value. |
|---|
| 442 | /// \relates SparseMap |
|---|
| 443 | template<typename K, typename V, typename Compare> |
|---|
| 444 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
|---|
| 445 | return SparseMap<K, V, Compare>(value); |
|---|
| 446 | } |
|---|
| 447 | |
|---|
| 448 | template<typename K, typename V> |
|---|
| 449 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
|---|
| 450 | return SparseMap<K, V, std::less<K> >(value); |
|---|
| 451 | } |
|---|
| 452 | |
|---|
| 453 | /// \brief Returns a \c SparseMap class created from an appropriate |
|---|
| 454 | /// \c std::map |
|---|
| 455 | |
|---|
| 456 | /// This function just returns a \c SparseMap class created from an |
|---|
| 457 | /// appropriate \c std::map. |
|---|
| 458 | /// \relates SparseMap |
|---|
| 459 | template<typename K, typename V, typename Compare> |
|---|
| 460 | inline SparseMap<K, V, Compare> |
|---|
| 461 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
|---|
| 462 | { |
|---|
| 463 | return SparseMap<K, V, Compare>(map, value); |
|---|
| 464 | } |
|---|
| 465 | |
|---|
| 466 | /// @} |
|---|
| 467 | |
|---|
| 468 | /// \addtogroup map_adaptors |
|---|
| 469 | /// @{ |
|---|
| 470 | |
|---|
| 471 | /// Composition of two maps |
|---|
| 472 | |
|---|
| 473 | /// This \ref concepts::ReadMap "read-only map" returns the |
|---|
| 474 | /// composition of two given maps. That is to say, if \c m1 is of |
|---|
| 475 | /// type \c M1 and \c m2 is of \c M2, then for |
|---|
| 476 | /// \code |
|---|
| 477 | /// ComposeMap<M1, M2> cm(m1,m2); |
|---|
| 478 | /// \endcode |
|---|
| 479 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 480 | /// |
|---|
| 481 | /// The \c Key type of the map is inherited from \c M2 and the |
|---|
| 482 | /// \c Value type is from \c M1. |
|---|
| 483 | /// \c M2::Value must be convertible to \c M1::Key. |
|---|
| 484 | /// |
|---|
| 485 | /// The simplest way of using this map is through the composeMap() |
|---|
| 486 | /// function. |
|---|
| 487 | /// |
|---|
| 488 | /// \sa CombineMap |
|---|
| 489 | template <typename M1, typename M2> |
|---|
| 490 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
|---|
| 491 | const M1 &_m1; |
|---|
| 492 | const M2 &_m2; |
|---|
| 493 | public: |
|---|
| 494 | ///\e |
|---|
| 495 | typedef typename M2::Key Key; |
|---|
| 496 | ///\e |
|---|
| 497 | typedef typename M1::Value Value; |
|---|
| 498 | |
|---|
| 499 | /// Constructor |
|---|
| 500 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 501 | |
|---|
| 502 | ///\e |
|---|
| 503 | typename MapTraits<M1>::ConstReturnValue |
|---|
| 504 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
|---|
| 505 | }; |
|---|
| 506 | |
|---|
| 507 | /// Returns a \c ComposeMap class |
|---|
| 508 | |
|---|
| 509 | /// This function just returns a \c ComposeMap class. |
|---|
| 510 | /// |
|---|
| 511 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
|---|
| 512 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
|---|
| 513 | /// will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 514 | /// |
|---|
| 515 | /// \relates ComposeMap |
|---|
| 516 | template <typename M1, typename M2> |
|---|
| 517 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
|---|
| 518 | return ComposeMap<M1, M2>(m1, m2); |
|---|
| 519 | } |
|---|
| 520 | |
|---|
| 521 | |
|---|
| 522 | /// Combination of two maps using an STL (binary) functor. |
|---|
| 523 | |
|---|
| 524 | /// This \ref concepts::ReadMap "read-only map" takes two maps and a |
|---|
| 525 | /// binary functor and returns the combination of the two given maps |
|---|
| 526 | /// using the functor. |
|---|
| 527 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
|---|
| 528 | /// and \c f is of \c F, then for |
|---|
| 529 | /// \code |
|---|
| 530 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
|---|
| 531 | /// \endcode |
|---|
| 532 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
|---|
| 533 | /// |
|---|
| 534 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
|---|
| 535 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
|---|
| 536 | /// \c M2::Value and \c M1::Value must be convertible to the |
|---|
| 537 | /// corresponding input parameter of \c F and the return type of \c F |
|---|
| 538 | /// must be convertible to \c V. |
|---|
| 539 | /// |
|---|
| 540 | /// The simplest way of using this map is through the combineMap() |
|---|
| 541 | /// function. |
|---|
| 542 | /// |
|---|
| 543 | /// \sa ComposeMap |
|---|
| 544 | template<typename M1, typename M2, typename F, |
|---|
| 545 | typename V = typename F::result_type> |
|---|
| 546 | class CombineMap : public MapBase<typename M1::Key, V> { |
|---|
| 547 | const M1 &_m1; |
|---|
| 548 | const M2 &_m2; |
|---|
| 549 | F _f; |
|---|
| 550 | public: |
|---|
| 551 | ///\e |
|---|
| 552 | typedef typename M1::Key Key; |
|---|
| 553 | ///\e |
|---|
| 554 | typedef V Value; |
|---|
| 555 | |
|---|
| 556 | /// Constructor |
|---|
| 557 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
|---|
| 558 | : _m1(m1), _m2(m2), _f(f) {} |
|---|
| 559 | ///\e |
|---|
| 560 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
|---|
| 561 | }; |
|---|
| 562 | |
|---|
| 563 | /// Returns a \c CombineMap class |
|---|
| 564 | |
|---|
| 565 | /// This function just returns a \c CombineMap class. |
|---|
| 566 | /// |
|---|
| 567 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 568 | /// values, then |
|---|
| 569 | /// \code |
|---|
| 570 | /// combineMap(m1,m2,std::plus<double>()) |
|---|
| 571 | /// \endcode |
|---|
| 572 | /// is equivalent to |
|---|
| 573 | /// \code |
|---|
| 574 | /// addMap(m1,m2) |
|---|
| 575 | /// \endcode |
|---|
| 576 | /// |
|---|
| 577 | /// This function is specialized for adaptable binary function |
|---|
| 578 | /// classes and C++ functions. |
|---|
| 579 | /// |
|---|
| 580 | /// \relates CombineMap |
|---|
| 581 | template<typename M1, typename M2, typename F, typename V> |
|---|
| 582 | inline CombineMap<M1, M2, F, V> |
|---|
| 583 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 584 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
|---|
| 585 | } |
|---|
| 586 | |
|---|
| 587 | template<typename M1, typename M2, typename F> |
|---|
| 588 | inline CombineMap<M1, M2, F, typename F::result_type> |
|---|
| 589 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 590 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
|---|
| 591 | } |
|---|
| 592 | |
|---|
| 593 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
|---|
| 594 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
|---|
| 595 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
|---|
| 596 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
|---|
| 597 | } |
|---|
| 598 | |
|---|
| 599 | |
|---|
| 600 | /// Converts an STL style (unary) functor to a map |
|---|
| 601 | |
|---|
| 602 | /// This \ref concepts::ReadMap "read-only map" returns the value |
|---|
| 603 | /// of a given functor. Actually, it just wraps the functor and |
|---|
| 604 | /// provides the \c Key and \c Value typedefs. |
|---|
| 605 | /// |
|---|
| 606 | /// Template parameters \c K and \c V will become its \c Key and |
|---|
| 607 | /// \c Value. In most cases they have to be given explicitly because |
|---|
| 608 | /// a functor typically does not provide \c argument_type and |
|---|
| 609 | /// \c result_type typedefs. |
|---|
| 610 | /// Parameter \c F is the type of the used functor. |
|---|
| 611 | /// |
|---|
| 612 | /// The simplest way of using this map is through the functorToMap() |
|---|
| 613 | /// function. |
|---|
| 614 | /// |
|---|
| 615 | /// \sa MapToFunctor |
|---|
| 616 | template<typename F, |
|---|
| 617 | typename K = typename F::argument_type, |
|---|
| 618 | typename V = typename F::result_type> |
|---|
| 619 | class FunctorToMap : public MapBase<K, V> { |
|---|
| 620 | F _f; |
|---|
| 621 | public: |
|---|
| 622 | ///\e |
|---|
| 623 | typedef K Key; |
|---|
| 624 | ///\e |
|---|
| 625 | typedef V Value; |
|---|
| 626 | |
|---|
| 627 | /// Constructor |
|---|
| 628 | FunctorToMap(const F &f = F()) : _f(f) {} |
|---|
| 629 | ///\e |
|---|
| 630 | Value operator[](const Key &k) const { return _f(k); } |
|---|
| 631 | }; |
|---|
| 632 | |
|---|
| 633 | /// Returns a \c FunctorToMap class |
|---|
| 634 | |
|---|
| 635 | /// This function just returns a \c FunctorToMap class. |
|---|
| 636 | /// |
|---|
| 637 | /// This function is specialized for adaptable binary function |
|---|
| 638 | /// classes and C++ functions. |
|---|
| 639 | /// |
|---|
| 640 | /// \relates FunctorToMap |
|---|
| 641 | template<typename K, typename V, typename F> |
|---|
| 642 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
|---|
| 643 | return FunctorToMap<F, K, V>(f); |
|---|
| 644 | } |
|---|
| 645 | |
|---|
| 646 | template <typename F> |
|---|
| 647 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
|---|
| 648 | functorToMap(const F &f) |
|---|
| 649 | { |
|---|
| 650 | return FunctorToMap<F, typename F::argument_type, |
|---|
| 651 | typename F::result_type>(f); |
|---|
| 652 | } |
|---|
| 653 | |
|---|
| 654 | template <typename K, typename V> |
|---|
| 655 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
|---|
| 656 | return FunctorToMap<V (*)(K), K, V>(f); |
|---|
| 657 | } |
|---|
| 658 | |
|---|
| 659 | |
|---|
| 660 | /// Converts a map to an STL style (unary) functor |
|---|
| 661 | |
|---|
| 662 | /// This class converts a map to an STL style (unary) functor. |
|---|
| 663 | /// That is it provides an <tt>operator()</tt> to read its values. |
|---|
| 664 | /// |
|---|
| 665 | /// For the sake of convenience it also works as a usual |
|---|
| 666 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
|---|
| 667 | /// and the \c Key and \c Value typedefs also exist. |
|---|
| 668 | /// |
|---|
| 669 | /// The simplest way of using this map is through the mapToFunctor() |
|---|
| 670 | /// function. |
|---|
| 671 | /// |
|---|
| 672 | ///\sa FunctorToMap |
|---|
| 673 | template <typename M> |
|---|
| 674 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 675 | const M &_m; |
|---|
| 676 | public: |
|---|
| 677 | ///\e |
|---|
| 678 | typedef typename M::Key Key; |
|---|
| 679 | ///\e |
|---|
| 680 | typedef typename M::Value Value; |
|---|
| 681 | |
|---|
| 682 | typedef typename M::Key argument_type; |
|---|
| 683 | typedef typename M::Value result_type; |
|---|
| 684 | |
|---|
| 685 | /// Constructor |
|---|
| 686 | MapToFunctor(const M &m) : _m(m) {} |
|---|
| 687 | ///\e |
|---|
| 688 | Value operator()(const Key &k) const { return _m[k]; } |
|---|
| 689 | ///\e |
|---|
| 690 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 691 | }; |
|---|
| 692 | |
|---|
| 693 | /// Returns a \c MapToFunctor class |
|---|
| 694 | |
|---|
| 695 | /// This function just returns a \c MapToFunctor class. |
|---|
| 696 | /// \relates MapToFunctor |
|---|
| 697 | template<typename M> |
|---|
| 698 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
|---|
| 699 | return MapToFunctor<M>(m); |
|---|
| 700 | } |
|---|
| 701 | |
|---|
| 702 | |
|---|
| 703 | /// \brief Map adaptor to convert the \c Value type of a map to |
|---|
| 704 | /// another type using the default conversion. |
|---|
| 705 | |
|---|
| 706 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
|---|
| 707 | /// "readable map" to another type using the default conversion. |
|---|
| 708 | /// The \c Key type of it is inherited from \c M and the \c Value |
|---|
| 709 | /// type is \c V. |
|---|
| 710 | /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 711 | /// |
|---|
| 712 | /// The simplest way of using this map is through the convertMap() |
|---|
| 713 | /// function. |
|---|
| 714 | template <typename M, typename V> |
|---|
| 715 | class ConvertMap : public MapBase<typename M::Key, V> { |
|---|
| 716 | const M &_m; |
|---|
| 717 | public: |
|---|
| 718 | ///\e |
|---|
| 719 | typedef typename M::Key Key; |
|---|
| 720 | ///\e |
|---|
| 721 | typedef V Value; |
|---|
| 722 | |
|---|
| 723 | /// Constructor |
|---|
| 724 | |
|---|
| 725 | /// Constructor. |
|---|
| 726 | /// \param m The underlying map. |
|---|
| 727 | ConvertMap(const M &m) : _m(m) {} |
