1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2009 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAPS_H |
---|
20 | #define LEMON_MAPS_H |
---|
21 | |
---|
22 | #include <iterator> |
---|
23 | #include <functional> |
---|
24 | #include <vector> |
---|
25 | |
---|
26 | #include <lemon/core.h> |
---|
27 | |
---|
28 | ///\file |
---|
29 | ///\ingroup maps |
---|
30 | ///\brief Miscellaneous property maps |
---|
31 | |
---|
32 | #include <map> |
---|
33 | |
---|
34 | namespace lemon { |
---|
35 | |
---|
36 | /// \addtogroup maps |
---|
37 | /// @{ |
---|
38 | |
---|
39 | /// Base class of maps. |
---|
40 | |
---|
41 | /// Base class of maps. It provides the necessary type definitions |
---|
42 | /// required by the map %concepts. |
---|
43 | template<typename K, typename V> |
---|
44 | class MapBase { |
---|
45 | public: |
---|
46 | /// \brief The key type of the map. |
---|
47 | typedef K Key; |
---|
48 | /// \brief The value type of the map. |
---|
49 | /// (The type of objects associated with the keys). |
---|
50 | typedef V Value; |
---|
51 | }; |
---|
52 | |
---|
53 | |
---|
54 | /// Null map. (a.k.a. DoNothingMap) |
---|
55 | |
---|
56 | /// This map can be used if you have to provide a map only for |
---|
57 | /// its type definitions, or if you have to provide a writable map, |
---|
58 | /// but data written to it is not required (i.e. it will be sent to |
---|
59 | /// <tt>/dev/null</tt>). |
---|
60 | /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
61 | /// |
---|
62 | /// \sa ConstMap |
---|
63 | template<typename K, typename V> |
---|
64 | class NullMap : public MapBase<K, V> { |
---|
65 | public: |
---|
66 | ///\e |
---|
67 | typedef K Key; |
---|
68 | ///\e |
---|
69 | typedef V Value; |
---|
70 | |
---|
71 | /// Gives back a default constructed element. |
---|
72 | Value operator[](const Key&) const { return Value(); } |
---|
73 | /// Absorbs the value. |
---|
74 | void set(const Key&, const Value&) {} |
---|
75 | }; |
---|
76 | |
---|
77 | /// Returns a \c NullMap class |
---|
78 | |
---|
79 | /// This function just returns a \c NullMap class. |
---|
80 | /// \relates NullMap |
---|
81 | template <typename K, typename V> |
---|
82 | NullMap<K, V> nullMap() { |
---|
83 | return NullMap<K, V>(); |
---|
84 | } |
---|
85 | |
---|
86 | |
---|
87 | /// Constant map. |
---|
88 | |
---|
89 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
---|
90 | /// value to each key. |
---|
91 | /// |
---|
92 | /// In other aspects it is equivalent to \c NullMap. |
---|
93 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
---|
94 | /// concept, but it absorbs the data written to it. |
---|
95 | /// |
---|
96 | /// The simplest way of using this map is through the constMap() |
---|
97 | /// function. |
---|
98 | /// |
---|
99 | /// \sa NullMap |
---|
100 | /// \sa IdentityMap |
---|
101 | template<typename K, typename V> |
---|
102 | class ConstMap : public MapBase<K, V> { |
---|
103 | private: |
---|
104 | V _value; |
---|
105 | public: |
---|
106 | ///\e |
---|
107 | typedef K Key; |
---|
108 | ///\e |
---|
109 | typedef V Value; |
---|
110 | |
---|
111 | /// Default constructor |
---|
112 | |
---|
113 | /// Default constructor. |
---|
114 | /// The value of the map will be default constructed. |
---|
115 | ConstMap() {} |
---|
116 | |
---|
117 | /// Constructor with specified initial value |
---|
118 | |
---|
119 | /// Constructor with specified initial value. |
---|
120 | /// \param v The initial value of the map. |
---|
121 | ConstMap(const Value &v) : _value(v) {} |
---|
122 | |
---|
123 | /// Gives back the specified value. |
---|
124 | Value operator[](const Key&) const { return _value; } |
---|
125 | |
---|
126 | /// Absorbs the value. |
---|
127 | void set(const Key&, const Value&) {} |
---|
128 | |
---|
129 | /// Sets the value that is assigned to each key. |
---|
130 | void setAll(const Value &v) { |
---|
131 | _value = v; |
---|
132 | } |
---|
133 | |
---|
134 | template<typename V1> |
---|
135 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
---|
136 | }; |
---|
137 | |
---|
138 | /// Returns a \c ConstMap class |
---|
139 | |
---|
140 | /// This function just returns a \c ConstMap class. |
---|
141 | /// \relates ConstMap |
---|
142 | template<typename K, typename V> |
---|
143 | inline ConstMap<K, V> constMap(const V &v) { |
---|
144 | return ConstMap<K, V>(v); |
---|
145 | } |
---|
146 | |
---|
147 | template<typename K, typename V> |
---|
148 | inline ConstMap<K, V> constMap() { |
---|
149 | return ConstMap<K, V>(); |
---|
150 | } |
---|
151 | |
---|
152 | |
---|
153 | template<typename T, T v> |
---|
154 | struct Const {}; |
---|
155 | |
---|
156 | /// Constant map with inlined constant value. |
---|
157 | |
---|
158 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
---|
159 | /// value to each key. |
---|
160 | /// |
---|
161 | /// In other aspects it is equivalent to \c NullMap. |
---|
162 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
---|
163 | /// concept, but it absorbs the data written to it. |
---|
164 | /// |
---|
165 | /// The simplest way of using this map is through the constMap() |
---|
166 | /// function. |
---|
167 | /// |
---|
168 | /// \sa NullMap |
---|
169 | /// \sa IdentityMap |
---|
170 | template<typename K, typename V, V v> |
---|
171 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
---|
172 | public: |
---|
173 | ///\e |
---|
174 | typedef K Key; |
---|
175 | ///\e |
---|
176 | typedef V Value; |
---|
177 | |
---|
178 | /// Constructor. |
---|
179 | ConstMap() {} |
---|
180 | |
---|
181 | /// Gives back the specified value. |
---|
182 | Value operator[](const Key&) const { return v; } |
---|
183 | |
---|
184 | /// Absorbs the value. |
---|
185 | void set(const Key&, const Value&) {} |
---|
186 | }; |
---|
187 | |
---|
188 | /// Returns a \c ConstMap class with inlined constant value |
---|
189 | |
---|
190 | /// This function just returns a \c ConstMap class with inlined |
---|
191 | /// constant value. |
---|
192 | /// \relates ConstMap |
---|
193 | template<typename K, typename V, V v> |
---|
194 | inline ConstMap<K, Const<V, v> > constMap() { |
---|
195 | return ConstMap<K, Const<V, v> >(); |
---|
196 | } |
---|
197 | |
---|
198 | |
---|
199 | /// Identity map. |
---|
200 | |
---|
201 | /// This \ref concepts::ReadMap "read-only map" gives back the given |
---|
202 | /// key as value without any modification. |
---|
203 | /// |
---|
204 | /// \sa ConstMap |
---|
205 | template <typename T> |
---|
206 | class IdentityMap : public MapBase<T, T> { |
---|
207 | public: |
---|
208 | ///\e |
---|
209 | typedef T Key; |
---|
210 | ///\e |
---|
211 | typedef T Value; |
---|
212 | |
---|
213 | /// Gives back the given value without any modification. |
---|
214 | Value operator[](const Key &k) const { |
---|
215 | return k; |
---|
216 | } |
---|
217 | }; |
---|
218 | |
---|
219 | /// Returns an \c IdentityMap class |
---|
220 | |
---|
221 | /// This function just returns an \c IdentityMap class. |
---|
222 | /// \relates IdentityMap |
---|
223 | template<typename T> |
---|
224 | inline IdentityMap<T> identityMap() { |
---|
225 | return IdentityMap<T>(); |
---|
226 | } |
---|
227 | |
---|
228 | |
---|
229 | /// \brief Map for storing values for integer keys from the range |
---|
230 | /// <tt>[0..size-1]</tt>. |
---|
231 | /// |
---|
232 | /// This map is essentially a wrapper for \c std::vector. It assigns |
---|
233 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
---|
234 | /// It can be used with some data structures, for example |
---|
235 | /// \c UnionFind, \c BinHeap, when the used items are small |
---|
236 | /// integers. This map conforms the \ref concepts::ReferenceMap |
---|
237 | /// "ReferenceMap" concept. |
---|
238 | /// |
---|
239 | /// The simplest way of using this map is through the rangeMap() |
---|
240 | /// function. |
---|
241 | template <typename V> |
---|
242 | class RangeMap : public MapBase<int, V> { |
---|
243 | template <typename V1> |
---|
244 | friend class RangeMap; |
---|
245 | private: |
---|
246 | |
---|
247 | typedef std::vector<V> Vector; |
---|
248 | Vector _vector; |
---|
249 | |
---|
250 | public: |
---|
251 | |
---|
252 | /// Key type |
---|
253 | typedef int Key; |
---|
254 | /// Value type |
---|
255 | typedef V Value; |
---|
256 | /// Reference type |
---|
257 | typedef typename Vector::reference Reference; |
---|
258 | /// Const reference type |
---|
259 | typedef typename Vector::const_reference ConstReference; |
---|
260 | |
---|
261 | typedef True ReferenceMapTag; |
---|
262 | |
---|
263 | public: |
---|
264 | |
---|
265 | /// Constructor with specified default value. |
---|
266 | RangeMap(int size = 0, const Value &value = Value()) |
---|
267 | : _vector(size, value) {} |
---|
268 | |
---|
269 | /// Constructs the map from an appropriate \c std::vector. |
---|
270 | template <typename V1> |
---|
271 | RangeMap(const std::vector<V1>& vector) |
---|
272 | : _vector(vector.begin(), vector.end()) {} |
---|
273 | |
---|
274 | /// Constructs the map from another \c RangeMap. |
---|
275 | template <typename V1> |
---|
276 | RangeMap(const RangeMap<V1> &c) |
---|
277 | : _vector(c._vector.begin(), c._vector.end()) {} |
---|
278 | |
---|
279 | /// Returns the size of the map. |
---|
280 | int size() { |
---|
281 | return _vector.size(); |
---|
282 | } |
---|
283 | |
---|
284 | /// Resizes the map. |
---|
285 | |
---|
286 | /// Resizes the underlying \c std::vector container, so changes the |
---|
287 | /// keyset of the map. |
---|
288 | /// \param size The new size of the map. The new keyset will be the |
---|
289 | /// range <tt>[0..size-1]</tt>. |
---|
290 | /// \param value The default value to assign to the new keys. |