|---|
| 728 | |
|---|
| 729 | ///\e |
|---|
| 730 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 731 | }; |
|---|
| 732 | |
|---|
| 733 | /// Returns a \c ConvertMap class |
|---|
| 734 | |
|---|
| 735 | /// This function just returns a \c ConvertMap class. |
|---|
| 736 | /// \relates ConvertMap |
|---|
| 737 | template<typename V, typename M> |
|---|
| 738 | inline ConvertMap<M, V> convertMap(const M &map) { |
|---|
| 739 | return ConvertMap<M, V>(map); |
|---|
| 740 | } |
|---|
| 741 | |
|---|
| 742 | |
|---|
| 743 | /// Applies all map setting operations to two maps |
|---|
| 744 | |
|---|
| 745 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
|---|
| 746 | /// and each write request will be passed to both of them. |
|---|
| 747 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
|---|
| 748 | /// operations will return the corresponding values of \c M1. |
|---|
| 749 | /// |
|---|
| 750 | /// The \c Key and \c Value types are inherited from \c M1. |
|---|
| 751 | /// The \c Key and \c Value of \c M2 must be convertible from those |
|---|
| 752 | /// of \c M1. |
|---|
| 753 | /// |
|---|
| 754 | /// The simplest way of using this map is through the forkMap() |
|---|
| 755 | /// function. |
|---|
| 756 | template<typename M1, typename M2> |
|---|
| 757 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 758 | M1 &_m1; |
|---|
| 759 | M2 &_m2; |
|---|
| 760 | public: |
|---|
| 761 | ///\e |
|---|
| 762 | typedef typename M1::Key Key; |
|---|
| 763 | ///\e |
|---|
| 764 | typedef typename M1::Value Value; |
|---|
| 765 | |
|---|
| 766 | /// Constructor |
|---|
| 767 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 768 | /// Returns the value associated with the given key in the first map. |
|---|
| 769 | Value operator[](const Key &k) const { return _m1[k]; } |
|---|
| 770 | /// Sets the value associated with the given key in both maps. |
|---|
| 771 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
|---|
| 772 | }; |
|---|
| 773 | |
|---|
| 774 | /// Returns a \c ForkMap class |
|---|
| 775 | |
|---|
| 776 | /// This function just returns a \c ForkMap class. |
|---|
| 777 | /// \relates ForkMap |
|---|
| 778 | template <typename M1, typename M2> |
|---|
| 779 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
|---|
| 780 | return ForkMap<M1,M2>(m1,m2); |
|---|
| 781 | } |
|---|
| 782 | |
|---|
| 783 | |
|---|
| 784 | /// Sum of two maps |
|---|
| 785 | |
|---|
| 786 | /// This \ref concepts::ReadMap "read-only map" returns the sum |
|---|
| 787 | /// of the values of the two given maps. |
|---|
| 788 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 789 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 790 | /// \c M1. |
|---|
| 791 | /// |
|---|
| 792 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 793 | /// \code |
|---|
| 794 | /// AddMap<M1,M2> am(m1,m2); |
|---|
| 795 | /// \endcode |
|---|
| 796 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
|---|
| 797 | /// |
|---|
| 798 | /// The simplest way of using this map is through the addMap() |
|---|
| 799 | /// function. |
|---|
| 800 | /// |
|---|
| 801 | /// \sa SubMap, MulMap, DivMap |
|---|
| 802 | /// \sa ShiftMap, ShiftWriteMap |
|---|
| 803 | template<typename M1, typename M2> |
|---|
| 804 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 805 | const M1 &_m1; |
|---|
| 806 | const M2 &_m2; |
|---|
| 807 | public: |
|---|
| 808 | ///\e |
|---|
| 809 | typedef typename M1::Key Key; |
|---|
| 810 | ///\e |
|---|
| 811 | typedef typename M1::Value Value; |
|---|
| 812 | |
|---|
| 813 | /// Constructor |
|---|
| 814 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 815 | ///\e |
|---|
| 816 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
|---|
| 817 | }; |
|---|
| 818 | |
|---|
| 819 | /// Returns an \c AddMap class |
|---|
| 820 | |
|---|
| 821 | /// This function just returns an \c AddMap class. |
|---|
| 822 | /// |
|---|
| 823 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 824 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
|---|
| 825 | /// <tt>m1[x]+m2[x]</tt>. |
|---|
| 826 | /// |
|---|
| 827 | /// \relates AddMap |
|---|
| 828 | template<typename M1, typename M2> |
|---|
| 829 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
|---|
| 830 | return AddMap<M1, M2>(m1,m2); |
|---|
| 831 | } |
|---|
| 832 | |
|---|
| 833 | |
|---|
| 834 | /// Difference of two maps |
|---|
| 835 | |
|---|
| 836 | /// This \ref concepts::ReadMap "read-only map" returns the difference |
|---|
| 837 | /// of the values of the two given maps. |
|---|
| 838 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 839 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 840 | /// \c M1. |
|---|
| 841 | /// |
|---|
| 842 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 843 | /// \code |
|---|
| 844 | /// SubMap<M1,M2> sm(m1,m2); |
|---|
| 845 | /// \endcode |
|---|
| 846 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
|---|
| 847 | /// |
|---|
| 848 | /// The simplest way of using this map is through the subMap() |
|---|
| 849 | /// function. |
|---|
| 850 | /// |
|---|
| 851 | /// \sa AddMap, MulMap, DivMap |
|---|
| 852 | template<typename M1, typename M2> |
|---|
| 853 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 854 | const M1 &_m1; |
|---|
| 855 | const M2 &_m2; |
|---|
| 856 | public: |
|---|
| 857 | ///\e |
|---|
| 858 | typedef typename M1::Key Key; |
|---|
| 859 | ///\e |
|---|
| 860 | typedef typename M1::Value Value; |
|---|
| 861 | |
|---|
| 862 | /// Constructor |
|---|
| 863 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 864 | ///\e |
|---|
| 865 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
|---|
| 866 | }; |
|---|
| 867 | |
|---|
| 868 | /// Returns a \c SubMap class |
|---|
| 869 | |
|---|
| 870 | /// This function just returns a \c SubMap class. |
|---|
| 871 | /// |
|---|
| 872 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 873 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
|---|
| 874 | /// <tt>m1[x]-m2[x]</tt>. |
|---|
| 875 | /// |
|---|
| 876 | /// \relates SubMap |
|---|
| 877 | template<typename M1, typename M2> |
|---|
| 878 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
|---|
| 879 | return SubMap<M1, M2>(m1,m2); |
|---|
| 880 | } |
|---|
| 881 | |
|---|
| 882 | |
|---|
| 883 | /// Product of two maps |
|---|
| 884 | |
|---|
| 885 | /// This \ref concepts::ReadMap "read-only map" returns the product |
|---|
| 886 | /// of the values of the two given maps. |
|---|
| 887 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 888 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 889 | /// \c M1. |
|---|
| 890 | /// |
|---|
| 891 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 892 | /// \code |
|---|
| 893 | /// MulMap<M1,M2> mm(m1,m2); |
|---|
| 894 | /// \endcode |
|---|
| 895 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
|---|
| 896 | /// |
|---|
| 897 | /// The simplest way of using this map is through the mulMap() |
|---|
| 898 | /// function. |
|---|
| 899 | /// |
|---|
| 900 | /// \sa AddMap, SubMap, DivMap |
|---|
| 901 | /// \sa ScaleMap, ScaleWriteMap |
|---|
| 902 | template<typename M1, typename M2> |
|---|
| 903 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 904 | const M1 &_m1; |
|---|
| 905 | const M2 &_m2; |
|---|
| 906 | public: |
|---|
| 907 | ///\e |
|---|
| 908 | typedef typename M1::Key Key; |
|---|
| 909 | ///\e |
|---|
| 910 | typedef typename M1::Value Value; |
|---|
| 911 | |
|---|
| 912 | /// Constructor |
|---|
| 913 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 914 | ///\e |
|---|
| 915 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
|---|
| 916 | }; |
|---|
| 917 | |
|---|
| 918 | /// Returns a \c MulMap class |
|---|
| 919 | |
|---|
| 920 | /// This function just returns a \c MulMap class. |
|---|
| 921 | /// |
|---|
| 922 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 923 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
|---|
| 924 | /// <tt>m1[x]*m2[x]</tt>. |
|---|
| 925 | /// |
|---|
| 926 | /// \relates MulMap |
|---|
| 927 | template<typename M1, typename M2> |
|---|
| 928 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
|---|
| 929 | return MulMap<M1, M2>(m1,m2); |
|---|
| 930 | } |
|---|
| 931 | |
|---|
| 932 | |
|---|
| 933 | /// Quotient of two maps |
|---|
| 934 | |
|---|
| 935 | /// This \ref concepts::ReadMap "read-only map" returns the quotient |
|---|
| 936 | /// of the values of the two given maps. |
|---|
| 937 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 938 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 939 | /// \c M1. |
|---|
| 940 | /// |
|---|
| 941 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 942 | /// \code |
|---|
| 943 | /// DivMap<M1,M2> dm(m1,m2); |
|---|
| 944 | /// \endcode |
|---|
| 945 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
|---|
| 946 | /// |
|---|
| 947 | /// The simplest way of using this map is through the divMap() |
|---|
| 948 | /// function. |
|---|
| 949 | /// |
|---|
| 950 | /// \sa AddMap, SubMap, MulMap |
|---|
| 951 | template<typename M1, typename M2> |
|---|
| 952 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 953 | const M1 &_m1; |
|---|
| 954 | const M2 &_m2; |
|---|
| 955 | public: |
|---|
| 956 | ///\e |
|---|
| 957 | typedef typename M1::Key Key; |
|---|
| 958 | ///\e |
|---|
| 959 | typedef typename M1::Value Value; |
|---|
| 960 | |
|---|
| 961 | /// Constructor |
|---|
| 962 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 963 | ///\e |
|---|
| 964 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
|---|
| 965 | }; |
|---|
| 966 | |
|---|
| 967 | /// Returns a \c DivMap class |
|---|
| 968 | |
|---|
| 969 | /// This function just returns a \c DivMap class. |
|---|
| 970 | /// |
|---|
| 971 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 972 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
|---|
| 973 | /// <tt>m1[x]/m2[x]</tt>. |
|---|
| 974 | /// |
|---|
| 975 | /// \relates DivMap |
|---|
| 976 | template<typename M1, typename M2> |
|---|
| 977 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
|---|
| 978 | return DivMap<M1, M2>(m1,m2); |
|---|
| 979 | } |
|---|
| 980 | |
|---|
| 981 | |
|---|
| 982 | /// Shifts a map with a constant. |
|---|
| 983 | |
|---|
| 984 | /// This \ref concepts::ReadMap "read-only map" returns the sum of |
|---|
| 985 | /// the given map and a constant value (i.e. it shifts the map with |
|---|
| 986 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 987 | /// |
|---|
| 988 | /// Actually, |
|---|
| 989 | /// \code |
|---|
| 990 | /// ShiftMap<M> sh(m,v); |
|---|
| 991 | /// \endcode |
|---|
| 992 | /// is equivalent to |
|---|
| 993 | /// \code |
|---|
| 994 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 995 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
|---|
| 996 | /// \endcode |
|---|
| 997 | /// |
|---|
| 998 | /// The simplest way of using this map is through the shiftMap() |
|---|
| 999 | /// function. |
|---|
| 1000 | /// |
|---|
| 1001 | /// \sa ShiftWriteMap |
|---|
| 1002 | template<typename M, typename C = typename M::Value> |
|---|
| 1003 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1004 | const M &_m; |
|---|
| 1005 | C _v; |
|---|
| 1006 | public: |
|---|
| 1007 | ///\e |
|---|
| 1008 | typedef typename M::Key Key; |
|---|
| 1009 | ///\e |
|---|
| 1010 | typedef typename M::Value Value; |
|---|
| 1011 | |
|---|
| 1012 | /// Constructor |
|---|
| 1013 | |
|---|
| 1014 | /// Constructor. |
|---|
| 1015 | /// \param m The undelying map. |
|---|
| 1016 | /// \param v The constant value. |
|---|
| 1017 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1018 | ///\e |
|---|
| 1019 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1020 | }; |
|---|
| 1021 | |
|---|
| 1022 | /// Shifts a map with a constant (read-write version). |
|---|
| 1023 | |
|---|
| 1024 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
|---|
| 1025 | /// of the given map and a constant value (i.e. it shifts the map with |
|---|
| 1026 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 1027 | /// It makes also possible to write the map. |
|---|
| 1028 | /// |
|---|
| 1029 | /// The simplest way of using this map is through the shiftWriteMap() |