---|
291 | void resize(int size, const Value &value = Value()) { |
---|
292 | _vector.resize(size, value); |
---|
293 | } |
---|
294 | |
---|
295 | private: |
---|
296 | |
---|
297 | RangeMap& operator=(const RangeMap&); |
---|
298 | |
---|
299 | public: |
---|
300 | |
---|
301 | ///\e |
---|
302 | Reference operator[](const Key &k) { |
---|
303 | return _vector[k]; |
---|
304 | } |
---|
305 | |
---|
306 | ///\e |
---|
307 | ConstReference operator[](const Key &k) const { |
---|
308 | return _vector[k]; |
---|
309 | } |
---|
310 | |
---|
311 | ///\e |
---|
312 | void set(const Key &k, const Value &v) { |
---|
313 | _vector[k] = v; |
---|
314 | } |
---|
315 | }; |
---|
316 | |
---|
317 | /// Returns a \c RangeMap class |
---|
318 | |
---|
319 | /// This function just returns a \c RangeMap class. |
---|
320 | /// \relates RangeMap |
---|
321 | template<typename V> |
---|
322 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
---|
323 | return RangeMap<V>(size, value); |
---|
324 | } |
---|
325 | |
---|
326 | /// \brief Returns a \c RangeMap class created from an appropriate |
---|
327 | /// \c std::vector |
---|
328 | |
---|
329 | /// This function just returns a \c RangeMap class created from an |
---|
330 | /// appropriate \c std::vector. |
---|
331 | /// \relates RangeMap |
---|
332 | template<typename V> |
---|
333 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
---|
334 | return RangeMap<V>(vector); |
---|
335 | } |
---|
336 | |
---|
337 | |
---|
338 | /// Map type based on \c std::map |
---|
339 | |
---|
340 | /// This map is essentially a wrapper for \c std::map with addition |
---|
341 | /// that you can specify a default value for the keys that are not |
---|
342 | /// stored actually. This value can be different from the default |
---|
343 | /// contructed value (i.e. \c %Value()). |
---|
344 | /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
---|
345 | /// concept. |
---|
346 | /// |
---|
347 | /// This map is useful if a default value should be assigned to most of |
---|
348 | /// the keys and different values should be assigned only to a few |
---|
349 | /// keys (i.e. the map is "sparse"). |
---|
350 | /// The name of this type also refers to this important usage. |
---|
351 | /// |
---|
352 | /// Apart form that this map can be used in many other cases since it |
---|
353 | /// is based on \c std::map, which is a general associative container. |
---|
354 | /// However keep in mind that it is usually not as efficient as other |
---|
355 | /// maps. |
---|
356 | /// |
---|
357 | /// The simplest way of using this map is through the sparseMap() |
---|
358 | /// function. |
---|
359 | template <typename K, typename V, typename Comp = std::less<K> > |
---|
360 | class SparseMap : public MapBase<K, V> { |
---|
361 | template <typename K1, typename V1, typename C1> |
---|
362 | friend class SparseMap; |
---|
363 | public: |
---|
364 | |
---|
365 | /// Key type |
---|
366 | typedef K Key; |
---|
367 | /// Value type |
---|
368 | typedef V Value; |
---|
369 | /// Reference type |
---|
370 | typedef Value& Reference; |
---|
371 | /// Const reference type |
---|
372 | typedef const Value& ConstReference; |
---|
373 | |
---|
374 | typedef True ReferenceMapTag; |
---|
375 | |
---|
376 | private: |
---|
377 | |
---|
378 | typedef std::map<K, V, Comp> Map; |
---|
379 | Map _map; |
---|
380 | Value _value; |
---|
381 | |
---|
382 | public: |
---|
383 | |
---|
384 | /// \brief Constructor with specified default value. |
---|
385 | SparseMap(const Value &value = Value()) : _value(value) {} |
---|
386 | /// \brief Constructs the map from an appropriate \c std::map, and |
---|
387 | /// explicitly specifies a default value. |
---|
388 | template <typename V1, typename Comp1> |
---|
389 | SparseMap(const std::map<Key, V1, Comp1> &map, |
---|
390 | const Value &value = Value()) |
---|
391 | : _map(map.begin(), map.end()), _value(value) {} |
---|
392 | |
---|
393 | /// \brief Constructs the map from another \c SparseMap. |
---|
394 | template<typename V1, typename Comp1> |
---|
395 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
---|
396 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
---|
397 | |
---|
398 | private: |
---|
399 | |
---|
400 | SparseMap& operator=(const SparseMap&); |
---|
401 | |
---|
402 | public: |
---|
403 | |
---|
404 | ///\e |
---|
405 | Reference operator[](const Key &k) { |
---|
406 | typename Map::iterator it = _map.lower_bound(k); |
---|
407 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
---|
408 | return it->second; |
---|
409 | else |
---|
410 | return _map.insert(it, std::make_pair(k, _value))->second; |
---|
411 | } |
---|
412 | |
---|
413 | ///\e |
---|
414 | ConstReference operator[](const Key &k) const { |
---|
415 | typename Map::const_iterator it = _map.find(k); |
---|
416 | if (it != _map.end()) |
---|
417 | return it->second; |
---|
418 | else |
---|
419 | return _value; |
---|
420 | } |
---|
421 | |
---|
422 | ///\e |
---|
423 | void set(const Key &k, const Value &v) { |
---|
424 | typename Map::iterator it = _map.lower_bound(k); |
---|
425 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
---|
426 | it->second = v; |
---|
427 | else |
---|
428 | _map.insert(it, std::make_pair(k, v)); |
---|
429 | } |
---|
430 | |
---|
431 | ///\e |
---|
432 | void setAll(const Value &v) { |
---|
433 | _value = v; |
---|
434 | _map.clear(); |
---|
435 | } |
---|
436 | }; |
---|
437 | |
---|
438 | /// Returns a \c SparseMap class |
---|
439 | |
---|
440 | /// This function just returns a \c SparseMap class with specified |
---|
441 | /// default value. |
---|
442 | /// \relates SparseMap |
---|
443 | template<typename K, typename V, typename Compare> |
---|
444 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
---|
445 | return SparseMap<K, V, Compare>(value); |
---|
446 | } |
---|
447 | |
---|
448 | template<typename K, typename V> |
---|
449 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
---|
450 | return SparseMap<K, V, std::less<K> >(value); |
---|
451 | } |
---|
452 | |
---|
453 | /// \brief Returns a \c SparseMap class created from an appropriate |
---|
454 | /// \c std::map |
---|
455 | |
---|
456 | /// This function just returns a \c SparseMap class created from an |
---|
457 | /// appropriate \c std::map. |
---|
458 | /// \relates SparseMap |
---|
459 | template<typename K, typename V, typename Compare> |
---|
460 | inline SparseMap<K, V, Compare> |
---|
461 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
---|
462 | { |
---|
463 | return SparseMap<K, V, Compare>(map, value); |
---|
464 | } |
---|
465 | |
---|
466 | /// @} |
---|
467 | |
---|
468 | /// \addtogroup map_adaptors |
---|
469 | /// @{ |
---|
470 | |
---|
471 | /// Composition of two maps |
---|
472 | |
---|
473 | /// This \ref concepts::ReadMap "read-only map" returns the |
---|
474 | /// composition of two given maps. That is to say, if \c m1 is of |
---|
475 | /// type \c M1 and \c m2 is of \c M2, then for |
---|
476 | /// \code |
---|
477 | /// ComposeMap<M1, M2> cm(m1,m2); |
---|
478 | /// \endcode |
---|
479 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
---|
480 | /// |
---|
481 | /// The \c Key type of the map is inherited from \c M2 and the |
---|
482 | /// \c Value type is from \c M1. |
---|
483 | /// \c M2::Value must be convertible to \c M1::Key. |
---|
484 | /// |
---|
485 | /// The simplest way of using this map is through the composeMap() |
---|
486 | /// function. |
---|
487 | /// |
---|
488 | /// \sa CombineMap |
---|
489 | template <typename M1, typename M2> |
---|
490 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
---|
491 | const M1 &_m1; |
---|
492 | const M2 &_m2; |
---|
493 | public: |
---|
494 | ///\e |
---|
495 | typedef typename M2::Key Key; |
---|
496 | ///\e |
---|
497 | typedef typename M1::Value Value; |
---|
498 | |
---|
499 | /// Constructor |
---|
500 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
501 | |
---|
502 | ///\e |
---|
503 | typename MapTraits<M1>::ConstReturnValue |
---|
504 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
---|
505 | }; |
---|
506 | |
---|
507 | /// Returns a \c ComposeMap class |
---|
508 | |
---|
509 | /// This function just returns a \c ComposeMap class. |
---|
510 | /// |
---|
511 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
---|
512 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
---|
513 | /// will be equal to <tt>m1[m2[x]]</tt>. |
---|
514 | /// |
---|
515 | /// \relates ComposeMap |
---|
516 | template <typename M1, typename M2> |
---|
517 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
---|
518 | return ComposeMap<M1, M2>(m1, m2); |
---|
519 | } |
---|
520 | |
---|
521 | |
---|
522 | /// Combination of two maps using an STL (binary) functor. |
---|
523 | |
---|
524 | /// This \ref concepts::ReadMap "read-only map" takes two maps and a |
---|
525 | /// binary functor and returns the combination of the two given maps |
---|
526 | /// using the functor. |
---|
527 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
---|
528 | /// and \c f is of \c F, then for |
---|
529 | /// \code |
---|
530 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
---|
531 | /// \endcode |
---|
532 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
---|
533 | /// |
---|
534 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
---|
535 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
---|
536 | /// \c M2::Value and \c M1::Value must be convertible to the |
---|
537 | /// corresponding input parameter of \c F and the return type of \c F |
---|
538 | /// must be convertible to \c V. |
---|
539 | /// |
---|
540 | /// The simplest way of using this map is through the combineMap() |
---|
541 | /// function. |
---|
542 | /// |
---|
543 | /// \sa ComposeMap |
---|
544 | template<typename M1, typename M2, typename F, |
---|
545 | typename V = typename F::result_type> |
---|
546 | class CombineMap : public MapBase<typename M1::Key, V> { |
---|
547 | const M1 &_m1; |
---|
548 | const M2 &_m2; |
---|
549 | F _f; |
---|
550 | public: |
---|
551 | ///\e |
---|
552 | typedef typename M1::Key Key; |
---|
553 | ///\e |
---|
554 | typedef V Value; |
---|
555 | |
---|
556 | /// Constructor |
---|
557 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
---|
558 | : _m1(m1), _m2(m2), _f(f) {} |
---|
559 | ///\e |
---|
560 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
---|
561 | }; |
---|
562 | |
---|
563 | /// Returns a \c CombineMap class |
---|
564 | |
---|
565 | /// This function just returns a \c CombineMap class. |
---|
566 | /// |
---|
567 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
568 | /// values, then |
---|
569 | /// \code |
---|
570 | /// combineMap(m1,m2,std::plus<double>()) |
---|
571 | /// \endcode |
---|
572 | /// is equivalent to |
---|
573 | /// \code |
---|
574 | /// addMap(m1,m2) |
---|
575 | /// \endcode |
---|
576 | /// |
---|
577 | /// This function is specialized for adaptable binary function |
---|
578 | /// classes and C++ functions. |
---|
579 | /// |
---|
580 | /// \relates CombineMap |
---|
581 | template<typename M1, typename M2, typename F, typename V> |
---|
582 | inline CombineMap<M1, M2, F, V> |
---|
583 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
---|
584 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
---|
585 | } |
---|
586 | |
---|
587 | template<typename M1, typename M2, typename F> |
---|
588 | inline CombineMap<M1, M2, F, typename F::result_type> |
---|
589 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
---|
590 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
---|
591 | } |
---|
592 | |
---|
593 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
---|
594 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
---|
595 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
---|
596 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
---|
597 | } |
---|
598 | |
---|
599 | |
---|
600 | /// Converts an STL style (unary) functor to a map |
---|
601 | |
---|
602 | /// This \ref concepts::ReadMap "read-only map" returns the value |
---|
603 | /// of a given functor. Actually, it just wraps the functor and |
---|
604 | /// provides the \c Key and \c Value typedefs. |
---|
605 | /// |
---|
606 | /// Template parameters \c K and \c V will become its \c Key and |
---|
607 | /// \c Value. In most cases they have to be given explicitly because |
---|
608 | /// a functor typically does not provide \c argument_type and |
---|
609 | /// \c result_type typedefs. |
---|
610 | /// Parameter \c F is the type of the used functor. |
---|
611 | /// |
---|
612 | /// The simplest way of using this map is through the functorToMap() |
---|
613 | /// function. |
---|
614 | /// |
---|
615 | /// \sa MapToFunctor |
---|
616 | template<typename F, |
---|
617 | typename K = typename F::argument_type, |
---|
618 | typename V = typename F::result_type> |
---|
619 | class FunctorToMap : public MapBase<K, V> { |
---|
620 | F _f; |
---|
621 | public: |
---|
622 | ///\e |
---|
623 | typedef K Key; |
---|
624 | ///\e |
---|
625 | typedef V Value; |
---|
626 | |
---|
627 | /// Constructor |
---|
628 | FunctorToMap(const F &f = F()) : _f(f) {} |
---|
629 | ///\e |
---|
630 | Value operator[](const Key &k) const { return _f(k); } |
---|
631 | }; |
---|
632 | |
---|
633 | /// Returns a \c FunctorToMap class |
---|
634 | |
---|
635 | /// This function just returns a \c FunctorToMap class. |
---|
636 | /// |
---|
637 | /// This function is specialized for adaptable binary function |
---|
638 | /// classes and C++ functions. |
---|
639 | /// |
---|
640 | /// \relates FunctorToMap |
---|
641 | template<typename K, typename V, typename F> |
---|
642 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
---|
643 | return FunctorToMap<F, K, V>(f); |
---|
644 | } |
---|
645 | |
---|
646 | template <typename F> |
---|
647 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
---|
648 | functorToMap(const F &f) |
---|
649 | { |
---|
650 | return FunctorToMap<F, typename F::argument_type, |
---|
651 | typename F::result_type>(f); |
---|
652 | } |
---|
653 | |
---|
654 | template <typename K, typename V> |
---|
655 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
---|
656 | return FunctorToMap<V (*)(K), K, V>(f); |
---|
657 | } |
---|
658 | |
---|
659 | |
---|
660 | /// Converts a map to an STL style (unary) functor |
---|
661 | |
---|
662 | /// This class converts a map to an STL style (unary) functor. |
---|
663 | /// That is it provides an <tt>operator()</tt> to read its values. |
---|
664 | /// |
---|
665 | /// For the sake of convenience it also works as a usual |
---|
666 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
---|
667 | /// and the \c Key and \c Value typedefs also exist. |
---|
668 | /// |
---|
669 | /// The simplest way of using this map is through the mapToFunctor() |
---|
670 | /// function. |
---|
671 | /// |
---|
672 | ///\sa FunctorToMap |
---|
673 | template <typename M> |
---|
674 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
---|
675 | const M &_m; |
---|
676 | public: |
---|
677 | ///\e |
---|
678 | typedef typename M::Key Key; |
---|
679 | ///\e |
---|
680 | typedef typename M::Value Value; |
---|
681 | |
---|
682 | typedef typename M::Key argument_type; |
---|
683 | typedef typename M::Value result_type; |
---|
684 | |
---|
685 | /// Constructor |
---|
686 | MapToFunctor(const M &m) : _m(m) {} |
---|
687 | ///\e |
---|
688 | Value operator()(const Key &k) const { return _m[k]; } |
---|
689 | ///\e |
---|
690 | Value operator[](const Key &k) const { return _m[k]; } |
---|
691 | }; |
---|
692 | |
---|
693 | /// Returns a \c MapToFunctor class |
---|
694 | |
---|
695 | /// This function just returns a \c MapToFunctor class. |
---|
696 | /// \relates MapToFunctor |
---|
697 | template<typename M> |
---|
698 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
---|
699 | return MapToFunctor<M>(m); |
---|
700 | } |
---|
701 | |
---|
702 | |
---|
703 | /// \brief Map adaptor to convert the \c Value type of a map to |
---|
704 | /// another type using the default conversion. |
---|
705 | |
---|
706 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
---|
707 | /// "readable map" to another type using the default conversion. |
---|
708 | /// The \c Key type of it is inherited from \c M and the \c Value |
---|
709 | /// type is \c V. |
---|
710 | /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
---|
711 | /// |
---|
712 | /// The simplest way of using this map is through the convertMap() |
---|
713 | /// function. |
---|
714 | template <typename M, typename V> |
---|
715 | class ConvertMap : public MapBase<typename M::Key, V> { |
---|
716 | const M &_m; |
---|
717 | public: |
---|
718 | ///\e |
---|
719 | typedef typename M::Key Key; |
---|
720 | ///\e |
---|
721 | typedef V Value; |
---|
722 | |
---|
723 | /// Constructor |
---|
724 | |
---|
725 | /// Constructor. |
---|
726 | /// \param m The underlying map. |
---|
727 | ConvertMap(const M &m) : _m(m) {} |
---|
728 | |
---|
729 | ///\e |
---|
730 | Value operator[](const Key &k) const { return _m[k]; } |
---|
731 | }; |
---|
732 | |
---|
733 | /// Returns a \c ConvertMap class |
---|
734 | |
---|
735 | /// This function just returns a \c ConvertMap class. |
---|
736 | /// \relates ConvertMap |
---|
737 | template<typename V, typename M> |
---|
738 | inline ConvertMap<M, V> convertMap(const M &map) { |
---|
739 | return ConvertMap<M, V>(map); |
---|
740 | } |
---|
741 | |
---|
742 | |
---|
743 | /// Applies all map setting operations to two maps |
---|
744 | |
---|
745 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
---|
746 | /// and each write request will be passed to both of them. |
---|
747 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
---|
748 | /// operations will return the corresponding values of \c M1. |
---|
749 | /// |
---|
750 | /// The \c Key and \c Value types are inherited from \c M1. |
---|
751 | /// The \c Key and \c Value of \c M2 must be convertible from those |
---|
752 | /// of \c M1. |
---|
753 | /// |
---|
754 | /// The simplest way of using this map is through the forkMap() |
---|
755 | /// function. |
---|
756 | template<typename M1, typename M2> |
---|
757 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
758 | M1 &_m1; |
---|
759 | M2 &_m2; |
---|
760 | public: |
---|
761 | ///\e |
---|
762 | typedef typename M1::Key Key; |
---|
763 | ///\e |
---|
764 | typedef typename M1::Value Value; |
---|
765 | |
---|
766 | /// Constructor |
---|
767 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
---|
768 | /// Returns the value associated with the given key in the first map. |
---|
769 | Value operator[](const Key &k) const { return _m1[k]; } |
---|
770 | /// Sets the value associated with the given key in both maps. |
---|
771 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
---|
772 | }; |
---|
773 | |
---|
774 | /// Returns a \c ForkMap class |
---|
775 | |
---|
776 | /// This function just returns a \c ForkMap class. |
---|
777 | /// \relates ForkMap |
---|
778 | template <typename M1, typename M2> |
---|
779 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
---|
780 | return ForkMap<M1,M2>(m1,m2); |
---|
781 | } |
---|
782 | |
---|
783 | |
---|
784 | /// Sum of two maps |
---|
785 | |
---|
786 | /// This \ref concepts::ReadMap "read-only map" returns the sum |
---|
787 | /// of the values of the two given maps. |
---|