|---|
| 1030 | /// function. |
|---|
| 1031 | /// |
|---|
| 1032 | /// \sa ShiftMap |
|---|
| 1033 | template<typename M, typename C = typename M::Value> |
|---|
| 1034 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1035 | M &_m; |
|---|
| 1036 | C _v; |
|---|
| 1037 | public: |
|---|
| 1038 | ///\e |
|---|
| 1039 | typedef typename M::Key Key; |
|---|
| 1040 | ///\e |
|---|
| 1041 | typedef typename M::Value Value; |
|---|
| 1042 | |
|---|
| 1043 | /// Constructor |
|---|
| 1044 | |
|---|
| 1045 | /// Constructor. |
|---|
| 1046 | /// \param m The undelying map. |
|---|
| 1047 | /// \param v The constant value. |
|---|
| 1048 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1049 | ///\e |
|---|
| 1050 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1051 | ///\e |
|---|
| 1052 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
|---|
| 1053 | }; |
|---|
| 1054 | |
|---|
| 1055 | /// Returns a \c ShiftMap class |
|---|
| 1056 | |
|---|
| 1057 | /// This function just returns a \c ShiftMap class. |
|---|
| 1058 | /// |
|---|
| 1059 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1060 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
|---|
| 1061 | /// <tt>m[x]+v</tt>. |
|---|
| 1062 | /// |
|---|
| 1063 | /// \relates ShiftMap |
|---|
| 1064 | template<typename M, typename C> |
|---|
| 1065 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
|---|
| 1066 | return ShiftMap<M, C>(m,v); |
|---|
| 1067 | } |
|---|
| 1068 | |
|---|
| 1069 | /// Returns a \c ShiftWriteMap class |
|---|
| 1070 | |
|---|
| 1071 | /// This function just returns a \c ShiftWriteMap class. |
|---|
| 1072 | /// |
|---|
| 1073 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1074 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1075 | /// <tt>m[x]+v</tt>. |
|---|
| 1076 | /// Moreover it makes also possible to write the map. |
|---|
| 1077 | /// |
|---|
| 1078 | /// \relates ShiftWriteMap |
|---|
| 1079 | template<typename M, typename C> |
|---|
| 1080 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
|---|
| 1081 | return ShiftWriteMap<M, C>(m,v); |
|---|
| 1082 | } |
|---|
| 1083 | |
|---|
| 1084 | |
|---|
| 1085 | /// Scales a map with a constant. |
|---|
| 1086 | |
|---|
| 1087 | /// This \ref concepts::ReadMap "read-only map" returns the value of |
|---|
| 1088 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1089 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1090 | /// |
|---|
| 1091 | /// Actually, |
|---|
| 1092 | /// \code |
|---|
| 1093 | /// ScaleMap<M> sc(m,v); |
|---|
| 1094 | /// \endcode |
|---|
| 1095 | /// is equivalent to |
|---|
| 1096 | /// \code |
|---|
| 1097 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 1098 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
|---|
| 1099 | /// \endcode |
|---|
| 1100 | /// |
|---|
| 1101 | /// The simplest way of using this map is through the scaleMap() |
|---|
| 1102 | /// function. |
|---|
| 1103 | /// |
|---|
| 1104 | /// \sa ScaleWriteMap |
|---|
| 1105 | template<typename M, typename C = typename M::Value> |
|---|
| 1106 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1107 | const M &_m; |
|---|
| 1108 | C _v; |
|---|
| 1109 | public: |
|---|
| 1110 | ///\e |
|---|
| 1111 | typedef typename M::Key Key; |
|---|
| 1112 | ///\e |
|---|
| 1113 | typedef typename M::Value Value; |
|---|
| 1114 | |
|---|
| 1115 | /// Constructor |
|---|
| 1116 | |
|---|
| 1117 | /// Constructor. |
|---|
| 1118 | /// \param m The undelying map. |
|---|
| 1119 | /// \param v The constant value. |
|---|
| 1120 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1121 | ///\e |
|---|
| 1122 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1123 | }; |
|---|
| 1124 | |
|---|
| 1125 | /// Scales a map with a constant (read-write version). |
|---|
| 1126 | |
|---|
| 1127 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
|---|
| 1128 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1129 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1130 | /// It can also be used as write map if the \c / operator is defined |
|---|
| 1131 | /// between \c Value and \c C and the given multiplier is not zero. |
|---|
| 1132 | /// |
|---|
| 1133 | /// The simplest way of using this map is through the scaleWriteMap() |
|---|
| 1134 | /// function. |
|---|
| 1135 | /// |
|---|
| 1136 | /// \sa ScaleMap |
|---|
| 1137 | template<typename M, typename C = typename M::Value> |
|---|
| 1138 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1139 | M &_m; |
|---|
| 1140 | C _v; |
|---|
| 1141 | public: |
|---|
| 1142 | ///\e |
|---|
| 1143 | typedef typename M::Key Key; |
|---|
| 1144 | ///\e |
|---|
| 1145 | typedef typename M::Value Value; |
|---|
| 1146 | |
|---|
| 1147 | /// Constructor |
|---|
| 1148 | |
|---|
| 1149 | /// Constructor. |
|---|
| 1150 | /// \param m The undelying map. |
|---|
| 1151 | /// \param v The constant value. |
|---|
| 1152 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1153 | ///\e |
|---|
| 1154 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1155 | ///\e |
|---|
| 1156 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
|---|
| 1157 | }; |
|---|
| 1158 | |
|---|
| 1159 | /// Returns a \c ScaleMap class |
|---|
| 1160 | |
|---|
| 1161 | /// This function just returns a \c ScaleMap class. |
|---|
| 1162 | /// |
|---|
| 1163 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1164 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
|---|
| 1165 | /// <tt>v*m[x]</tt>. |
|---|
| 1166 | /// |
|---|
| 1167 | /// \relates ScaleMap |
|---|
| 1168 | template<typename M, typename C> |
|---|
| 1169 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
|---|
| 1170 | return ScaleMap<M, C>(m,v); |
|---|
| 1171 | } |
|---|
| 1172 | |
|---|
| 1173 | /// Returns a \c ScaleWriteMap class |
|---|
| 1174 | |
|---|
| 1175 | /// This function just returns a \c ScaleWriteMap class. |
|---|
| 1176 | /// |
|---|
| 1177 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1178 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1179 | /// <tt>v*m[x]</tt>. |
|---|
| 1180 | /// Moreover it makes also possible to write the map. |
|---|
| 1181 | /// |
|---|
| 1182 | /// \relates ScaleWriteMap |
|---|
| 1183 | template<typename M, typename C> |
|---|
| 1184 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
|---|
| 1185 | return ScaleWriteMap<M, C>(m,v); |
|---|
| 1186 | } |
|---|
| 1187 | |
|---|
| 1188 | |
|---|
| 1189 | /// Negative of a map |
|---|
| 1190 | |
|---|
| 1191 | /// This \ref concepts::ReadMap "read-only map" returns the negative |
|---|
| 1192 | /// of the values of the given map (using the unary \c - operator). |
|---|
| 1193 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1194 | /// |
|---|
| 1195 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1196 | /// \code |
|---|
| 1197 | /// NegMap<M> neg(m); |
|---|
| 1198 | /// \endcode |
|---|
| 1199 | /// is equivalent to |
|---|
| 1200 | /// \code |
|---|
| 1201 | /// ScaleMap<M> neg(m,-1); |
|---|
| 1202 | /// \endcode |
|---|
| 1203 | /// |
|---|
| 1204 | /// The simplest way of using this map is through the negMap() |
|---|
| 1205 | /// function. |
|---|
| 1206 | /// |
|---|
| 1207 | /// \sa NegWriteMap |
|---|
| 1208 | template<typename M> |
|---|
| 1209 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1210 | const M& _m; |
|---|
| 1211 | public: |
|---|
| 1212 | ///\e |
|---|
| 1213 | typedef typename M::Key Key; |
|---|
| 1214 | ///\e |
|---|
| 1215 | typedef typename M::Value Value; |
|---|
| 1216 | |
|---|
| 1217 | /// Constructor |
|---|
| 1218 | NegMap(const M &m) : _m(m) {} |
|---|
| 1219 | ///\e |
|---|
| 1220 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1221 | }; |
|---|
| 1222 | |
|---|
| 1223 | /// Negative of a map (read-write version) |
|---|
| 1224 | |
|---|
| 1225 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1226 | /// negative of the values of the given map (using the unary \c - |
|---|
| 1227 | /// operator). |
|---|
| 1228 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1229 | /// It makes also possible to write the map. |
|---|
| 1230 | /// |
|---|
| 1231 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1232 | /// \code |
|---|
| 1233 | /// NegWriteMap<M> neg(m); |
|---|
| 1234 | /// \endcode |
|---|
| 1235 | /// is equivalent to |
|---|
| 1236 | /// \code |
|---|
| 1237 | /// ScaleWriteMap<M> neg(m,-1); |
|---|
| 1238 | /// \endcode |
|---|
| 1239 | /// |
|---|
| 1240 | /// The simplest way of using this map is through the negWriteMap() |
|---|
| 1241 | /// function. |
|---|
| 1242 | /// |
|---|
| 1243 | /// \sa NegMap |
|---|
| 1244 | template<typename M> |
|---|
| 1245 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1246 | M &_m; |
|---|
| 1247 | public: |
|---|
| 1248 | ///\e |
|---|
| 1249 | typedef typename M::Key Key; |
|---|
| 1250 | ///\e |
|---|
| 1251 | typedef typename M::Value Value; |
|---|
| 1252 | |
|---|
| 1253 | /// Constructor |
|---|
| 1254 | NegWriteMap(M &m) : _m(m) {} |
|---|
| 1255 | ///\e |
|---|
| 1256 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1257 | ///\e |
|---|
| 1258 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
|---|
| 1259 | }; |
|---|
| 1260 | |
|---|
| 1261 | /// Returns a \c NegMap class |
|---|
| 1262 | |
|---|
| 1263 | /// This function just returns a \c NegMap class. |
|---|
| 1264 | /// |
|---|
| 1265 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1266 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1267 | /// |
|---|
| 1268 | /// \relates NegMap |
|---|
| 1269 | template <typename M> |
|---|
| 1270 | inline NegMap<M> negMap(const M &m) { |
|---|
| 1271 | return NegMap<M>(m); |
|---|
| 1272 | } |
|---|
| 1273 | |
|---|
| 1274 | /// Returns a \c NegWriteMap class |
|---|
| 1275 | |
|---|
| 1276 | /// This function just returns a \c NegWriteMap class. |
|---|
| 1277 | /// |
|---|
| 1278 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1279 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1280 | /// Moreover it makes also possible to write the map. |
|---|
| 1281 | /// |
|---|
| 1282 | /// \relates NegWriteMap |
|---|
| 1283 | template <typename M> |
|---|
| 1284 | inline NegWriteMap<M> negWriteMap(M &m) { |
|---|
| 1285 | return NegWriteMap<M>(m); |
|---|
| 1286 | } |
|---|
| 1287 | |
|---|
| 1288 | |
|---|
| 1289 | /// Absolute value of a map |
|---|
| 1290 | |
|---|
| 1291 | /// This \ref concepts::ReadMap "read-only map" returns the absolute |
|---|
| 1292 | /// value of the values of the given map. |
|---|
| 1293 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1294 | /// \c Value must be comparable to \c 0 and the unary \c - |
|---|
| 1295 | /// operator must be defined for it, of course. |
|---|
| 1296 | /// |
|---|
| 1297 | /// The simplest way of using this map is through the absMap() |
|---|
| 1298 | /// function. |
|---|
| 1299 | template<typename M> |
|---|
| 1300 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1301 | const M &_m; |
|---|
| 1302 | public: |
|---|
| 1303 | ///\e |
|---|
| 1304 | typedef typename M::Key Key; |
|---|
| 1305 | ///\e |
|---|
| 1306 | typedef typename M::Value Value; |
|---|
| 1307 | |
|---|
| 1308 | /// Constructor |
|---|
| 1309 | AbsMap(const M &m) : _m(m) {} |
|---|
| 1310 | ///\e |
|---|
| 1311 | Value operator[](const Key &k) const { |
|---|
| 1312 | Value tmp = _m[k]; |
|---|
| 1313 | return tmp >= 0 ? tmp : -tmp; |
|---|
| 1314 | } |
|---|
| 1315 | |
|---|
| 1316 | }; |
|---|
| 1317 | |
|---|
| 1318 | /// Returns an \c AbsMap class |
|---|
| 1319 | |
|---|
| 1320 | /// This function just returns an \c AbsMap class. |
|---|
| 1321 | /// |
|---|
| 1322 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1323 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
|---|
| 1324 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
|---|
| 1325 | /// negative. |
|---|
| 1326 | /// |
|---|
| 1327 | /// \relates AbsMap |
|---|
| 1328 | template<typename M> |
|---|
| 1329 | inline AbsMap<M> absMap(const M &m) { |
|---|
| 1330 | return AbsMap<M>(m); |
|---|
| 1331 | } |
|---|
| 1332 | |
|---|
| 1333 | /// @} |
|---|
| 1334 | |
|---|
| 1335 | // Logical maps and map adaptors: |
|---|
| 1336 | |
|---|
| 1337 | /// \addtogroup maps |
|---|
| 1338 | /// @{ |
|---|
| 1339 | |
|---|
| 1340 | /// Constant \c true map. |
|---|
| 1341 | |
|---|
| 1342 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1343 | /// each key. |
|---|
| 1344 | /// |
|---|
| 1345 | /// Note that |
|---|
| 1346 | /// \code |
|---|
| 1347 | /// TrueMap<K> tm; |
|---|
| 1348 | /// \endcode |
|---|
| 1349 | /// is equivalent to |
|---|
| 1350 | /// \code |
|---|
| 1351 | /// ConstMap<K,bool> tm(true); |
|---|
| 1352 | /// \endcode |
|---|
| 1353 | /// |
|---|
| 1354 | /// \sa FalseMap |
|---|
| 1355 | /// \sa ConstMap |
|---|
| 1356 | template <typename K> |
|---|
| 1357 | class TrueMap : public MapBase<K, bool> { |
|---|
| 1358 | public: |
|---|
| 1359 | ///\e |
|---|
| 1360 | typedef K Key; |
|---|
| 1361 | ///\e |
|---|
| 1362 | typedef bool Value; |
|---|
| 1363 | |
|---|
| 1364 | /// Gives back \c true. |
|---|
| 1365 | Value operator[](const Key&) const { return true; } |
|---|
| 1366 | }; |
|---|
| 1367 | |
|---|
| 1368 | /// Returns a \c TrueMap class |
|---|
| 1369 | |
|---|
| 1370 | /// This function just returns a \c TrueMap class. |
|---|
| 1371 | /// \relates TrueMap |
|---|
| 1372 | template<typename K> |
|---|
| 1373 | inline TrueMap<K> trueMap() { |
|---|
| 1374 | return TrueMap<K>(); |
|---|
| 1375 | } |
|---|
| 1376 | |
|---|
| 1377 | |
|---|
| 1378 | /// Constant \c false map. |
|---|
| 1379 | |
|---|
| 1380 | /// This \ref concepts::ReadMap "read-only map" assigns \c false to |
|---|
| 1381 | /// each key. |
|---|
| 1382 | /// |
|---|
| 1383 | /// Note that |
|---|
| 1384 | /// \code |
|---|
| 1385 | /// FalseMap<K> fm; |
|---|
| 1386 | /// \endcode |
|---|
| 1387 | /// is equivalent to |
|---|
| 1388 | /// \code |
|---|
| 1389 | /// ConstMap<K,bool> fm(false); |
|---|
| 1390 | /// \endcode |
|---|
| 1391 | /// |
|---|
| 1392 | /// \sa TrueMap |
|---|
| 1393 | /// \sa ConstMap |
|---|
| 1394 | template <typename K> |
|---|
| 1395 | class FalseMap : public MapBase<K, bool> { |
|---|
| 1396 | public: |
|---|
| 1397 | ///\e |
|---|
| 1398 | typedef K Key; |
|---|
| 1399 | ///\e |
|---|
| 1400 | typedef bool Value; |
|---|
| 1401 | |
|---|
| 1402 | /// Gives back \c false. |
|---|
| 1403 | Value operator[](const Key&) const { return false; } |
|---|
| 1404 | }; |
|---|
| 1405 | |
|---|
| 1406 | /// Returns a \c FalseMap class |
|---|
| 1407 | |
|---|
| 1408 | /// This function just returns a \c FalseMap class. |
|---|
| 1409 | /// \relates FalseMap |
|---|
| 1410 | template<typename K> |
|---|
| 1411 | inline FalseMap<K> falseMap() { |
|---|
| 1412 | return FalseMap<K>(); |
|---|
| 1413 | } |
|---|
| 1414 | |
|---|
| 1415 | /// @} |
|---|
| 1416 | |
|---|
| 1417 | /// \addtogroup map_adaptors |
|---|
| 1418 | /// @{ |
|---|
| 1419 | |
|---|
| 1420 | /// Logical 'and' of two maps |
|---|
| 1421 | |
|---|
| 1422 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1423 | /// 'and' of the values of the two given maps. |
|---|
| 1424 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1425 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1426 | /// |
|---|
| 1427 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1428 | /// \code |
|---|
| 1429 | /// AndMap<M1,M2> am(m1,m2); |
|---|
| 1430 | /// \endcode |
|---|
| 1431 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
|---|
| 1432 | /// |
|---|
| 1433 | /// The simplest way of using this map is through the andMap() |
|---|
| 1434 | /// function. |
|---|
| 1435 | /// |
|---|
| 1436 | /// \sa OrMap |
|---|
| 1437 | /// \sa NotMap, NotWriteMap |
|---|
| 1438 | template<typename M1, typename M2> |
|---|
| 1439 | class AndMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1440 | const M1 &_m1; |
|---|
| 1441 | const M2 &_m2; |
|---|
| 1442 | public: |
|---|
| 1443 | ///\e |
|---|
| 1444 | typedef typename M1::Key Key; |
|---|
| 1445 | ///\e |
|---|
| 1446 | typedef bool Value; |
|---|
| 1447 | |
|---|
| 1448 | /// Constructor |
|---|
| 1449 | AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1450 | ///\e |
|---|
| 1451 | Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
|---|
| 1452 | }; |
|---|
| 1453 | |
|---|
| 1454 | /// Returns an \c AndMap class |
|---|
| 1455 | |
|---|
| 1456 | /// This function just returns an \c AndMap class. |
|---|
| 1457 | /// |
|---|
| 1458 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|---|
| 1459 | /// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1460 | /// <tt>m1[x]&&m2[x]</tt>. |
|---|
| 1461 | /// |
|---|
| 1462 | /// \relates AndMap |
|---|
| 1463 | template<typename M1, typename M2> |
|---|
| 1464 | inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
|---|
| 1465 | return AndMap<M1, M2>(m1,m2); |
|---|
| 1466 | } |
|---|
| 1467 | |
|---|
| 1468 | |
|---|
| 1469 | /// Logical 'or' of two maps |
|---|
| 1470 | |
|---|
| 1471 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1472 | /// 'or' of the values of the two given maps. |
|---|
| 1473 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1474 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1475 | /// |
|---|
| 1476 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1477 | /// \code |
|---|
| 1478 | /// OrMap<M1,M2> om(m1,m2); |
|---|
| 1479 | /// \endcode |
|---|
| 1480 | /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
|---|
| 1481 | /// |
|---|
| 1482 | /// The simplest way of using this map is through the orMap() |
|---|
| 1483 | /// function. |
|---|
| 1484 | /// |
|---|
| 1485 | /// \sa AndMap |
|---|
| 1486 | /// \sa NotMap, NotWriteMap |
|---|
| 1487 | template<typename M1, typename M2> |
|---|
| 1488 | class OrMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1489 | const M1 &_m1; |
|---|
| 1490 | const M2 &_m2; |
|---|
| 1491 | public: |
|---|
| 1492 | ///\e |
|---|
| 1493 | typedef typename M1::Key Key; |
|---|
| 1494 | ///\e |
|---|
| 1495 | typedef bool Value; |
|---|
| 1496 | |
|---|
| 1497 | /// Constructor |
|---|
| 1498 | OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1499 | ///\e |
|---|
| 1500 | Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
|---|
| 1501 | }; |
|---|
| 1502 | |
|---|
| 1503 | /// Returns an \c OrMap class |
|---|
| 1504 | |
|---|
| 1505 | /// This function just returns an \c OrMap class. |
|---|
| 1506 | /// |
|---|
| 1507 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|---|
| 1508 | /// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1509 | /// <tt>m1[x]||m2[x]</tt>. |
|---|
| 1510 | /// |
|---|
| 1511 | /// \relates OrMap |
|---|
| 1512 | template<typename M1, typename M2> |
|---|
| 1513 | inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
|---|
| 1514 | return OrMap<M1, M2>(m1,m2); |
|---|
| 1515 | } |
|---|
| 1516 | |
|---|
| 1517 | |
|---|
| 1518 | /// Logical 'not' of a map |
|---|
| 1519 | |
|---|
| 1520 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
|---|
| 1521 | /// negation of the values of the given map. |
|---|
| 1522 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1523 | /// |
|---|
| 1524 | /// The simplest way of using this map is through the notMap() |
|---|
| 1525 | /// function. |
|---|
| 1526 | /// |
|---|
| 1527 | /// \sa NotWriteMap |
|---|
| 1528 | template <typename M> |
|---|
| 1529 | class NotMap : public MapBase<typename M::Key, bool> { |
|---|
| 1530 | const M &_m; |
|---|
| 1531 | public: |
|---|
| 1532 | ///\e |
|---|
| 1533 | typedef typename M::Key Key; |
|---|
| 1534 | ///\e |
|---|
| 1535 | typedef bool Value; |
|---|
| 1536 | |
|---|
| 1537 | /// Constructor |
|---|
| 1538 | NotMap(const M &m) : _m(m) {} |
|---|
| 1539 | ///\e |
|---|
| 1540 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1541 | }; |
|---|
| 1542 | |
|---|
| 1543 | /// Logical 'not' of a map (read-write version) |
|---|
| 1544 | |
|---|
| 1545 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1546 | /// logical negation of the values of the given map. |
|---|
| 1547 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1548 | /// It makes also possible to write the map. When a value is set, |
|---|
| 1549 | /// the opposite value is set to the original map. |
|---|
| 1550 | /// |
|---|
| 1551 | /// The simplest way of using this map is through the notWriteMap() |
|---|
| 1552 | /// function. |
|---|
| 1553 | /// |
|---|
| 1554 | /// \sa NotMap |
|---|
| 1555 | template <typename M> |
|---|
| 1556 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
|---|
| 1557 | M &_m; |
|---|
| 1558 | public: |
|---|
| 1559 | ///\e |
|---|
| 1560 | typedef typename M::Key Key; |
|---|
| 1561 | ///\e |
|---|
| 1562 | typedef bool Value; |
|---|
| 1563 | |
|---|
| 1564 | /// Constructor |
|---|
| 1565 | NotWriteMap(M &m) : _m(m) {} |
|---|
| 1566 | ///\e |
|---|
| 1567 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1568 | ///\e |
|---|
| 1569 | void set(const Key &k, bool v) { _m.set(k, !v); } |
|---|
| 1570 | }; |
|---|
| 1571 | |
|---|
| 1572 | /// Returns a \c NotMap class |
|---|
| 1573 | |
|---|
| 1574 | /// This function just returns a \c NotMap class. |
|---|
| 1575 | /// |
|---|
| 1576 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1577 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1578 | /// |
|---|
| 1579 | /// \relates NotMap |
|---|
| 1580 | template <typename M> |
|---|
| 1581 | inline NotMap<M> notMap(const M &m) { |
|---|
| 1582 | return NotMap<M>(m); |
|---|
| 1583 | } |
|---|
| 1584 | |
|---|
| 1585 | /// Returns a \c NotWriteMap class |
|---|
| 1586 | |
|---|
| 1587 | /// This function just returns a \c NotWriteMap class. |
|---|
| 1588 | /// |
|---|
| 1589 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1590 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1591 | /// Moreover it makes also possible to write the map. |
|---|
| 1592 | /// |
|---|
| 1593 | /// \relates NotWriteMap |
|---|
| 1594 | template <typename M> |
|---|
| 1595 | inline NotWriteMap<M> notWriteMap(M &m) { |
|---|
| 1596 | return NotWriteMap<M>(m); |
|---|
| 1597 | } |
|---|
| 1598 | |
|---|
| 1599 | |
|---|
| 1600 | /// Combination of two maps using the \c == operator |
|---|
| 1601 | |
|---|
| 1602 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1603 | /// the keys for which the corresponding values of the two maps are |
|---|
| 1604 | /// equal. |
|---|
| 1605 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1606 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1607 | /// |
|---|
| 1608 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1609 | /// \code |
|---|
| 1610 | /// EqualMap<M1,M2> em(m1,m2); |
|---|
| 1611 | /// \endcode |
|---|
| 1612 | /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
|---|
| 1613 | /// |
|---|
| 1614 | /// The simplest way of using this map is through the equalMap() |
|---|
| 1615 | /// function. |
|---|
| 1616 | /// |
|---|
| 1617 | /// \sa LessMap |
|---|
| 1618 | template<typename M1, typename M2> |
|---|
| 1619 | class EqualMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1620 | const M1 &_m1; |
|---|
| 1621 | const M2 &_m2; |
|---|
| 1622 | public: |
|---|
| 1623 | ///\e |
|---|
| 1624 | typedef typename M1::Key Key; |
|---|
| 1625 | ///\e |
|---|
| 1626 | typedef bool Value; |
|---|
| 1627 | |
|---|
| 1628 | /// Constructor |
|---|
| 1629 | EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1630 | ///\e |
|---|
| 1631 | Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
|---|
| 1632 | }; |
|---|
| 1633 | |
|---|
| 1634 | /// Returns an \c EqualMap class |
|---|
| 1635 | |
|---|
| 1636 | /// This function just returns an \c EqualMap class. |
|---|
| 1637 | /// |
|---|
| 1638 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
|---|
| 1639 | /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1640 | /// <tt>m1[x]==m2[x]</tt>. |
|---|
| 1641 | /// |
|---|
| 1642 | /// \relates EqualMap |
|---|
| 1643 | template<typename M1, typename M2> |
|---|
| 1644 | inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
|---|
| 1645 | return EqualMap<M1, M2>(m1,m2); |
|---|
| 1646 | } |
|---|
| 1647 | |
|---|
| 1648 | |
|---|
| 1649 | /// Combination of two maps using the \c < operator |
|---|
| 1650 | |
|---|
| 1651 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|---|
| 1652 | /// the keys for which the corresponding value of the first map is |
|---|