788 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
789 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
790 | /// \c M1. |
---|
791 | /// |
---|
792 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
793 | /// \code |
---|
794 | /// AddMap<M1,M2> am(m1,m2); |
---|
795 | /// \endcode |
---|
796 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
---|
797 | /// |
---|
798 | /// The simplest way of using this map is through the addMap() |
---|
799 | /// function. |
---|
800 | /// |
---|
801 | /// \sa SubMap, MulMap, DivMap |
---|
802 | /// \sa ShiftMap, ShiftWriteMap |
---|
803 | template<typename M1, typename M2> |
---|
804 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
805 | const M1 &_m1; |
---|
806 | const M2 &_m2; |
---|
807 | public: |
---|
808 | ///\e |
---|
809 | typedef typename M1::Key Key; |
---|
810 | ///\e |
---|
811 | typedef typename M1::Value Value; |
---|
812 | |
---|
813 | /// Constructor |
---|
814 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
815 | ///\e |
---|
816 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
---|
817 | }; |
---|
818 | |
---|
819 | /// Returns an \c AddMap class |
---|
820 | |
---|
821 | /// This function just returns an \c AddMap class. |
---|
822 | /// |
---|
823 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
824 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
---|
825 | /// <tt>m1[x]+m2[x]</tt>. |
---|
826 | /// |
---|
827 | /// \relates AddMap |
---|
828 | template<typename M1, typename M2> |
---|
829 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
---|
830 | return AddMap<M1, M2>(m1,m2); |
---|
831 | } |
---|
832 | |
---|
833 | |
---|
834 | /// Difference of two maps |
---|
835 | |
---|
836 | /// This \ref concepts::ReadMap "read-only map" returns the difference |
---|
837 | /// of the values of the two given maps. |
---|
838 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
839 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
840 | /// \c M1. |
---|
841 | /// |
---|
842 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
843 | /// \code |
---|
844 | /// SubMap<M1,M2> sm(m1,m2); |
---|
845 | /// \endcode |
---|
846 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
---|
847 | /// |
---|
848 | /// The simplest way of using this map is through the subMap() |
---|
849 | /// function. |
---|
850 | /// |
---|
851 | /// \sa AddMap, MulMap, DivMap |
---|
852 | template<typename M1, typename M2> |
---|
853 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
854 | const M1 &_m1; |
---|
855 | const M2 &_m2; |
---|
856 | public: |
---|
857 | ///\e |
---|
858 | typedef typename M1::Key Key; |
---|
859 | ///\e |
---|
860 | typedef typename M1::Value Value; |
---|
861 | |
---|
862 | /// Constructor |
---|
863 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
864 | ///\e |
---|
865 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
---|
866 | }; |
---|
867 | |
---|
868 | /// Returns a \c SubMap class |
---|
869 | |
---|
870 | /// This function just returns a \c SubMap class. |
---|
871 | /// |
---|
872 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
873 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
---|
874 | /// <tt>m1[x]-m2[x]</tt>. |
---|
875 | /// |
---|
876 | /// \relates SubMap |
---|
877 | template<typename M1, typename M2> |
---|
878 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
---|
879 | return SubMap<M1, M2>(m1,m2); |
---|
880 | } |
---|
881 | |
---|
882 | |
---|
883 | /// Product of two maps |
---|
884 | |
---|
885 | /// This \ref concepts::ReadMap "read-only map" returns the product |
---|
886 | /// of the values of the two given maps. |
---|
887 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
888 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
889 | /// \c M1. |
---|
890 | /// |
---|
891 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
892 | /// \code |
---|
893 | /// MulMap<M1,M2> mm(m1,m2); |
---|
894 | /// \endcode |
---|
895 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
---|
896 | /// |
---|
897 | /// The simplest way of using this map is through the mulMap() |
---|
898 | /// function. |
---|
899 | /// |
---|
900 | /// \sa AddMap, SubMap, DivMap |
---|
901 | /// \sa ScaleMap, ScaleWriteMap |
---|
902 | template<typename M1, typename M2> |
---|
903 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
904 | const M1 &_m1; |
---|
905 | const M2 &_m2; |
---|
906 | public: |
---|
907 | ///\e |
---|
908 | typedef typename M1::Key Key; |
---|
909 | ///\e |
---|
910 | typedef typename M1::Value Value; |
---|
911 | |
---|
912 | /// Constructor |
---|
913 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
914 | ///\e |
---|
915 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
---|
916 | }; |
---|
917 | |
---|
918 | /// Returns a \c MulMap class |
---|
919 | |
---|
920 | /// This function just returns a \c MulMap class. |
---|
921 | /// |
---|
922 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
923 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
---|
924 | /// <tt>m1[x]*m2[x]</tt>. |
---|
925 | /// |
---|
926 | /// \relates MulMap |
---|
927 | template<typename M1, typename M2> |
---|
928 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
---|
929 | return MulMap<M1, M2>(m1,m2); |
---|
930 | } |
---|
931 | |
---|
932 | |
---|
933 | /// Quotient of two maps |
---|
934 | |
---|
935 | /// This \ref concepts::ReadMap "read-only map" returns the quotient |
---|
936 | /// of the values of the two given maps. |
---|
937 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
938 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
939 | /// \c M1. |
---|
940 | /// |
---|
941 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
942 | /// \code |
---|
943 | /// DivMap<M1,M2> dm(m1,m2); |
---|
944 | /// \endcode |
---|
945 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
---|
946 | /// |
---|
947 | /// The simplest way of using this map is through the divMap() |
---|
948 | /// function. |
---|
949 | /// |
---|
950 | /// \sa AddMap, SubMap, MulMap |
---|
951 | template<typename M1, typename M2> |
---|
952 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
953 | const M1 &_m1; |
---|
954 | const M2 &_m2; |
---|
955 | public: |
---|
956 | ///\e |
---|
957 | typedef typename M1::Key Key; |
---|
958 | ///\e |
---|
959 | typedef typename M1::Value Value; |
---|
960 | |
---|
961 | /// Constructor |
---|
962 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
963 | ///\e |
---|
964 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
---|
965 | }; |
---|
966 | |
---|
967 | /// Returns a \c DivMap class |
---|
968 | |
---|
969 | /// This function just returns a \c DivMap class. |
---|
970 | /// |
---|
971 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
972 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
---|
973 | /// <tt>m1[x]/m2[x]</tt>. |
---|
974 | /// |
---|
975 | /// \relates DivMap |
---|
976 | template<typename M1, typename M2> |
---|
977 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
---|
978 | return DivMap<M1, M2>(m1,m2); |
---|
979 | } |
---|
980 | |
---|
981 | |
---|
982 | /// Shifts a map with a constant. |
---|
983 | |
---|
984 | /// This \ref concepts::ReadMap "read-only map" returns the sum of |
---|
985 | /// the given map and a constant value (i.e. it shifts the map with |
---|
986 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
---|
987 | /// |
---|
988 | /// Actually, |
---|
989 | /// \code |
---|
990 | /// ShiftMap<M> sh(m,v); |
---|
991 | /// \endcode |
---|
992 | /// is equivalent to |
---|
993 | /// \code |
---|
994 | /// ConstMap<M::Key, M::Value> cm(v); |
---|
995 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
---|
996 | /// \endcode |
---|
997 | /// |
---|
998 | /// The simplest way of using this map is through the shiftMap() |
---|
999 | /// function. |
---|
1000 | /// |
---|
1001 | /// \sa ShiftWriteMap |
---|
1002 | template<typename M, typename C = typename M::Value> |
---|
1003 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1004 | const M &_m; |
---|
1005 | C _v; |
---|
1006 | public: |
---|
1007 | ///\e |
---|
1008 | typedef typename M::Key Key; |
---|
1009 | ///\e |
---|
1010 | typedef typename M::Value Value; |
---|
1011 | |
---|
1012 | /// Constructor |
---|
1013 | |
---|
1014 | /// Constructor. |
---|
1015 | /// \param m The undelying map. |
---|
1016 | /// \param v The constant value. |
---|
1017 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
---|
1018 | ///\e |
---|
1019 | Value operator[](const Key &k) const { return _m[k]+_v; } |
---|
1020 | }; |
---|
1021 | |
---|
1022 | /// Shifts a map with a constant (read-write version). |
---|
1023 | |
---|
1024 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
---|
1025 | /// of the given map and a constant value (i.e. it shifts the map with |
---|
1026 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
---|
1027 | /// It makes also possible to write the map. |
---|
1028 | /// |
---|
1029 | /// The simplest way of using this map is through the shiftWriteMap() |
---|
1030 | /// function. |
---|
1031 | /// |
---|
1032 | /// \sa ShiftMap |
---|
1033 | template<typename M, typename C = typename M::Value> |
---|
1034 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1035 | M &_m; |
---|
1036 | C _v; |
---|
1037 | public: |
---|
1038 | ///\e |
---|
1039 | typedef typename M::Key Key; |
---|
1040 | ///\e |
---|
1041 | typedef typename M::Value Value; |
---|
1042 | |
---|
1043 | /// Constructor |
---|
1044 | |
---|
1045 | /// Constructor. |
---|
1046 | /// \param m The undelying map. |
---|
1047 | /// \param v The constant value. |
---|
1048 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
---|
1049 | ///\e |
---|