| 1653 | /// less then the value of the second map. |
|---|
| 1654 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
|---|
| 1655 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|---|
| 1656 | /// |
|---|
| 1657 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 1658 | /// \code |
|---|
| 1659 | /// LessMap<M1,M2> lm(m1,m2); |
|---|
| 1660 | /// \endcode |
|---|
| 1661 | /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
|---|
| 1662 | /// |
|---|
| 1663 | /// The simplest way of using this map is through the lessMap() |
|---|
| 1664 | /// function. |
|---|
| 1665 | /// |
|---|
| 1666 | /// \sa EqualMap |
|---|
| 1667 | template<typename M1, typename M2> |
|---|
| 1668 | class LessMap : public MapBase<typename M1::Key, bool> { |
|---|
| 1669 | const M1 &_m1; |
|---|
| 1670 | const M2 &_m2; |
|---|
| 1671 | public: |
|---|
| 1672 | ///\e |
|---|
| 1673 | typedef typename M1::Key Key; |
|---|
| 1674 | ///\e |
|---|
| 1675 | typedef bool Value; |
|---|
| 1676 | |
|---|
| 1677 | /// Constructor |
|---|
| 1678 | LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 1679 | ///\e |
|---|
| 1680 | Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
|---|
| 1681 | }; |
|---|
| 1682 | |
|---|
| 1683 | /// Returns an \c LessMap class |
|---|
| 1684 | |
|---|
| 1685 | /// This function just returns an \c LessMap class. |
|---|
| 1686 | /// |
|---|
| 1687 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
|---|
| 1688 | /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
|---|
| 1689 | /// <tt>m1[x]<m2[x]</tt>. |
|---|
| 1690 | /// |
|---|
| 1691 | /// \relates LessMap |
|---|
| 1692 | template<typename M1, typename M2> |
|---|
| 1693 | inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
|---|
| 1694 | return LessMap<M1, M2>(m1,m2); |
|---|
| 1695 | } |
|---|
| 1696 | |
|---|
| 1697 | namespace _maps_bits { |
|---|
| 1698 | |
|---|
| 1699 | template <typename _Iterator, typename Enable = void> |
|---|
| 1700 | struct IteratorTraits { |
|---|
| 1701 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
|---|
| 1702 | }; |
|---|
| 1703 | |
|---|
| 1704 | template <typename _Iterator> |
|---|
| 1705 | struct IteratorTraits<_Iterator, |
|---|
| 1706 | typename exists<typename _Iterator::container_type>::type> |
|---|
| 1707 | { |
|---|
| 1708 | typedef typename _Iterator::container_type::value_type Value; |
|---|
| 1709 | }; |
|---|
| 1710 | |
|---|
| 1711 | } |
|---|
| 1712 | |
|---|
| 1713 | /// @} |
|---|
| 1714 | |
|---|
| 1715 | /// \addtogroup maps |
|---|
| 1716 | /// @{ |
|---|
| 1717 | |
|---|
| 1718 | /// \brief Writable bool map for logging each \c true assigned element |
|---|
| 1719 | /// |
|---|
| 1720 | /// A \ref concepts::WriteMap "writable" bool map for logging |
|---|
| 1721 | /// each \c true assigned element, i.e it copies subsequently each |
|---|
| 1722 | /// keys set to \c true to the given iterator. |
|---|
| 1723 | /// The most important usage of it is storing certain nodes or arcs |
|---|
| 1724 | /// that were marked \c true by an algorithm. |
|---|
| 1725 | /// |
|---|
| 1726 | /// There are several algorithms that provide solutions through bool |
|---|
| 1727 | /// maps and most of them assign \c true at most once for each key. |
|---|
| 1728 | /// In these cases it is a natural request to store each \c true |
|---|
| 1729 | /// assigned elements (in order of the assignment), which can be |
|---|
| 1730 | /// easily done with LoggerBoolMap. |
|---|
| 1731 | /// |
|---|
| 1732 | /// The simplest way of using this map is through the loggerBoolMap() |
|---|
| 1733 | /// function. |
|---|
| 1734 | /// |
|---|
| 1735 | /// \tparam IT The type of the iterator. |
|---|
| 1736 | /// \tparam KEY The key type of the map. The default value set |
|---|
| 1737 | /// according to the iterator type should work in most cases. |
|---|
| 1738 | /// |
|---|
| 1739 | /// \note The container of the iterator must contain enough space |
|---|
| 1740 | /// for the elements or the iterator should be an inserter iterator. |
|---|
| 1741 | #ifdef DOXYGEN |
|---|
| 1742 | template <typename IT, typename KEY> |
|---|
| 1743 | #else |
|---|
| 1744 | template <typename IT, |
|---|
| 1745 | typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
|---|
| 1746 | #endif |
|---|
| 1747 | class LoggerBoolMap : public MapBase<KEY, bool> { |
|---|
| 1748 | public: |
|---|
| 1749 | |
|---|
| 1750 | ///\e |
|---|
| 1751 | typedef KEY Key; |
|---|
| 1752 | ///\e |
|---|
| 1753 | typedef bool Value; |
|---|
| 1754 | ///\e |
|---|
| 1755 | typedef IT Iterator; |
|---|
| 1756 | |
|---|
| 1757 | /// Constructor |
|---|
| 1758 | LoggerBoolMap(Iterator it) |
|---|
| 1759 | : _begin(it), _end(it) {} |
|---|
| 1760 | |
|---|
| 1761 | /// Gives back the given iterator set for the first key |
|---|
| 1762 | Iterator begin() const { |
|---|
| 1763 | return _begin; |
|---|
| 1764 | } |
|---|
| 1765 | |
|---|
| 1766 | /// Gives back the the 'after the last' iterator |
|---|
| 1767 | Iterator end() const { |
|---|
| 1768 | return _end; |
|---|
| 1769 | } |
|---|
| 1770 | |
|---|
| 1771 | /// The set function of the map |
|---|
| 1772 | void set(const Key& key, Value value) { |
|---|
| 1773 | if (value) { |
|---|
| 1774 | *_end++ = key; |
|---|
| 1775 | } |
|---|
| 1776 | } |
|---|
| 1777 | |
|---|
| 1778 | private: |
|---|
| 1779 | Iterator _begin; |
|---|
| 1780 | Iterator _end; |
|---|
| 1781 | }; |
|---|
| 1782 | |
|---|
| 1783 | /// Returns a \c LoggerBoolMap class |
|---|
| 1784 | |
|---|
| 1785 | /// This function just returns a \c LoggerBoolMap class. |
|---|
| 1786 | /// |
|---|
| 1787 | /// The most important usage of it is storing certain nodes or arcs |
|---|
| 1788 | /// that were marked \c true by an algorithm. |
|---|
| 1789 | /// For example it makes easier to store the nodes in the processing |
|---|
| 1790 | /// order of Dfs algorithm, as the following examples show. |
|---|
| 1791 | /// \code |
|---|
| 1792 | /// std::vector<Node> v; |
|---|
| 1793 | /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|---|
| 1794 | /// \endcode |
|---|
| 1795 | /// \code |
|---|
| 1796 | /// std::vector<Node> v(countNodes(g)); |
|---|
| 1797 | /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
|---|
| 1798 | /// \endcode |
|---|
| 1799 | /// |
|---|
| 1800 | /// \note The container of the iterator must contain enough space |
|---|
| 1801 | /// for the elements or the iterator should be an inserter iterator. |
|---|
| 1802 | /// |
|---|
| 1803 | /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
|---|
| 1804 | /// it cannot be used when a readable map is needed, for example as |
|---|
| 1805 | /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
|---|
| 1806 | /// |
|---|
| 1807 | /// \relates LoggerBoolMap |
|---|
| 1808 | template<typename Iterator> |
|---|
| 1809 | inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
|---|
| 1810 | return LoggerBoolMap<Iterator>(it); |
|---|
| 1811 | } |
|---|
| 1812 | |
|---|
| 1813 | /// @} |
|---|
| 1814 | |
|---|
| 1815 | /// \addtogroup graph_maps |
|---|
| 1816 | /// @{ |
|---|
| 1817 | |
|---|
| 1818 | /// \brief Provides an immutable and unique id for each item in a graph. |
|---|
| 1819 | /// |
|---|
| 1820 | /// IdMap provides a unique and immutable id for each item of the |
|---|
| 1821 | /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|---|
| 1822 | /// - \b unique: different items get different ids, |
|---|
| 1823 | /// - \b immutable: the id of an item does not change (even if you |
|---|
| 1824 | /// delete other nodes). |
|---|
| 1825 | /// |
|---|
| 1826 | /// Using this map you get access (i.e. can read) the inner id values of |
|---|
| 1827 | /// the items stored in the graph, which is returned by the \c id() |
|---|
| 1828 | /// function of the graph. This map can be inverted with its member |
|---|
| 1829 | /// class \c InverseMap or with the \c operator()() member. |
|---|
| 1830 | /// |
|---|
| 1831 | /// \tparam GR The graph type. |
|---|
| 1832 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 1833 | /// \c GR::Edge). |
|---|
| 1834 | /// |
|---|
| 1835 | /// \see RangeIdMap |
|---|
| 1836 | template <typename GR, typename K> |
|---|
| 1837 | class IdMap : public MapBase<K, int> { |
|---|
| 1838 | public: |
|---|
| 1839 | /// The graph type of IdMap. |
|---|
| 1840 | typedef GR Graph; |
|---|
| 1841 | typedef GR Digraph; |
|---|
| 1842 | /// The key type of IdMap (\c Node, \c Arc or \c Edge). |
|---|
| 1843 | typedef K Item; |
|---|
| 1844 | /// The key type of IdMap (\c Node, \c Arc or \c Edge). |
|---|
| 1845 | typedef K Key; |
|---|
| 1846 | /// The value type of IdMap. |
|---|
| 1847 | typedef int Value; |
|---|
| 1848 | |
|---|
| 1849 | /// \brief Constructor. |
|---|
| 1850 | /// |
|---|
| 1851 | /// Constructor of the map. |
|---|
| 1852 | explicit IdMap(const Graph& graph) : _graph(&graph) {} |
|---|
| 1853 | |
|---|
| 1854 | /// \brief Gives back the \e id of the item. |
|---|
| 1855 | /// |
|---|
| 1856 | /// Gives back the immutable and unique \e id of the item. |
|---|
| 1857 | int operator[](const Item& item) const { return _graph->id(item);} |
|---|
| 1858 | |
|---|
| 1859 | /// \brief Gives back the \e item by its id. |
|---|
| 1860 | /// |
|---|
| 1861 | /// Gives back the \e item by its id. |
|---|
| 1862 | Item operator()(int id) { return _graph->fromId(id, Item()); } |
|---|
| 1863 | |
|---|
| 1864 | private: |
|---|
| 1865 | const Graph* _graph; |
|---|
| 1866 | |
|---|
| 1867 | public: |
|---|
| 1868 | |
|---|
| 1869 | /// \brief This class represents the inverse of its owner (IdMap). |
|---|
| 1870 | /// |
|---|
| 1871 | /// This class represents the inverse of its owner (IdMap). |
|---|
| 1872 | /// \see inverse() |
|---|
| 1873 | class InverseMap { |
|---|
| 1874 | public: |
|---|
| 1875 | |
|---|
| 1876 | /// \brief Constructor. |
|---|
| 1877 | /// |
|---|
| 1878 | /// Constructor for creating an id-to-item map. |
|---|
| 1879 | explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
|---|
| 1880 | |
|---|
| 1881 | /// \brief Constructor. |
|---|
| 1882 | /// |
|---|
| 1883 | /// Constructor for creating an id-to-item map. |
|---|
| 1884 | explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
|---|
| 1885 | |
|---|
| 1886 | /// \brief Gives back the given item from its id. |
|---|
| 1887 | /// |
|---|
| 1888 | /// Gives back the given item from its id. |
|---|
| 1889 | Item operator[](int id) const { return _graph->fromId(id, Item());} |
|---|
| 1890 | |
|---|
| 1891 | private: |
|---|
| 1892 | const Graph* _graph; |
|---|
| 1893 | }; |
|---|
| 1894 | |
|---|
| 1895 | /// \brief Gives back the inverse of the map. |
|---|
| 1896 | /// |
|---|
| 1897 | /// Gives back the inverse of the IdMap. |
|---|
| 1898 | InverseMap inverse() const { return InverseMap(*_graph);} |
|---|
| 1899 | }; |
|---|
| 1900 | |
|---|
| 1901 | |
|---|
| 1902 | /// \brief General cross reference graph map type. |
|---|
| 1903 | |
|---|
| 1904 | /// This class provides simple invertable graph maps. |
|---|
| 1905 | /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
|---|
| 1906 | /// and if a key is set to a new value, then stores it in the inverse map. |
|---|
| 1907 | /// The values of the map can be accessed |
|---|
| 1908 | /// with stl compatible forward iterator. |
|---|
| 1909 | /// |
|---|
| 1910 | /// This type is not reference map, so it cannot be modified with |
|---|
| 1911 | /// the subscript operator. |
|---|
| 1912 | /// |
|---|
| 1913 | /// \tparam GR The graph type. |
|---|
| 1914 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 1915 | /// \c GR::Edge). |
|---|
| 1916 | /// \tparam V The value type of the map. |
|---|
| 1917 | /// |
|---|
| 1918 | /// \see IterableValueMap |
|---|
| 1919 | template <typename GR, typename K, typename V> |
|---|
| 1920 | class CrossRefMap |
|---|
| 1921 | : protected ItemSetTraits<GR, K>::template Map<V>::Type { |
|---|
| 1922 | private: |
|---|
| 1923 | |
|---|
| 1924 | typedef typename ItemSetTraits<GR, K>:: |
|---|
| 1925 | template Map<V>::Type Map; |
|---|
| 1926 | |
|---|
| 1927 | typedef std::multimap<V, K> Container; |
|---|
| 1928 | Container _inv_map; |
|---|
| 1929 | |
|---|
| 1930 | public: |
|---|
| 1931 | |
|---|
| 1932 | /// The graph type of CrossRefMap. |
|---|
| 1933 | typedef GR Graph; |
|---|
| 1934 | typedef GR Digraph; |
|---|
| 1935 | /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|---|
| 1936 | typedef K Item; |
|---|
| 1937 | /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|---|
| 1938 | typedef K Key; |
|---|
| 1939 | /// The value type of CrossRefMap. |
|---|
| 1940 | typedef V Value; |
|---|
| 1941 | |
|---|
| 1942 | /// \brief Constructor. |
|---|
| 1943 | /// |
|---|
| 1944 | /// Construct a new CrossRefMap for the given graph. |
|---|
| 1945 | explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
|---|
| 1946 | |
|---|
| 1947 | /// \brief Forward iterator for values. |
|---|
| 1948 | /// |
|---|
| 1949 | /// This iterator is an stl compatible forward |
|---|
| 1950 | /// iterator on the values of the map. The values can |
|---|
| 1951 | /// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|---|
| 1952 | /// They are considered with multiplicity, so each value is |
|---|
| 1953 | /// traversed for each item it is assigned to. |
|---|
| 1954 | class ValueIterator |
|---|
| 1955 | : public std::iterator<std::forward_iterator_tag, Value> { |
|---|
| 1956 | friend class CrossRefMap; |
|---|
| 1957 | private: |
|---|
| 1958 | ValueIterator(typename Container::const_iterator _it) |
|---|
| 1959 | : it(_it) {} |
|---|
| 1960 | public: |
|---|
| 1961 | |
|---|
| 1962 | ValueIterator() {} |
|---|
| 1963 | |
|---|
| 1964 | ValueIterator& operator++() { ++it; return *this; } |
|---|
| 1965 | ValueIterator operator++(int) { |
|---|
| 1966 | ValueIterator tmp(*this); |
|---|
| 1967 | operator++(); |
|---|
| 1968 | return tmp; |
|---|
| 1969 | } |
|---|
| 1970 | |
|---|
| 1971 | const Value& operator*() const { return it->first; } |
|---|
| 1972 | const Value* operator->() const { return &(it->first); } |
|---|
| 1973 | |
|---|
| 1974 | bool operator==(ValueIterator jt) const { return it == jt.it; } |
|---|
| 1975 | bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|---|
| 1976 | |
|---|
| 1977 | private: |
|---|
| 1978 | typename Container::const_iterator it; |
|---|
| 1979 | }; |
|---|
| 1980 | |
|---|
| 1981 | /// \brief Returns an iterator to the first value. |
|---|
| 1982 | /// |
|---|
| 1983 | /// Returns an stl compatible iterator to the |
|---|
| 1984 | /// first value of the map. The values of the |
|---|
| 1985 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|---|
| 1986 | /// range. |
|---|
| 1987 | ValueIterator beginValue() const { |
|---|
| 1988 | return ValueIterator(_inv_map.begin()); |
|---|
| 1989 | } |
|---|
| 1990 | |
|---|
| 1991 | /// \brief Returns an iterator after the last value. |
|---|
| 1992 | /// |
|---|
| 1993 | /// Returns an stl compatible iterator after the |
|---|
| 1994 | /// last value of the map. The values of the |
|---|
| 1995 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|---|
| 1996 | /// range. |
|---|
| 1997 | ValueIterator endValue() const { |
|---|
| 1998 | return ValueIterator(_inv_map.end()); |
|---|
| 1999 | } |
|---|
| 2000 | |
|---|
| 2001 | /// \brief Sets the value associated with the given key. |
|---|
| 2002 | /// |
|---|
| 2003 | /// Sets the value associated with the given key. |
|---|
| 2004 | void set(const Key& key, const Value& val) { |
|---|
| 2005 | Value oldval = Map::operator[](key); |
|---|
| 2006 | typename Container::iterator it; |
|---|
| 2007 | for (it = _inv_map.equal_range(oldval).first; |
|---|
| 2008 | it != _inv_map.equal_range(oldval).second; ++it) { |
|---|
| 2009 | if (it->second == key) { |
|---|
| 2010 | _inv_map.erase(it); |
|---|
| 2011 | break; |
|---|
| 2012 | } |
|---|
| 2013 | } |
|---|
| 2014 | _inv_map.insert(std::make_pair(val, key)); |
|---|
| 2015 | Map::set(key, val); |
|---|
| 2016 | } |
|---|
| 2017 | |
|---|
| 2018 | /// \brief Returns the value associated with the given key. |
|---|
| 2019 | /// |
|---|
| 2020 | /// Returns the value associated with the given key. |
|---|
| 2021 | typename MapTraits<Map>::ConstReturnValue |
|---|
| 2022 | operator[](const Key& key) const { |
|---|
| 2023 | return Map::operator[](key); |
|---|
| 2024 | } |
|---|
| 2025 | |
|---|
| 2026 | /// \brief Gives back an item by its value. |
|---|
| 2027 | /// |
|---|
| 2028 | /// This function gives back an item that is assigned to |
|---|
| 2029 | /// the given value or \c INVALID if no such item exists. |
|---|
| 2030 | /// If there are more items with the same associated value, |
|---|
| 2031 | /// only one of them is returned. |
|---|
| 2032 | Key operator()(const Value& val) const { |
|---|
| 2033 | typename Container::const_iterator it = _inv_map.find(val); |
|---|
| 2034 | return it != _inv_map.end() ? it->second : INVALID; |
|---|
| 2035 | } |
|---|
| 2036 | |
|---|
| 2037 | /// \brief Returns the number of items with the given value. |
|---|
| 2038 | /// |
|---|
| 2039 | /// This function returns the number of items with the given value |
|---|
| 2040 | /// associated with it. |
|---|
| 2041 | int count(const Value &val) const { |
|---|
| 2042 | return _inv_map.count(val); |
|---|
| 2043 | } |
|---|
| 2044 | |
|---|
| 2045 | protected: |
|---|
| 2046 | |
|---|
| 2047 | /// \brief Erase the key from the map and the inverse map. |
|---|
| 2048 | /// |
|---|
| 2049 | /// Erase the key from the map and the inverse map. It is called by the |
|---|
| 2050 | /// \c AlterationNotifier. |
|---|
| 2051 | virtual void erase(const Key& key) { |
|---|
| 2052 | Value val = Map::operator[](key); |
|---|
| 2053 | typename Container::iterator it; |
|---|
| 2054 | for (it = _inv_map.equal_range(val).first; |
|---|
| 2055 | it != _inv_map.equal_range(val).second; ++it) { |
|---|
| 2056 | if (it->second == key) { |
|---|
| 2057 | _inv_map.erase(it); |
|---|
| 2058 | break; |
|---|
| 2059 | } |
|---|
| 2060 | } |
|---|
| 2061 | Map::erase(key); |
|---|
| 2062 | } |
|---|
| 2063 | |
|---|
| 2064 | /// \brief Erase more keys from the map and the inverse map. |
|---|
| 2065 | /// |
|---|
| 2066 | /// Erase more keys from the map and the inverse map. It is called by the |
|---|
| 2067 | /// \c AlterationNotifier. |
|---|
| 2068 | virtual void erase(const std::vector<Key>& keys) { |
|---|
| 2069 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2070 | Value val = Map::operator[](keys[i]); |
|---|
| 2071 | typename Container::iterator it; |
|---|
| 2072 | for (it = _inv_map.equal_range(val).first; |
|---|
| 2073 | it != _inv_map.equal_range(val).second; ++it) { |
|---|
| 2074 | if (it->second == keys[i]) { |
|---|
| 2075 | _inv_map.erase(it); |
|---|
| 2076 | break; |
|---|
| 2077 | } |
|---|
| 2078 | } |
|---|
| 2079 | } |
|---|
| 2080 | Map::erase(keys); |
|---|
| 2081 | } |
|---|
| 2082 | |
|---|
| 2083 | /// \brief Clear the keys from the map and the inverse map. |
|---|
| 2084 | /// |
|---|
| 2085 | /// Clear the keys from the map and the inverse map. It is called by the |
|---|
| 2086 | /// \c AlterationNotifier. |
|---|
| 2087 | virtual void clear() { |
|---|
| 2088 | _inv_map.clear(); |
|---|
| 2089 | Map::clear(); |
|---|
| 2090 | } |
|---|
| 2091 | |
|---|
| 2092 | public: |
|---|
| 2093 | |
|---|
| 2094 | /// \brief The inverse map type. |
|---|
| 2095 | /// |
|---|
| 2096 | /// The inverse of this map. The subscript operator of the map |
|---|
| 2097 | /// gives back the item that was last assigned to the value. |
|---|
| 2098 | class InverseMap { |
|---|
| 2099 | public: |
|---|
| 2100 | /// \brief Constructor |
|---|
| 2101 | /// |
|---|
| 2102 | /// Constructor of the InverseMap. |
|---|
| 2103 | explicit InverseMap(const CrossRefMap& inverted) |
|---|
| 2104 | : _inverted(inverted) {} |
|---|
| 2105 | |
|---|
| 2106 | /// The value type of the InverseMap. |
|---|
| 2107 | typedef typename CrossRefMap::Key Value; |
|---|
| 2108 | /// The key type of the InverseMap. |
|---|
| 2109 | typedef typename CrossRefMap::Value Key; |
|---|
| 2110 | |
|---|
| 2111 | /// \brief Subscript operator. |
|---|
| 2112 | /// |
|---|
| 2113 | /// Subscript operator. It gives back an item |
|---|
| 2114 | /// that is assigned to the given value or \c INVALID |
|---|
| 2115 | /// if no such item exists. |
|---|
| 2116 | Value operator[](const Key& key) const { |
|---|
| 2117 | return _inverted(key); |
|---|
| 2118 | } |
|---|
| 2119 | |
|---|
| 2120 | private: |
|---|
| 2121 | const CrossRefMap& _inverted; |
|---|
| 2122 | }; |
|---|
| 2123 | |
|---|
| 2124 | /// \brief It gives back the read-only inverse map. |
|---|
| 2125 | /// |
|---|
| 2126 | /// It gives back the read-only inverse map. |
|---|
| 2127 | InverseMap inverse() const { |
|---|
| 2128 | return InverseMap(*this); |
|---|
| 2129 | } |
|---|
| 2130 | |
|---|
| 2131 | }; |
|---|
| 2132 | |
|---|
| 2133 | /// \brief Provides continuous and unique id for the |
|---|
| 2134 | /// items of a graph. |
|---|
| 2135 | /// |
|---|
| 2136 | /// RangeIdMap provides a unique and continuous |
|---|
| 2137 | /// id for each item of a given type (\c Node, \c Arc or |
|---|
| 2138 | /// \c Edge) in a graph. This id is |
|---|
| 2139 | /// - \b unique: different items get different ids, |
|---|
| 2140 | /// - \b continuous: the range of the ids is the set of integers |
|---|
| 2141 | /// between 0 and \c n-1, where \c n is the number of the items of |
|---|
| 2142 | /// this type (\c Node, \c Arc or \c Edge). |
|---|
| 2143 | /// - So, the ids can change when deleting an item of the same type. |
|---|
| 2144 | /// |
|---|
| 2145 | /// Thus this id is not (necessarily) the same as what can get using |
|---|
| 2146 | /// the \c id() function of the graph or \ref IdMap. |
|---|
| 2147 | /// This map can be inverted with its member class \c InverseMap, |
|---|
| 2148 | /// or with the \c operator()() member. |
|---|
| 2149 | /// |
|---|
| 2150 | /// \tparam GR The graph type. |
|---|
| 2151 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|---|
| 2152 | /// \c GR::Edge). |
|---|
| 2153 | /// |
|---|
| 2154 | /// \see IdMap |
|---|
| 2155 | template <typename GR, typename K> |
|---|
| 2156 | class RangeIdMap |
|---|
| 2157 | : protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|---|
| 2158 | |
|---|
| 2159 | typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
|---|
| 2160 | |
|---|
| 2161 | public: |
|---|
| 2162 | /// The graph type of RangeIdMap. |
|---|
| 2163 | typedef GR Graph; |
|---|
| 2164 | typedef GR Digraph; |
|---|
| 2165 | /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|---|
| 2166 | typedef K Item; |
|---|
| 2167 | /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|---|
| 2168 | typedef K Key; |
|---|
| 2169 | /// The value type of RangeIdMap. |
|---|
| 2170 | typedef int Value; |
|---|
| 2171 | |
|---|
| 2172 | /// \brief Constructor. |
|---|
| 2173 | /// |
|---|
| 2174 | /// Constructor. |
|---|
| 2175 | explicit RangeIdMap(const Graph& gr) : Map(gr) { |
|---|
| 2176 | Item it; |
|---|
| 2177 | const typename Map::Notifier* nf = Map::notifier(); |
|---|
| 2178 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2179 | Map::set(it, _inv_map.size()); |
|---|
| 2180 | _inv_map.push_back(it); |
|---|
| 2181 | } |
|---|
| 2182 | } |
|---|
| 2183 | |
|---|
| 2184 | protected: |
|---|
| 2185 | |
|---|
| 2186 | /// \brief Adds a new key to the map. |
|---|
| 2187 | /// |
|---|
| 2188 | /// Add a new key to the map. It is called by the |
|---|
| 2189 | /// \c AlterationNotifier. |
|---|
| 2190 | virtual void add(const Item& item) { |
|---|
| 2191 | Map::add(item); |
|---|
| 2192 | Map::set(item, _inv_map.size()); |
|---|
| 2193 | _inv_map.push_back(item); |
|---|
| 2194 | } |
|---|
| 2195 | |
|---|
| 2196 | /// \brief Add more new keys to the map. |
|---|
| 2197 | /// |
|---|
| 2198 | /// Add more new keys to the map. It is called by the |
|---|
| 2199 | /// \c AlterationNotifier. |
|---|
| 2200 | virtual void add(const std::vector<Item>& items) { |
|---|
| 2201 | Map::add(items); |
|---|
| 2202 | for (int i = 0; i < int(items.size()); ++i) { |
|---|
| 2203 | Map::set(items[i], _inv_map.size()); |
|---|
| 2204 | _inv_map.push_back(items[i]); |
|---|
| 2205 | } |
|---|
| 2206 | } |
|---|
| 2207 | |
|---|
| 2208 | /// \brief Erase the key from the map. |
|---|
| 2209 | /// |
|---|
| 2210 | /// Erase the key from the map. It is called by the |