1050 | Value operator[](const Key &k) const { return _m[k]+_v; } |
---|
1051 | ///\e |
---|
1052 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
---|
1053 | }; |
---|
1054 | |
---|
1055 | /// Returns a \c ShiftMap class |
---|
1056 | |
---|
1057 | /// This function just returns a \c ShiftMap class. |
---|
1058 | /// |
---|
1059 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1060 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
---|
1061 | /// <tt>m[x]+v</tt>. |
---|
1062 | /// |
---|
1063 | /// \relates ShiftMap |
---|
1064 | template<typename M, typename C> |
---|
1065 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
---|
1066 | return ShiftMap<M, C>(m,v); |
---|
1067 | } |
---|
1068 | |
---|
1069 | /// Returns a \c ShiftWriteMap class |
---|
1070 | |
---|
1071 | /// This function just returns a \c ShiftWriteMap class. |
---|
1072 | /// |
---|
1073 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1074 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
---|
1075 | /// <tt>m[x]+v</tt>. |
---|
1076 | /// Moreover it makes also possible to write the map. |
---|
1077 | /// |
---|
1078 | /// \relates ShiftWriteMap |
---|
1079 | template<typename M, typename C> |
---|
1080 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
---|
1081 | return ShiftWriteMap<M, C>(m,v); |
---|
1082 | } |
---|
1083 | |
---|
1084 | |
---|
1085 | /// Scales a map with a constant. |
---|
1086 | |
---|
1087 | /// This \ref concepts::ReadMap "read-only map" returns the value of |
---|
1088 | /// the given map multiplied from the left side with a constant value. |
---|
1089 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1090 | /// |
---|
1091 | /// Actually, |
---|
1092 | /// \code |
---|
1093 | /// ScaleMap<M> sc(m,v); |
---|
1094 | /// \endcode |
---|
1095 | /// is equivalent to |
---|
1096 | /// \code |
---|
1097 | /// ConstMap<M::Key, M::Value> cm(v); |
---|
1098 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
---|
1099 | /// \endcode |
---|
1100 | /// |
---|
1101 | /// The simplest way of using this map is through the scaleMap() |
---|
1102 | /// function. |
---|
1103 | /// |
---|
1104 | /// \sa ScaleWriteMap |
---|
1105 | template<typename M, typename C = typename M::Value> |
---|
1106 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1107 | const M &_m; |
---|
1108 | C _v; |
---|
1109 | public: |
---|
1110 | ///\e |
---|
1111 | typedef typename M::Key Key; |
---|
1112 | ///\e |
---|
1113 | typedef typename M::Value Value; |
---|
1114 | |
---|
1115 | /// Constructor |
---|
1116 | |
---|
1117 | /// Constructor. |
---|
1118 | /// \param m The undelying map. |
---|
1119 | /// \param v The constant value. |
---|
1120 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
---|
1121 | ///\e |
---|
1122 | Value operator[](const Key &k) const { return _v*_m[k]; } |
---|
1123 | }; |
---|
1124 | |
---|
1125 | /// Scales a map with a constant (read-write version). |
---|
1126 | |
---|
1127 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
---|
1128 | /// the given map multiplied from the left side with a constant value. |
---|
1129 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1130 | /// It can also be used as write map if the \c / operator is defined |
---|
1131 | /// between \c Value and \c C and the given multiplier is not zero. |
---|
1132 | /// |
---|
1133 | /// The simplest way of using this map is through the scaleWriteMap() |
---|
1134 | /// function. |
---|
1135 | /// |
---|
1136 | /// \sa ScaleMap |
---|
1137 | template<typename M, typename C = typename M::Value> |
---|
1138 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1139 | M &_m; |
---|
1140 | C _v; |
---|
1141 | public: |
---|
1142 | ///\e |
---|
1143 | typedef typename M::Key Key; |
---|
1144 | ///\e |
---|
1145 | typedef typename M::Value Value; |
---|
1146 | |
---|
1147 | /// Constructor |
---|
1148 | |
---|
1149 | /// Constructor. |
---|
1150 | /// \param m The undelying map. |
---|
1151 | /// \param v The constant value. |
---|
1152 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
---|
1153 | ///\e |
---|
1154 | Value operator[](const Key &k) const { return _v*_m[k]; } |
---|
1155 | ///\e |
---|
1156 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
---|
1157 | }; |
---|
1158 | |
---|
1159 | /// Returns a \c ScaleMap class |
---|
1160 | |
---|
1161 | /// This function just returns a \c ScaleMap class. |
---|
1162 | /// |
---|
1163 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1164 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
---|
1165 | /// <tt>v*m[x]</tt>. |
---|
1166 | /// |
---|
1167 | /// \relates ScaleMap |
---|
1168 | template<typename M, typename C> |
---|
1169 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
---|
1170 | return ScaleMap<M, C>(m,v); |
---|
1171 | } |
---|
1172 | |
---|
1173 | /// Returns a \c ScaleWriteMap class |
---|
1174 | |
---|
1175 | /// This function just returns a \c ScaleWriteMap class. |
---|
1176 | /// |
---|
1177 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1178 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
---|
1179 | /// <tt>v*m[x]</tt>. |
---|
1180 | /// Moreover it makes also possible to write the map. |
---|
1181 | /// |
---|
1182 | /// \relates ScaleWriteMap |
---|
1183 | template<typename M, typename C> |
---|
1184 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
---|
1185 | return ScaleWriteMap<M, C>(m,v); |
---|
1186 | } |
---|
1187 | |
---|
1188 | |
---|
1189 | /// Negative of a map |
---|
1190 | |
---|
1191 | /// This \ref concepts::ReadMap "read-only map" returns the negative |
---|
1192 | /// of the values of the given map (using the unary \c - operator). |
---|
1193 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1194 | /// |
---|
1195 | /// If M::Value is \c int, \c double etc., then |
---|
1196 | /// \code |
---|
1197 | /// NegMap<M> neg(m); |
---|
1198 | /// \endcode |
---|
1199 | /// is equivalent to |
---|
1200 | /// \code |
---|
1201 | /// ScaleMap<M> neg(m,-1); |
---|
1202 | /// \endcode |
---|
1203 | /// |
---|
1204 | /// The simplest way of using this map is through the negMap() |
---|
1205 | /// function. |
---|
1206 | /// |
---|
1207 | /// \sa NegWriteMap |
---|
1208 | template<typename M> |
---|
1209 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1210 | const M& _m; |
---|
1211 | public: |
---|
1212 | ///\e |
---|
1213 | typedef typename M::Key Key; |
---|
1214 | ///\e |
---|
1215 | typedef typename M::Value Value; |
---|
1216 | |
---|
1217 | /// Constructor |
---|
1218 | NegMap(const M &m) : _m(m) {} |
---|
1219 | ///\e |
---|
1220 | Value operator[](const Key &k) const { return -_m[k]; } |
---|
1221 | }; |
---|
1222 | |
---|
1223 | /// Negative of a map (read-write version) |
---|
1224 | |
---|
1225 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
---|
1226 | /// negative of the values of the given map (using the unary \c - |
---|
1227 | /// operator). |
---|
1228 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1229 | /// It makes also possible to write the map. |
---|
1230 | /// |
---|
1231 | /// If M::Value is \c int, \c double etc., then |
---|
1232 | /// \code |
---|
1233 | /// NegWriteMap<M> neg(m); |
---|
1234 | /// \endcode |
---|
1235 | /// is equivalent to |
---|
1236 | /// \code |
---|
1237 | /// ScaleWriteMap<M> neg(m,-1); |
---|
1238 | /// \endcode |
---|
1239 | /// |
---|
1240 | /// The simplest way of using this map is through the negWriteMap() |
---|
1241 | /// function. |
---|
1242 | /// |
---|
1243 | /// \sa NegMap |
---|
1244 | template<typename M> |
---|
1245 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1246 | M &_m; |
---|
1247 | public: |
---|
1248 | ///\e |
---|
1249 | typedef typename M::Key Key; |
---|
1250 | ///\e |
---|
1251 | typedef typename M::Value Value; |
---|
1252 | |
---|
1253 | /// Constructor |
---|
1254 | NegWriteMap(M &m) : _m(m) {} |
---|
1255 | ///\e |
---|
1256 | Value operator[](const Key &k) const { return -_m[k]; } |
---|
1257 | ///\e |
---|
1258 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
---|
1259 | }; |
---|
1260 | |
---|
1261 | /// Returns a \c NegMap class |
---|
1262 | |
---|
1263 | /// This function just returns a \c NegMap class. |
---|
1264 | /// |
---|
1265 | /// For example, if \c m is a map with \c double values, then |
---|
1266 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
---|
1267 | /// |
---|
1268 | /// \relates NegMap |
---|
1269 | template <typename M> |
---|
1270 | inline NegMap<M> negMap(const M &m) { |
---|
1271 | return NegMap<M>(m); |
---|
1272 | } |
---|
1273 | |
---|
1274 | /// Returns a \c NegWriteMap class |
---|
1275 | |
---|
1276 | /// This function just returns a \c NegWriteMap class. |
---|
1277 | /// |
---|
1278 | /// For example, if \c m is a map with \c double values, then |
---|
1279 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
---|
1280 | /// Moreover it makes also possible to write the map. |
---|
1281 | /// |
---|
1282 | /// \relates NegWriteMap |
---|
1283 | template <typename M> |
---|
1284 | inline NegWriteMap<M> negWriteMap(M &m) { |
---|
1285 | return NegWriteMap<M>(m); |
---|
1286 | } |
---|
1287 | |
---|
1288 | |
---|
1289 | /// Absolute value of a map |
---|
1290 | |
---|
1291 | /// This \ref concepts::ReadMap "read-only map" returns the absolute |
---|
1292 | /// value of the values of the given map. |
---|
1293 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1294 | /// \c Value must be comparable to \c 0 and the unary \c - |
---|
1295 | /// operator must be defined for it, of course. |
---|
1296 | /// |
---|
1297 | /// The simplest way of using this map is through the absMap() |
---|
1298 | /// function. |
---|
1299 | template<typename M> |
---|
1300 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1301 | const M &_m; |