|---|
| 2211 | /// \c AlterationNotifier. |
|---|
| 2212 | virtual void erase(const Item& item) { |
|---|
| 2213 | Map::set(_inv_map.back(), Map::operator[](item)); |
|---|
| 2214 | _inv_map[Map::operator[](item)] = _inv_map.back(); |
|---|
| 2215 | _inv_map.pop_back(); |
|---|
| 2216 | Map::erase(item); |
|---|
| 2217 | } |
|---|
| 2218 | |
|---|
| 2219 | /// \brief Erase more keys from the map. |
|---|
| 2220 | /// |
|---|
| 2221 | /// Erase more keys from the map. It is called by the |
|---|
| 2222 | /// \c AlterationNotifier. |
|---|
| 2223 | virtual void erase(const std::vector<Item>& items) { |
|---|
| 2224 | for (int i = 0; i < int(items.size()); ++i) { |
|---|
| 2225 | Map::set(_inv_map.back(), Map::operator[](items[i])); |
|---|
| 2226 | _inv_map[Map::operator[](items[i])] = _inv_map.back(); |
|---|
| 2227 | _inv_map.pop_back(); |
|---|
| 2228 | } |
|---|
| 2229 | Map::erase(items); |
|---|
| 2230 | } |
|---|
| 2231 | |
|---|
| 2232 | /// \brief Build the unique map. |
|---|
| 2233 | /// |
|---|
| 2234 | /// Build the unique map. It is called by the |
|---|
| 2235 | /// \c AlterationNotifier. |
|---|
| 2236 | virtual void build() { |
|---|
| 2237 | Map::build(); |
|---|
| 2238 | Item it; |
|---|
| 2239 | const typename Map::Notifier* nf = Map::notifier(); |
|---|
| 2240 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2241 | Map::set(it, _inv_map.size()); |
|---|
| 2242 | _inv_map.push_back(it); |
|---|
| 2243 | } |
|---|
| 2244 | } |
|---|
| 2245 | |
|---|
| 2246 | /// \brief Clear the keys from the map. |
|---|
| 2247 | /// |
|---|
| 2248 | /// Clear the keys from the map. It is called by the |
|---|
| 2249 | /// \c AlterationNotifier. |
|---|
| 2250 | virtual void clear() { |
|---|
| 2251 | _inv_map.clear(); |
|---|
| 2252 | Map::clear(); |
|---|
| 2253 | } |
|---|
| 2254 | |
|---|
| 2255 | public: |
|---|
| 2256 | |
|---|
| 2257 | /// \brief Returns the maximal value plus one. |
|---|
| 2258 | /// |
|---|
| 2259 | /// Returns the maximal value plus one in the map. |
|---|
| 2260 | unsigned int size() const { |
|---|
| 2261 | return _inv_map.size(); |
|---|
| 2262 | } |
|---|
| 2263 | |
|---|
| 2264 | /// \brief Swaps the position of the two items in the map. |
|---|
| 2265 | /// |
|---|
| 2266 | /// Swaps the position of the two items in the map. |
|---|
| 2267 | void swap(const Item& p, const Item& q) { |
|---|
| 2268 | int pi = Map::operator[](p); |
|---|
| 2269 | int qi = Map::operator[](q); |
|---|
| 2270 | Map::set(p, qi); |
|---|
| 2271 | _inv_map[qi] = p; |
|---|
| 2272 | Map::set(q, pi); |
|---|
| 2273 | _inv_map[pi] = q; |
|---|
| 2274 | } |
|---|
| 2275 | |
|---|
| 2276 | /// \brief Gives back the \e RangeId of the item |
|---|
| 2277 | /// |
|---|
| 2278 | /// Gives back the \e RangeId of the item. |
|---|
| 2279 | int operator[](const Item& item) const { |
|---|
| 2280 | return Map::operator[](item); |
|---|
| 2281 | } |
|---|
| 2282 | |
|---|
| 2283 | /// \brief Gives back the item belonging to a \e RangeId |
|---|
| 2284 | /// |
|---|
| 2285 | /// Gives back the item belonging to a \e RangeId. |
|---|
| 2286 | Item operator()(int id) const { |
|---|
| 2287 | return _inv_map[id]; |
|---|
| 2288 | } |
|---|
| 2289 | |
|---|
| 2290 | private: |
|---|
| 2291 | |
|---|
| 2292 | typedef std::vector<Item> Container; |
|---|
| 2293 | Container _inv_map; |
|---|
| 2294 | |
|---|
| 2295 | public: |
|---|
| 2296 | |
|---|
| 2297 | /// \brief The inverse map type of RangeIdMap. |
|---|
| 2298 | /// |
|---|
| 2299 | /// The inverse map type of RangeIdMap. |
|---|
| 2300 | class InverseMap { |
|---|
| 2301 | public: |
|---|
| 2302 | /// \brief Constructor |
|---|
| 2303 | /// |
|---|
| 2304 | /// Constructor of the InverseMap. |
|---|
| 2305 | explicit InverseMap(const RangeIdMap& inverted) |
|---|
| 2306 | : _inverted(inverted) {} |
|---|
| 2307 | |
|---|
| 2308 | |
|---|
| 2309 | /// The value type of the InverseMap. |
|---|
| 2310 | typedef typename RangeIdMap::Key Value; |
|---|
| 2311 | /// The key type of the InverseMap. |
|---|
| 2312 | typedef typename RangeIdMap::Value Key; |
|---|
| 2313 | |
|---|
| 2314 | /// \brief Subscript operator. |
|---|
| 2315 | /// |
|---|
| 2316 | /// Subscript operator. It gives back the item |
|---|
| 2317 | /// that the descriptor currently belongs to. |
|---|
| 2318 | Value operator[](const Key& key) const { |
|---|
| 2319 | return _inverted(key); |
|---|
| 2320 | } |
|---|
| 2321 | |
|---|
| 2322 | /// \brief Size of the map. |
|---|
| 2323 | /// |
|---|
| 2324 | /// Returns the size of the map. |
|---|
| 2325 | unsigned int size() const { |
|---|
| 2326 | return _inverted.size(); |
|---|
| 2327 | } |
|---|
| 2328 | |
|---|
| 2329 | private: |
|---|
| 2330 | const RangeIdMap& _inverted; |
|---|
| 2331 | }; |
|---|
| 2332 | |
|---|
| 2333 | /// \brief Gives back the inverse of the map. |
|---|
| 2334 | /// |
|---|
| 2335 | /// Gives back the inverse of the map. |
|---|
| 2336 | const InverseMap inverse() const { |
|---|
| 2337 | return InverseMap(*this); |
|---|
| 2338 | } |
|---|
| 2339 | }; |
|---|
| 2340 | |
|---|
| 2341 | /// \brief Map of the source nodes of arcs in a digraph. |
|---|
| 2342 | /// |
|---|
| 2343 | /// SourceMap provides access for the source node of each arc in a digraph, |
|---|
| 2344 | /// which is returned by the \c source() function of the digraph. |
|---|
| 2345 | /// \tparam GR The digraph type. |
|---|
| 2346 | /// \see TargetMap |
|---|
| 2347 | template <typename GR> |
|---|
| 2348 | class SourceMap { |
|---|
| 2349 | public: |
|---|
| 2350 | |
|---|
| 2351 | ///\e |
|---|
| 2352 | typedef typename GR::Arc Key; |
|---|
| 2353 | ///\e |
|---|
| 2354 | typedef typename GR::Node Value; |
|---|
| 2355 | |
|---|
| 2356 | /// \brief Constructor |
|---|
| 2357 | /// |
|---|
| 2358 | /// Constructor. |
|---|
| 2359 | /// \param digraph The digraph that the map belongs to. |
|---|
| 2360 | explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
|---|
| 2361 | |
|---|
| 2362 | /// \brief Returns the source node of the given arc. |
|---|
| 2363 | /// |
|---|
| 2364 | /// Returns the source node of the given arc. |
|---|
| 2365 | Value operator[](const Key& arc) const { |
|---|
| 2366 | return _graph.source(arc); |
|---|
| 2367 | } |
|---|
| 2368 | |
|---|
| 2369 | private: |
|---|
| 2370 | const GR& _graph; |
|---|
| 2371 | }; |
|---|
| 2372 | |
|---|
| 2373 | /// \brief Returns a \c SourceMap class. |
|---|
| 2374 | /// |
|---|
| 2375 | /// This function just returns an \c SourceMap class. |
|---|
| 2376 | /// \relates SourceMap |
|---|
| 2377 | template <typename GR> |
|---|
| 2378 | inline SourceMap<GR> sourceMap(const GR& graph) { |
|---|
| 2379 | return SourceMap<GR>(graph); |
|---|
| 2380 | } |
|---|
| 2381 | |
|---|
| 2382 | /// \brief Map of the target nodes of arcs in a digraph. |
|---|
| 2383 | /// |
|---|
| 2384 | /// TargetMap provides access for the target node of each arc in a digraph, |
|---|
| 2385 | /// which is returned by the \c target() function of the digraph. |
|---|
| 2386 | /// \tparam GR The digraph type. |
|---|
| 2387 | /// \see SourceMap |
|---|
| 2388 | template <typename GR> |
|---|
| 2389 | class TargetMap { |
|---|
| 2390 | public: |
|---|
| 2391 | |
|---|
| 2392 | ///\e |
|---|
| 2393 | typedef typename GR::Arc Key; |
|---|
| 2394 | ///\e |
|---|
| 2395 | typedef typename GR::Node Value; |
|---|
| 2396 | |
|---|
| 2397 | /// \brief Constructor |
|---|
| 2398 | /// |
|---|
| 2399 | /// Constructor. |
|---|
| 2400 | /// \param digraph The digraph that the map belongs to. |
|---|
| 2401 | explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
|---|
| 2402 | |
|---|
| 2403 | /// \brief Returns the target node of the given arc. |
|---|
| 2404 | /// |
|---|
| 2405 | /// Returns the target node of the given arc. |
|---|
| 2406 | Value operator[](const Key& e) const { |
|---|
| 2407 | return _graph.target(e); |
|---|
| 2408 | } |
|---|
| 2409 | |
|---|
| 2410 | private: |
|---|
| 2411 | const GR& _graph; |
|---|
| 2412 | }; |
|---|
| 2413 | |
|---|
| 2414 | /// \brief Returns a \c TargetMap class. |
|---|
| 2415 | /// |
|---|
| 2416 | /// This function just returns a \c TargetMap class. |
|---|
| 2417 | /// \relates TargetMap |
|---|
| 2418 | template <typename GR> |
|---|
| 2419 | inline TargetMap<GR> targetMap(const GR& graph) { |
|---|
| 2420 | return TargetMap<GR>(graph); |
|---|
| 2421 | } |
|---|
| 2422 | |
|---|
| 2423 | /// \brief Map of the "forward" directed arc view of edges in a graph. |
|---|
| 2424 | /// |
|---|
| 2425 | /// ForwardMap provides access for the "forward" directed arc view of |
|---|
| 2426 | /// each edge in a graph, which is returned by the \c direct() function |
|---|
| 2427 | /// of the graph with \c true parameter. |
|---|
| 2428 | /// \tparam GR The graph type. |
|---|
| 2429 | /// \see BackwardMap |
|---|
| 2430 | template <typename GR> |
|---|
| 2431 | class ForwardMap { |
|---|
| 2432 | public: |
|---|
| 2433 | |
|---|
| 2434 | typedef typename GR::Arc Value; |
|---|
| 2435 | typedef typename GR::Edge Key; |
|---|
| 2436 | |
|---|
| 2437 | /// \brief Constructor |
|---|
| 2438 | /// |
|---|
| 2439 | /// Constructor. |
|---|
| 2440 | /// \param graph The graph that the map belongs to. |
|---|
| 2441 | explicit ForwardMap(const GR& graph) : _graph(graph) {} |
|---|
| 2442 | |
|---|
| 2443 | /// \brief Returns the "forward" directed arc view of the given edge. |
|---|
| 2444 | /// |
|---|
| 2445 | /// Returns the "forward" directed arc view of the given edge. |
|---|
| 2446 | Value operator[](const Key& key) const { |
|---|
| 2447 | return _graph.direct(key, true); |
|---|
| 2448 | } |
|---|
| 2449 | |
|---|
| 2450 | private: |
|---|
| 2451 | const GR& _graph; |
|---|
| 2452 | }; |
|---|
| 2453 | |
|---|
| 2454 | /// \brief Returns a \c ForwardMap class. |
|---|
| 2455 | /// |
|---|
| 2456 | /// This function just returns an \c ForwardMap class. |
|---|
| 2457 | /// \relates ForwardMap |
|---|
| 2458 | template <typename GR> |
|---|
| 2459 | inline ForwardMap<GR> forwardMap(const GR& graph) { |
|---|
| 2460 | return ForwardMap<GR>(graph); |
|---|
| 2461 | } |
|---|
| 2462 | |
|---|
| 2463 | /// \brief Map of the "backward" directed arc view of edges in a graph. |
|---|
| 2464 | /// |
|---|
| 2465 | /// BackwardMap provides access for the "backward" directed arc view of |
|---|
| 2466 | /// each edge in a graph, which is returned by the \c direct() function |
|---|
| 2467 | /// of the graph with \c false parameter. |
|---|
| 2468 | /// \tparam GR The graph type. |
|---|
| 2469 | /// \see ForwardMap |
|---|
| 2470 | template <typename GR> |
|---|
| 2471 | class BackwardMap { |
|---|
| 2472 | public: |
|---|
| 2473 | |
|---|
| 2474 | typedef typename GR::Arc Value; |
|---|
| 2475 | typedef typename GR::Edge Key; |
|---|
| 2476 | |
|---|
| 2477 | /// \brief Constructor |
|---|
| 2478 | /// |
|---|
| 2479 | /// Constructor. |
|---|
| 2480 | /// \param graph The graph that the map belongs to. |
|---|
| 2481 | explicit BackwardMap(const GR& graph) : _graph(graph) {} |
|---|
| 2482 | |
|---|
| 2483 | /// \brief Returns the "backward" directed arc view of the given edge. |
|---|
| 2484 | /// |
|---|
| 2485 | /// Returns the "backward" directed arc view of the given edge. |
|---|
| 2486 | Value operator[](const Key& key) const { |
|---|
| 2487 | return _graph.direct(key, false); |
|---|
| 2488 | } |
|---|
| 2489 | |
|---|
| 2490 | private: |
|---|
| 2491 | const GR& _graph; |
|---|
| 2492 | }; |
|---|
| 2493 | |
|---|
| 2494 | /// \brief Returns a \c BackwardMap class |
|---|
| 2495 | |
|---|
| 2496 | /// This function just returns a \c BackwardMap class. |
|---|
| 2497 | /// \relates BackwardMap |
|---|
| 2498 | template <typename GR> |
|---|
| 2499 | inline BackwardMap<GR> backwardMap(const GR& graph) { |
|---|
| 2500 | return BackwardMap<GR>(graph); |
|---|
| 2501 | } |
|---|
| 2502 | |
|---|
| 2503 | /// \brief Map of the in-degrees of nodes in a digraph. |
|---|
| 2504 | /// |
|---|
| 2505 | /// This map returns the in-degree of a node. Once it is constructed, |
|---|
| 2506 | /// the degrees are stored in a standard \c NodeMap, so each query is done |
|---|
| 2507 | /// in constant time. On the other hand, the values are updated automatically |
|---|
| 2508 | /// whenever the digraph changes. |
|---|
| 2509 | /// |
|---|
| 2510 | /// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|---|
| 2511 | /// may provide alternative ways to modify the digraph. |
|---|
| 2512 | /// The correct behavior of InDegMap is not guarantied if these additional |
|---|
| 2513 | /// features are used. For example the functions |
|---|
| 2514 | /// \ref ListDigraph::changeSource() "changeSource()", |
|---|
| 2515 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
|---|
| 2516 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
|---|
| 2517 | /// of \ref ListDigraph will \e not update the degree values correctly. |
|---|
| 2518 | /// |
|---|
| 2519 | /// \sa OutDegMap |
|---|
| 2520 | template <typename GR> |
|---|
| 2521 | class InDegMap |
|---|
| 2522 | : protected ItemSetTraits<GR, typename GR::Arc> |
|---|
| 2523 | ::ItemNotifier::ObserverBase { |
|---|
| 2524 | |
|---|
| 2525 | public: |
|---|
| 2526 | |
|---|
| 2527 | /// The graph type of InDegMap |
|---|
| 2528 | typedef GR Graph; |
|---|
| 2529 | typedef GR Digraph; |
|---|
| 2530 | /// The key type |
|---|
| 2531 | typedef typename Digraph::Node Key; |
|---|
| 2532 | /// The value type |
|---|
| 2533 | typedef int Value; |
|---|
| 2534 | |
|---|
| 2535 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|---|
| 2536 | ::ItemNotifier::ObserverBase Parent; |
|---|
| 2537 | |
|---|
| 2538 | private: |
|---|
| 2539 | |
|---|
| 2540 | class AutoNodeMap |
|---|
| 2541 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|---|
| 2542 | public: |
|---|
| 2543 | |
|---|
| 2544 | typedef typename ItemSetTraits<Digraph, Key>:: |
|---|
| 2545 | template Map<int>::Type Parent; |
|---|
| 2546 | |
|---|
| 2547 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|---|
| 2548 | |
|---|
| 2549 | virtual void add(const Key& key) { |
|---|
| 2550 | Parent::add(key); |
|---|
| 2551 | Parent::set(key, 0); |
|---|
| 2552 | } |
|---|
| 2553 | |
|---|
| 2554 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 2555 | Parent::add(keys); |
|---|
| 2556 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2557 | Parent::set(keys[i], 0); |
|---|
| 2558 | } |
|---|
| 2559 | } |
|---|
| 2560 | |
|---|
| 2561 | virtual void build() { |
|---|
| 2562 | Parent::build(); |
|---|
| 2563 | Key it; |
|---|
| 2564 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 2565 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2566 | Parent::set(it, 0); |
|---|
| 2567 | } |
|---|
| 2568 | } |
|---|
| 2569 | }; |
|---|
| 2570 | |
|---|
| 2571 | public: |
|---|
| 2572 | |
|---|
| 2573 | /// \brief Constructor. |
|---|
| 2574 | /// |
|---|
| 2575 | /// Constructor for creating an in-degree map. |
|---|
| 2576 | explicit InDegMap(const Digraph& graph) |
|---|
| 2577 | : _digraph(graph), _deg(graph) { |
|---|
| 2578 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|---|
| 2579 | |
|---|
| 2580 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2581 | _deg[it] = countInArcs(_digraph, it); |
|---|
| 2582 | } |
|---|
| 2583 | } |
|---|
| 2584 | |
|---|
| 2585 | /// \brief Gives back the in-degree of a Node. |
|---|
| 2586 | /// |
|---|
| 2587 | /// Gives back the in-degree of a Node. |
|---|
| 2588 | int operator[](const Key& key) const { |
|---|
| 2589 | return _deg[key]; |
|---|
| 2590 | } |
|---|
| 2591 | |
|---|
| 2592 | protected: |
|---|
| 2593 | |
|---|
| 2594 | typedef typename Digraph::Arc Arc; |
|---|
| 2595 | |
|---|
| 2596 | virtual void add(const Arc& arc) { |
|---|
| 2597 | ++_deg[_digraph.target(arc)]; |
|---|
| 2598 | } |
|---|
| 2599 | |
|---|
| 2600 | virtual void add(const std::vector<Arc>& arcs) { |
|---|
| 2601 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2602 | ++_deg[_digraph.target(arcs[i])]; |
|---|
| 2603 | } |
|---|
| 2604 | } |
|---|
| 2605 | |
|---|
| 2606 | virtual void erase(const Arc& arc) { |
|---|
| 2607 | --_deg[_digraph.target(arc)]; |
|---|
| 2608 | } |
|---|
| 2609 | |
|---|
| 2610 | virtual void erase(const std::vector<Arc>& arcs) { |
|---|
| 2611 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2612 | --_deg[_digraph.target(arcs[i])]; |
|---|
| 2613 | } |
|---|
| 2614 | } |
|---|
| 2615 | |
|---|
| 2616 | virtual void build() { |
|---|
| 2617 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2618 | _deg[it] = countInArcs(_digraph, it); |
|---|
| 2619 | } |
|---|
| 2620 | } |
|---|
| 2621 | |
|---|
| 2622 | virtual void clear() { |
|---|
| 2623 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2624 | _deg[it] = 0; |
|---|
| 2625 | } |
|---|
| 2626 | } |
|---|
| 2627 | private: |
|---|
| 2628 | |
|---|
| 2629 | const Digraph& _digraph; |
|---|
| 2630 | AutoNodeMap _deg; |
|---|
| 2631 | }; |
|---|
| 2632 | |
|---|
| 2633 | /// \brief Map of the out-degrees of nodes in a digraph. |
|---|
| 2634 | /// |
|---|
| 2635 | /// This map returns the out-degree of a node. Once it is constructed, |
|---|
| 2636 | /// the degrees are stored in a standard \c NodeMap, so each query is done |
|---|
| 2637 | /// in constant time. On the other hand, the values are updated automatically |
|---|
| 2638 | /// whenever the digraph changes. |
|---|
| 2639 | /// |
|---|
| 2640 | /// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|---|
| 2641 | /// may provide alternative ways to modify the digraph. |
|---|
| 2642 | /// The correct behavior of OutDegMap is not guarantied if these additional |
|---|
| 2643 | /// features are used. For example the functions |
|---|
| 2644 | /// \ref ListDigraph::changeSource() "changeSource()", |
|---|
| 2645 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
|---|
| 2646 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
|---|
| 2647 | /// of \ref ListDigraph will \e not update the degree values correctly. |
|---|
| 2648 | /// |
|---|
| 2649 | /// \sa InDegMap |
|---|
| 2650 | template <typename GR> |
|---|
| 2651 | class OutDegMap |
|---|
| 2652 | : protected ItemSetTraits<GR, typename GR::Arc> |
|---|
| 2653 | ::ItemNotifier::ObserverBase { |
|---|
| 2654 | |
|---|
| 2655 | public: |
|---|
| 2656 | |
|---|
| 2657 | /// The graph type of OutDegMap |
|---|
| 2658 | typedef GR Graph; |
|---|
| 2659 | typedef GR Digraph; |
|---|
| 2660 | /// The key type |
|---|
| 2661 | typedef typename Digraph::Node Key; |
|---|
| 2662 | /// The value type |
|---|
| 2663 | typedef int Value; |
|---|
| 2664 | |
|---|
| 2665 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|---|
| 2666 | ::ItemNotifier::ObserverBase Parent; |
|---|
| 2667 | |
|---|
| 2668 | private: |
|---|
| 2669 | |
|---|
| 2670 | class AutoNodeMap |
|---|
| 2671 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|---|
| 2672 | public: |
|---|
| 2673 | |
|---|
| 2674 | typedef typename ItemSetTraits<Digraph, Key>:: |
|---|
| 2675 | template Map<int>::Type Parent; |
|---|
| 2676 | |
|---|
| 2677 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|---|
| 2678 | |
|---|
| 2679 | virtual void add(const Key& key) { |
|---|
| 2680 | Parent::add(key); |
|---|
| 2681 | Parent::set(key, 0); |
|---|
| 2682 | } |
|---|
| 2683 | virtual void add(const std::vector<Key>& keys) { |
|---|
| 2684 | Parent::add(keys); |
|---|
| 2685 | for (int i = 0; i < int(keys.size()); ++i) { |
|---|
| 2686 | Parent::set(keys[i], 0); |
|---|
| 2687 | } |
|---|
| 2688 | } |
|---|
| 2689 | virtual void build() { |
|---|
| 2690 | Parent::build(); |
|---|
| 2691 | Key it; |
|---|
| 2692 | typename Parent::Notifier* nf = Parent::notifier(); |
|---|
| 2693 | for (nf->first(it); it != INVALID; nf->next(it)) { |
|---|
| 2694 | Parent::set(it, 0); |
|---|
| 2695 | } |
|---|
| 2696 | } |
|---|
| 2697 | }; |
|---|
| 2698 | |
|---|
| 2699 | public: |
|---|
| 2700 | |
|---|
| 2701 | /// \brief Constructor. |
|---|
| 2702 | /// |
|---|
| 2703 | /// Constructor for creating an out-degree map. |
|---|
| 2704 | explicit OutDegMap(const Digraph& graph) |
|---|
| 2705 | : _digraph(graph), _deg(graph) { |
|---|
| 2706 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|---|
| 2707 | |
|---|
| 2708 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2709 | _deg[it] = countOutArcs(_digraph, it); |
|---|
| 2710 | } |
|---|
| 2711 | } |
|---|
| 2712 | |
|---|
| 2713 | /// \brief Gives back the out-degree of a Node. |
|---|
| 2714 | /// |
|---|
| 2715 | /// Gives back the out-degree of a Node. |
|---|
| 2716 | int operator[](const Key& key) const { |
|---|
| 2717 | return _deg[key]; |
|---|
| 2718 | } |
|---|
| 2719 | |
|---|
| 2720 | protected: |
|---|
| 2721 | |
|---|
| 2722 | typedef typename Digraph::Arc Arc; |
|---|
| 2723 | |
|---|
| 2724 | virtual void add(const Arc& arc) { |
|---|
| 2725 | ++_deg[_digraph.source(arc)]; |
|---|
| 2726 | } |
|---|
| 2727 | |
|---|
| 2728 | virtual void add(const std::vector<Arc>& arcs) { |
|---|
| 2729 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2730 | ++_deg[_digraph.source(arcs[i])]; |
|---|
| 2731 | } |
|---|
| 2732 | } |
|---|
| 2733 | |
|---|
| 2734 | virtual void erase(const Arc& arc) { |
|---|
| 2735 | --_deg[_digraph.source(arc)]; |
|---|
| 2736 | } |
|---|
| 2737 | |
|---|
| 2738 | virtual void erase(const std::vector<Arc>& arcs) { |
|---|
| 2739 | for (int i = 0; i < int(arcs.size()); ++i) { |
|---|
| 2740 | --_deg[_digraph.source(arcs[i])]; |
|---|
| 2741 | } |
|---|
| 2742 | } |
|---|
| 2743 | |
|---|
| 2744 | virtual void build() { |
|---|
| 2745 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2746 | _deg[it] = countOutArcs(_digraph, it); |
|---|
| 2747 | } |
|---|
| 2748 | } |
|---|
| 2749 | |
|---|
| 2750 | virtual void clear() { |
|---|
| 2751 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|---|
| 2752 | _deg[it] = 0; |
|---|
| 2753 | } |
|---|
| 2754 | } |
|---|
| 2755 | private: |
|---|
| 2756 | |
|---|
| 2757 | const Digraph& _digraph; |
|---|
| 2758 | AutoNodeMap _deg; |
|---|
| 2759 | }; |
|---|
| 2760 | |
|---|
| 2761 | /// \brief Potential difference map |
|---|
| 2762 | /// |
|---|
| 2763 | /// PotentialDifferenceMap returns the difference between the potentials of |
|---|
| 2764 | /// the source and target nodes of each arc in a digraph, i.e. it returns |
|---|
| 2765 | /// \code |
|---|
| 2766 | /// potential[gr.target(arc)] - potential[gr.source(arc)]. |
|---|
| 2767 | /// \endcode |
|---|
| 2768 | /// \tparam GR The digraph type. |
|---|
| 2769 | /// \tparam POT A node map storing the potentials. |
|---|
| 2770 | template <typename GR, typename POT> |
|---|
| 2771 | class PotentialDifferenceMap { |
|---|
| 2772 | public: |
|---|
| 2773 | /// Key type |
|---|
| 2774 | typedef typename GR::Arc Key; |
|---|
| 2775 | /// Value type |
|---|
| 2776 | typedef typename POT::Value Value; |
|---|
| 2777 | |
|---|
| 2778 | /// \brief Constructor |
|---|
| 2779 | /// |
|---|
| 2780 | /// Contructor of the map. |
|---|
| 2781 | explicit PotentialDifferenceMap(const GR& gr, |
|---|
| 2782 | const POT& potential) |
|---|
| 2783 | : _digraph(gr), _potential(potential) {} |
|---|
| 2784 | |
|---|
| 2785 | /// \brief Returns the potential difference for the given arc. |
|---|
| 2786 | /// |
|---|
| 2787 | /// Returns the potential difference for the given arc, i.e. |
|---|
| 2788 | /// \code |
|---|
| 2789 | /// potential[gr.target(arc)] - potential[gr.source(arc)]. |
|---|
| 2790 | /// \endcode |
|---|
| 2791 | Value operator[](const Key& arc) const { |
|---|
| 2792 | return _potential[_digraph.target(arc)] - |
|---|
| 2793 | _potential[_digraph.source(arc)]; |
|---|
| 2794 | } |
|---|
| 2795 | |
|---|
| 2796 | private: |
|---|
| 2797 | const GR& _digraph; |
|---|
| 2798 | const POT& _potential; |
|---|
| 2799 | }; |
|---|
| 2800 | |
|---|
| 2801 | /// \brief Returns a PotentialDifferenceMap. |
|---|
| 2802 | /// |
|---|
| 2803 | /// This function just returns a PotentialDifferenceMap. |
|---|
| 2804 | /// \relates PotentialDifferenceMap |
|---|
| 2805 | template <typename GR, typename POT> |
|---|
| 2806 | PotentialDifferenceMap<GR, POT> |
|---|
| 2807 | potentialDifferenceMap(const GR& gr, const POT& potential) { |
|---|
| 2808 | return PotentialDifferenceMap<GR, POT>(gr, potential); |
|---|
| 2809 | } |
|---|
| 2810 | |
|---|
| 2811 | /// @} |
|---|
| 2812 | } |
|---|
| 2813 | |
|---|
| 2814 | #endif // LEMON_MAPS_H |
|---|