---|
1302 | public: |
---|
1303 | ///\e |
---|
1304 | typedef typename M::Key Key; |
---|
1305 | ///\e |
---|
1306 | typedef typename M::Value Value; |
---|
1307 | |
---|
1308 | /// Constructor |
---|
1309 | AbsMap(const M &m) : _m(m) {} |
---|
1310 | ///\e |
---|
1311 | Value operator[](const Key &k) const { |
---|
1312 | Value tmp = _m[k]; |
---|
1313 | return tmp >= 0 ? tmp : -tmp; |
---|
1314 | } |
---|
1315 | |
---|
1316 | }; |
---|
1317 | |
---|
1318 | /// Returns an \c AbsMap class |
---|
1319 | |
---|
1320 | /// This function just returns an \c AbsMap class. |
---|
1321 | /// |
---|
1322 | /// For example, if \c m is a map with \c double values, then |
---|
1323 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
---|
1324 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
---|
1325 | /// negative. |
---|
1326 | /// |
---|
1327 | /// \relates AbsMap |
---|
1328 | template<typename M> |
---|
1329 | inline AbsMap<M> absMap(const M &m) { |
---|
1330 | return AbsMap<M>(m); |
---|
1331 | } |
---|
1332 | |
---|
1333 | /// @} |
---|
1334 | |
---|
1335 | // Logical maps and map adaptors: |
---|
1336 | |
---|
1337 | /// \addtogroup maps |
---|
1338 | /// @{ |
---|
1339 | |
---|
1340 | /// Constant \c true map. |
---|
1341 | |
---|
1342 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
1343 | /// each key. |
---|
1344 | /// |
---|
1345 | /// Note that |
---|
1346 | /// \code |
---|
1347 | /// TrueMap<K> tm; |
---|
1348 | /// \endcode |
---|
1349 | /// is equivalent to |
---|
1350 | /// \code |
---|
1351 | /// ConstMap<K,bool> tm(true); |
---|
1352 | /// \endcode |
---|
1353 | /// |
---|
1354 | /// \sa FalseMap |
---|
1355 | /// \sa ConstMap |
---|
1356 | template <typename K> |
---|
1357 | class TrueMap : public MapBase<K, bool> { |
---|
1358 | public: |
---|
1359 | ///\e |
---|
1360 | typedef K Key; |
---|
1361 | ///\e |
---|
1362 | typedef bool Value; |
---|
1363 | |
---|
1364 | /// Gives back \c true. |
---|
1365 | Value operator[](const Key&) const { return true; } |
---|
1366 | }; |
---|
1367 | |
---|
1368 | /// Returns a \c TrueMap class |
---|
1369 | |
---|
1370 | /// This function just returns a \c TrueMap class. |
---|
1371 | /// \relates TrueMap |
---|
1372 | template<typename K> |
---|
1373 | inline TrueMap<K> trueMap() { |
---|
1374 | return TrueMap<K>(); |
---|
1375 | } |
---|
1376 | |
---|
1377 | |
---|
1378 | /// Constant \c false map. |
---|
1379 | |
---|
1380 | /// This \ref concepts::ReadMap "read-only map" assigns \c false to |
---|
1381 | /// each key. |
---|
1382 | /// |
---|
1383 | /// Note that |
---|
1384 | /// \code |
---|
1385 | /// FalseMap<K> fm; |
---|
1386 | /// \endcode |
---|
1387 | /// is equivalent to |
---|
1388 | /// \code |
---|
1389 | /// ConstMap<K,bool> fm(false); |
---|
1390 | /// \endcode |
---|
1391 | /// |
---|
1392 | /// \sa TrueMap |
---|
1393 | /// \sa ConstMap |
---|
1394 | template <typename K> |
---|
1395 | class FalseMap : public MapBase<K, bool> { |
---|
1396 | public: |
---|
1397 | ///\e |
---|
1398 | typedef K Key; |
---|
1399 | ///\e |
---|
1400 | typedef bool Value; |
---|
1401 | |
---|
1402 | /// Gives back \c false. |
---|
1403 | Value operator[](const Key&) const { return false; } |
---|
1404 | }; |
---|
1405 | |
---|
1406 | /// Returns a \c FalseMap class |
---|
1407 | |
---|
1408 | /// This function just returns a \c FalseMap class. |
---|
1409 | /// \relates FalseMap |
---|
1410 | template<typename K> |
---|
1411 | inline FalseMap<K> falseMap() { |
---|
1412 | return FalseMap<K>(); |
---|
1413 | } |
---|
1414 | |
---|
1415 | /// @} |
---|
1416 | |
---|
1417 | /// \addtogroup map_adaptors |
---|
1418 | /// @{ |
---|
1419 | |
---|
1420 | /// Logical 'and' of two maps |
---|
1421 | |
---|
1422 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
1423 | /// 'and' of the values of the two given maps. |
---|
1424 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1425 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1426 | /// |
---|
1427 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1428 | /// \code |
---|
1429 | /// AndMap<M1,M2> am(m1,m2); |
---|
1430 | /// \endcode |
---|
1431 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
---|
1432 | /// |
---|
1433 | /// The simplest way of using this map is through the andMap() |
---|
1434 | /// function. |
---|
1435 | /// |
---|
1436 | /// \sa OrMap |
---|
1437 | /// \sa NotMap, NotWriteMap |
---|
1438 | template<typename M1, typename M2> |
---|
1439 | class AndMap : public MapBase<typename M1::Key, bool> { |
---|
1440 | const M1 &_m1; |
---|
1441 | const M2 &_m2; |
---|
1442 | public: |
---|
1443 | ///\e |
---|
1444 | typedef typename M1::Key Key; |
---|
1445 | ///\e |
---|
1446 | typedef bool Value; |
---|
1447 | |
---|
1448 | /// Constructor |
---|
1449 | AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1450 | ///\e |
---|
1451 | Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
---|
1452 | }; |
---|
1453 | |
---|
1454 | /// Returns an \c AndMap class |
---|
1455 | |
---|
1456 | /// This function just returns an \c AndMap class. |
---|
1457 | /// |
---|
1458 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
---|
1459 | /// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
---|
1460 | /// <tt>m1[x]&&m2[x]</tt>. |
---|
1461 | /// |
---|
1462 | /// \relates AndMap |
---|
1463 | template<typename M1, typename M2> |
---|
1464 | inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
---|
1465 | return AndMap<M1, M2>(m1,m2); |
---|
1466 | } |
---|
1467 | |
---|
1468 | |
---|
1469 | /// Logical 'or' of two maps |
---|
1470 | |
---|
1471 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
1472 | /// 'or' of the values of the two given maps. |
---|
1473 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1474 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1475 | /// |
---|
1476 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1477 | /// \code |
---|
1478 | /// OrMap<M1,M2> om(m1,m2); |
---|
1479 | /// \endcode |
---|
1480 | /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
---|
1481 | /// |
---|
1482 | /// The simplest way of using this map is through the orMap() |
---|
1483 | /// function. |
---|
1484 | /// |
---|
1485 | /// \sa AndMap |
---|
1486 | /// \sa NotMap, NotWriteMap |
---|
1487 | template<typename M1, typename M2> |
---|
1488 | class OrMap : public MapBase<typename M1::Key, bool> { |
---|
1489 | const M1 &_m1; |
---|
1490 | const M2 &_m2; |
---|
1491 | public: |
---|
1492 | ///\e |
---|
1493 | typedef typename M1::Key Key; |
---|
1494 | ///\e |
---|
1495 | typedef bool Value; |
---|
1496 | |
---|
1497 | /// Constructor |
---|
1498 | OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1499 | ///\e |
---|
1500 | Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
---|
1501 | }; |
---|
1502 | |
---|
1503 | /// Returns an \c OrMap class |
---|
1504 | |
---|
1505 | /// This function just returns an \c OrMap class. |
---|
1506 | /// |
---|
1507 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
---|
1508 | /// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
---|
1509 | /// <tt>m1[x]||m2[x]</tt>. |
---|
1510 | /// |
---|
1511 | /// \relates OrMap |
---|
1512 | template<typename M1, typename M2> |
---|
1513 | inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
---|
1514 | return OrMap<M1, M2>(m1,m2); |
---|
1515 | } |
---|
1516 | |
---|
1517 | |
---|
1518 | /// Logical 'not' of a map |
---|
1519 | |
---|
1520 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
1521 | /// negation of the values of the given map. |
---|
1522 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
---|
1523 | /// |
---|
1524 | /// The simplest way of using this map is through the notMap() |
---|
1525 | /// function. |
---|
1526 | /// |
---|
1527 | /// \sa NotWriteMap |
---|
1528 | template <typename M> |
---|
1529 | class NotMap : public MapBase<typename M::Key, bool> { |
---|
1530 | const M &_m; |
---|
1531 | public: |
---|
1532 | ///\e |
---|
1533 | typedef typename M::Key Key; |
---|
1534 | ///\e |
---|
1535 | typedef bool Value; |
---|
1536 | |
---|
1537 | /// Constructor |
---|
1538 | NotMap(const M &m) : _m(m) {} |
---|
1539 | ///\e |
---|
1540 | Value operator[](const Key &k) const { return !_m[k]; } |
---|
1541 | }; |
---|
1542 | |
---|
1543 | /// Logical 'not' of a map (read-write version) |
---|
1544 | |
---|
1545 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
---|
1546 | /// logical negation of the values of the given map. |
---|
1547 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
---|
1548 | /// It makes also possible to write the map. When a value is set, |
---|
1549 | /// the opposite value is set to the original map. |
---|
1550 | /// |
---|
1551 | /// The simplest way of using this map is through the notWriteMap() |
---|
1552 | /// function. |
---|
1553 | /// |
---|
1554 | /// \sa NotMap |
---|
1555 | template <typename M> |
---|
1556 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
---|
1557 | M &_m; |
---|
1558 | public: |
---|
1559 | ///\e |
---|
1560 | typedef typename M::Key Key; |
---|
1561 | ///\e |
---|
1562 | typedef bool Value; |
---|
1563 | |
---|
1564 | /// Constructor |
---|
1565 | NotWriteMap(M &m) : _m(m) {} |
---|
1566 | ///\e |
---|
1567 | Value operator[](const Key &k) const { return !_m[k]; } |
---|
1568 | ///\e |
---|
1569 | void set(const Key &k, bool v) { _m.set(k, !v); } |
---|
1570 | }; |
---|
1571 | |
---|
1572 | /// Returns a \c NotMap class |
---|
1573 | |
---|
1574 | /// This function just returns a \c NotMap class. |
---|
1575 | /// |
---|
1576 | /// For example, if \c m is a map with \c bool values, then |
---|
1577 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
---|
1578 | /// |
---|
1579 | /// \relates NotMap |
---|
1580 | template <typename M> |
---|
1581 | inline NotMap<M> notMap(const M &m) { |
---|
1582 | return NotMap<M>(m); |
---|
1583 | } |
---|
1584 | |
---|
1585 | /// Returns a \c NotWriteMap class |
---|
1586 | |
---|
1587 | /// This function just returns a \c NotWriteMap class. |
---|
1588 | /// |
---|
1589 | /// For example, if \c m is a map with \c bool values, then |
---|
1590 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
---|
1591 | /// Moreover it makes also possible to write the map. |
---|
1592 | /// |
---|
1593 | /// \relates NotWriteMap |
---|
1594 | template <typename M> |
---|
1595 | inline NotWriteMap<M> notWriteMap(M &m) { |
---|
1596 | return NotWriteMap<M>(m); |
---|
1597 | } |
---|
1598 | |
---|
1599 | |
---|
1600 | /// Combination of two maps using the \c == operator |
---|
1601 | |
---|
1602 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
1603 | /// the keys for which the corresponding values of the two maps are |
---|
1604 | /// equal. |
---|
1605 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1606 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1607 | /// |
---|
1608 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1609 | /// \code |
---|
1610 | /// EqualMap<M1,M2> em(m1,m2); |
---|
1611 | /// \endcode |
---|
1612 | /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
---|
1613 | /// |
---|
1614 | /// The simplest way of using this map is through the equalMap() |
---|
1615 | /// function. |
---|
1616 | /// |
---|
1617 | /// \sa LessMap |
---|
1618 | template<typename M1, typename M2> |
---|
1619 | class EqualMap : public MapBase<typename M1::Key, bool> { |
---|
1620 | const M1 &_m1; |
---|
1621 | const M2 &_m2; |
---|
1622 | public: |
---|
1623 | ///\e |
---|
1624 | typedef typename M1::Key Key; |
---|
1625 | ///\e |
---|
1626 | typedef bool Value; |
---|
1627 | |
---|
1628 | /// Constructor |
---|
1629 | EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1630 | ///\e |
---|
1631 | Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
---|
1632 | }; |
---|
1633 | |
---|
1634 | /// Returns an \c EqualMap class |
---|
1635 | |
---|
1636 | /// This function just returns an \c EqualMap class. |
---|
1637 | /// |
---|
1638 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
---|
1639 | /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
---|
1640 | /// <tt>m1[x]==m2[x]</tt>. |
---|
1641 | /// |
---|
1642 | /// \relates EqualMap |
---|
1643 | template<typename M1, typename M2> |
---|
1644 | inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
---|
1645 | return EqualMap<M1, M2>(m1,m2); |
---|
1646 | } |
---|
1647 | |
---|
1648 | |
---|
1649 | /// Combination of two maps using the \c < operator |
---|
1650 | |
---|
1651 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
1652 | /// the keys for which the corresponding value of the first map is |
---|
1653 | /// less then the value of the second map. |
---|
1654 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1655 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1656 | /// |
---|
1657 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1658 | /// \code |
---|
1659 | /// LessMap<M1,M2> lm(m1,m2); |
---|
1660 | /// \endcode |
---|
1661 | /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
---|
1662 | /// |
---|
1663 | /// The simplest way of using this map is through the lessMap() |
---|
1664 | /// function. |
---|
1665 | /// |
---|
1666 | /// \sa EqualMap |
---|
1667 | template<typename M1, typename M2> |
---|
1668 | class LessMap : public MapBase<typename M1::Key, bool> { |
---|
1669 | const M1 &_m1; |
---|
1670 | const M2 &_m2; |
---|
1671 | public: |
---|
1672 | ///\e |
---|
1673 | typedef typename M1::Key Key; |
---|
1674 | ///\e |
---|
1675 | typedef bool Value; |
---|
1676 | |
---|
1677 | /// Constructor |
---|
1678 | LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1679 | ///\e |
---|
1680 | Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
---|
1681 | }; |
---|
1682 | |
---|
1683 | /// Returns an \c LessMap class |
---|
1684 | |
---|
1685 | /// This function just returns an \c LessMap class. |
---|
1686 | /// |
---|
1687 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
---|
1688 | /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
---|
1689 | /// <tt>m1[x]<m2[x]</tt>. |
---|
1690 | /// |
---|
1691 | /// \relates LessMap |
---|
1692 | template<typename M1, typename M2> |
---|
1693 | inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
---|
1694 | return LessMap<M1, M2>(m1,m2); |
---|
1695 | } |
---|
1696 | |
---|
1697 | namespace _maps_bits { |
---|
1698 | |
---|
1699 | template <typename _Iterator, typename Enable = void> |
---|
1700 | struct IteratorTraits { |
---|
1701 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
---|
1702 | }; |
---|
1703 | |
---|
1704 | template <typename _Iterator> |
---|
1705 | struct IteratorTraits<_Iterator, |
---|
1706 | typename exists<typename _Iterator::container_type>::type> |
---|
1707 | { |
---|
1708 | typedef typename _Iterator::container_type::value_type Value; |
---|
1709 | }; |
---|
1710 | |
---|
1711 | } |
---|
1712 | |
---|
1713 | /// @} |
---|
1714 | |
---|
1715 | /// \addtogroup maps |
---|
1716 | /// @{ |
---|
1717 | |
---|
1718 | /// \brief Writable bool map for logging each \c true assigned element |
---|
1719 | /// |
---|
1720 | /// A \ref concepts::WriteMap "writable" bool map for logging |
---|
1721 | /// each \c true assigned element, i.e it copies subsequently each |
---|
1722 | /// keys set to \c true to the given iterator. |
---|
1723 | /// The most important usage of it is storing certain nodes or arcs |
---|
1724 | /// that were marked \c true by an algorithm. |
---|
1725 | /// |
---|
1726 | /// There are several algorithms that provide solutions through bool |
---|
1727 | /// maps and most of them assign \c true at most once for each key. |
---|
1728 | /// In these cases it is a natural request to store each \c true |
---|
1729 | /// assigned elements (in order of the assignment), which can be |
---|
1730 | /// easily done with LoggerBoolMap. |
---|
1731 | /// |
---|
1732 | /// The simplest way of using this map is through the loggerBoolMap() |
---|
1733 | /// function. |
---|
1734 | /// |
---|
1735 | /// \tparam IT The type of the iterator. |
---|
1736 | /// \tparam KEY The key type of the map. The default value set |
---|
1737 | /// according to the iterator type should work in most cases. |
---|
1738 | /// |
---|
1739 | /// \note The container of the iterator must contain enough space |
---|
1740 | /// for the elements or the iterator should be an inserter iterator. |
---|
1741 | #ifdef DOXYGEN |
---|
1742 | template <typename IT, typename KEY> |
---|
1743 | #else |
---|
1744 | template <typename IT, |
---|
1745 | typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
---|
1746 | #endif |
---|
1747 | class LoggerBoolMap : public MapBase<KEY, bool> { |
---|
1748 | public: |
---|
1749 | |
---|
1750 | ///\e |
---|
1751 | typedef KEY Key; |
---|
1752 | ///\e |
---|
1753 | typedef bool Value; |
---|
1754 | ///\e |
---|
1755 | typedef IT Iterator; |
---|
1756 | |
---|
1757 | /// Constructor |
---|
1758 | LoggerBoolMap(Iterator it) |
---|
1759 | : _begin(it), _end(it) {} |
---|
1760 | |
---|
1761 | /// Gives back the given iterator set for the first key |
---|
1762 | Iterator begin() const { |
---|
1763 | return _begin; |
---|
1764 | } |
---|
1765 | |
---|
1766 | /// Gives back the the 'after the last' iterator |
---|
1767 | Iterator end() const { |
---|
1768 | return _end; |
---|
1769 | } |
---|
1770 | |
---|
1771 | /// The set function of the map |
---|
1772 | void set(const Key& key, Value value) { |
---|
1773 | if (value) { |
---|
1774 | *_end++ = key; |
---|
1775 | } |
---|
1776 | } |
---|
1777 | |
---|
1778 | private: |
---|
1779 | Iterator _begin; |
---|
1780 | Iterator _end; |
---|
1781 | }; |
---|
1782 | |
---|
1783 | /// Returns a \c LoggerBoolMap class |
---|
1784 | |
---|
1785 | /// This function just returns a \c LoggerBoolMap class. |
---|
1786 | /// |
---|
1787 | /// The most important usage of it is storing certain nodes or arcs |
---|
1788 | /// that were marked \c true by an algorithm. |
---|
1789 | /// For example it makes easier to store the nodes in the processing |
---|
1790 | /// order of Dfs algorithm, as the following examples show. |
---|
1791 | /// \code |
---|
1792 | /// std::vector<Node> v; |
---|
1793 | /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
---|
1794 | /// \endcode |
---|
1795 | /// \code |
---|
1796 | /// std::vector<Node> v(countNodes(g)); |
---|
1797 | /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
---|
1798 | /// \endcode |
---|
1799 | /// |
---|
1800 | /// \note The container of the iterator must contain enough space |
---|
1801 | /// for the elements or the iterator should be an inserter iterator. |
---|
1802 | /// |
---|
1803 | /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
---|
1804 | /// it cannot be used when a readable map is needed, for example as |
---|
1805 | /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
---|
1806 | /// |
---|
1807 | /// \relates LoggerBoolMap |
---|
1808 | template<typename Iterator> |
---|
1809 | inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
---|
1810 | return LoggerBoolMap<Iterator>(it); |
---|
1811 | } |
---|
1812 | |
---|
1813 | /// @} |
---|
1814 | |
---|
1815 | /// \addtogroup graph_maps |
---|
1816 | /// @{ |
---|
1817 | |
---|
1818 | /// \brief Provides an immutable and unique id for each item in a graph. |
---|
1819 | /// |
---|
1820 | /// IdMap provides a unique and immutable id for each item of the |
---|
1821 | /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
---|
1822 | /// - \b unique: different items get different ids, |
---|
1823 | /// - \b immutable: the id of an item does not change (even if you |
---|
1824 | /// delete other nodes). |
---|
1825 | /// |
---|
1826 | /// Using this map you get access (i.e. can read) the inner id values of |
---|
1827 | /// the items stored in the graph, which is returned by the \c id() |
---|
1828 | /// function of the graph. This map can be inverted with its member |
---|
1829 | /// class \c InverseMap or with the \c operator()() member. |
---|
1830 | /// |
---|
1831 | /// \tparam GR The graph type. |
---|
1832 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
---|
1833 | /// \c GR::Edge). |
---|
1834 | /// |
---|
1835 | /// \see RangeIdMap |
---|
1836 | template <typename GR, typename K> |
---|
1837 | class IdMap : public MapBase<K, int> { |
---|
1838 | public: |
---|
1839 | /// The graph type of IdMap. |
---|
1840 | typedef GR Graph; |
---|
1841 | typedef GR Digraph; |
---|
1842 | /// The key type of IdMap (\c Node, \c Arc or \c Edge). |
---|
1843 | typedef K Item; |
---|
1844 | /// The key type of IdMap (\c Node, \c Arc or \c Edge). |
---|
1845 | typedef K Key; |
---|
1846 | /// The value type of IdMap. |
---|
1847 | typedef int Value; |
---|
1848 | |
---|
1849 | /// \brief Constructor. |
---|
1850 | /// |
---|
1851 | /// Constructor of the map. |
---|
1852 | explicit IdMap(const Graph& graph) : _graph(&graph) {} |
---|
1853 | |
---|
1854 | /// \brief Gives back the \e id of the item. |
---|
1855 | /// |
---|
1856 | /// Gives back the immutable and unique \e id of the item. |
---|
1857 | int operator[](const Item& item) const { return _graph->id(item);} |
---|
1858 | |
---|
1859 | /// \brief Gives back the \e item by its id. |
---|
1860 | /// |
---|
1861 | /// Gives back the \e item by its id. |
---|
1862 | Item operator()(int id) { return _graph->fromId(id, Item()); } |
---|
1863 | |
---|
1864 | private: |
---|
1865 | const Graph* _graph; |
---|
1866 | |
---|
1867 | public: |
---|
1868 | |
---|
1869 | /// \brief This class represents the inverse of its owner (IdMap). |
---|
1870 | /// |
---|
1871 | /// This class represents the inverse of its owner (IdMap). |
---|
1872 | /// \see inverse() |
---|
1873 | class InverseMap { |
---|
1874 | public: |
---|
1875 | |
---|
1876 | /// \brief Constructor. |
---|
1877 | /// |
---|
1878 | /// Constructor for creating an id-to-item map. |
---|
1879 | explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
---|
1880 | |
---|
1881 | /// \brief Constructor. |
---|
1882 | /// |
---|
1883 | /// Constructor for creating an id-to-item map. |
---|
1884 | explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
---|
1885 | |
---|
1886 | /// \brief Gives back the given item from its id. |
---|
1887 | /// |
---|
1888 | /// Gives back the given item from its id. |
---|
1889 | Item operator[](int id) const { return _graph->fromId(id, Item());} |
---|
1890 | |
---|
1891 | private: |
---|
1892 | const Graph* _graph; |
---|
1893 | }; |
---|
1894 | |
---|
1895 | /// \brief Gives back the inverse of the map. |
---|
1896 | /// |
---|
1897 | /// Gives back the inverse of the IdMap. |
---|
1898 | InverseMap inverse() const { return InverseMap(*_graph);} |
---|
1899 | }; |
---|
1900 | |
---|
1901 | |
---|
1902 | /// \brief General cross reference graph map type. |
---|
1903 | |
---|
1904 | /// This class provides simple invertable graph maps. |
---|
1905 | /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
---|
1906 | /// and if a key is set to a new value, then stores it in the inverse map. |
---|
1907 | /// The values of the map can be accessed |
---|
1908 | /// with stl compatible forward iterator. |
---|
1909 | /// |
---|
1910 | /// This type is not reference map, so it cannot be modified with |
---|
1911 | /// the subscript operator. |
---|
1912 | /// |
---|
1913 | /// \tparam GR The graph type. |
---|
1914 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
---|
1915 | /// \c GR::Edge). |
---|
1916 | /// \tparam V The value type of the map. |
---|
1917 | /// |
---|
1918 | /// \see IterableValueMap |
---|
1919 | template <typename GR, typename K, typename V> |
---|
1920 | class CrossRefMap |
---|
1921 | : protected ItemSetTraits<GR, K>::template Map<V>::Type { |
---|
1922 | private: |
---|
1923 | |
---|
1924 | typedef typename ItemSetTraits<GR, K>:: |
---|
1925 | template Map<V>::Type Map; |
---|
1926 | |
---|
1927 | typedef std::multimap<V, K> Container; |
---|
1928 | Container _inv_map; |
---|
1929 | |
---|
1930 | public: |
---|
1931 | |
---|
1932 | /// The graph type of CrossRefMap. |
---|
1933 | typedef GR Graph; |
---|
1934 | typedef GR Digraph; |
---|
1935 | /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
---|
1936 | typedef K Item; |
---|
1937 | /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
---|
1938 | typedef K Key; |
---|
1939 | /// The value type of CrossRefMap. |
---|
1940 | typedef V Value; |
---|
1941 | |
---|
1942 | /// \brief Constructor. |
---|
1943 | /// |
---|
1944 | /// Construct a new CrossRefMap for the given graph. |
---|
1945 | explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
---|
1946 | |
---|
1947 | /// \brief Forward iterator for values. |
---|
1948 | /// |
---|
1949 | /// This iterator is an stl compatible forward |
---|
1950 | /// iterator on the values of the map. The values can |
---|
1951 | /// be accessed in the <tt>[beginValue, endValue)</tt> range. |
---|
1952 | /// They are considered with multiplicity, so each value is |
---|
1953 | /// traversed for each item it is assigned to. |
---|
1954 | class ValueIterator |
---|
1955 | : public std::iterator<std::forward_iterator_tag, Value> { |
---|
1956 | friend class CrossRefMap; |
---|
1957 | private: |
---|
1958 | ValueIterator(typename Container::const_iterator _it) |
---|
1959 | : it(_it) {} |
---|
1960 | public: |
---|
1961 | |
---|
1962 | ValueIterator() {} |
---|
1963 | |
---|
1964 | ValueIterator& operator++() { ++it; return *this; } |
---|
1965 | ValueIterator operator++(int) { |
---|
1966 | ValueIterator tmp(*this); |
---|
1967 | operator++(); |
---|
1968 | return tmp; |
---|
1969 | } |
---|
1970 | |
---|
1971 | const Value& operator*() const { return it->first; } |
---|
1972 | const Value* operator->() const { return &(it->first); } |
---|
1973 | |
---|
1974 | bool operator==(ValueIterator jt) const { return it == jt.it; } |
---|
1975 | bool operator!=(ValueIterator jt) const { return it != jt.it; } |
---|
1976 | |
---|
1977 | private: |
---|
1978 | typename Container::const_iterator it; |
---|
1979 | }; |
---|
1980 | |
---|
1981 | /// \brief Returns an iterator to the first value. |
---|
1982 | /// |
---|
1983 | /// Returns an stl compatible iterator to the |
---|
1984 | /// first value of the map. The values of the |
---|
1985 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
---|
1986 | /// range. |
---|
1987 | ValueIterator beginValue() const { |
---|
1988 | return ValueIterator(_inv_map.begin()); |
---|
1989 | } |
---|
1990 | |
---|
1991 | /// \brief Returns an iterator after the last value. |
---|
1992 | /// |
---|
1993 | /// Returns an stl compatible iterator after the |
---|
1994 | /// last value of the map. The values of the |
---|
1995 | /// map can be accessed in the <tt>[beginValue, endValue)</tt> |
---|
1996 | /// range. |
---|
1997 | ValueIterator endValue() const { |
---|
1998 | return ValueIterator(_inv_map.end()); |
---|
1999 | } |
---|
2000 | |
---|
2001 | /// \brief Sets the value associated with the given key. |
---|
2002 | /// |
---|
2003 | /// Sets the value associated with the given key. |
---|
2004 | void set(const Key& key, const Value& val) { |
---|
2005 | Value oldval = Map::operator[](key); |
---|
2006 | typename Container::iterator it; |
---|
2007 | for (it = _inv_map.equal_range(oldval).first; |
---|
2008 | it != _inv_map.equal_range(oldval).second; ++it) { |
---|
2009 | if (it->second == key) { |
---|
2010 | _inv_map.erase(it); |
---|
2011 | break; |
---|
2012 | } |
---|
2013 | } |
---|
2014 | _inv_map.insert(std::make_pair(val, key)); |
---|
2015 | Map::set(key, val); |
---|
2016 | } |
---|
2017 | |
---|
2018 | /// \brief Returns the value associated with the given key. |
---|
2019 | /// |
---|
2020 | /// Returns the value associated with the given key. |
---|
2021 | typename MapTraits<Map>::ConstReturnValue |
---|
2022 | operator[](const Key& key) const { |
---|
2023 | return Map::operator[](key); |
---|
2024 | } |
---|
2025 | |
---|
2026 | /// \brief Gives back an item by its value. |
---|
2027 | /// |
---|
2028 | /// This function gives back an item that is assigned to |
---|
2029 | /// the given value or \c INVALID if no such item exists. |
---|
2030 | /// If there are more items with the same associated value, |
---|
2031 | /// only one of them is returned. |
---|
2032 | Key operator()(const Value& val) const { |
---|
2033 | typename Container::const_iterator it = _inv_map.find(val); |
---|
2034 | return it != _inv_map.end() ? it->second : INVALID; |
---|
2035 | } |
---|
2036 | |
---|
2037 | /// \brief Returns the number of items with the given value. |
---|
2038 | /// |
---|
2039 | /// This function returns the number of items with the given value |
---|
2040 | /// associated with it. |
---|
2041 | int count(const Value &val) const { |
---|
2042 | return _inv_map.count(val); |
---|
2043 | } |
---|
2044 | |
---|
2045 | protected: |
---|
2046 | |
---|
2047 | /// \brief Erase the key from the map and the inverse map. |
---|
2048 | /// |
---|
2049 | /// Erase the key from the map and the inverse map. It is called by the |
---|
2050 | /// \c AlterationNotifier. |
---|
2051 | virtual void erase(const Key& key) { |
---|
2052 | Value val = Map::operator[](key); |
---|
2053 | typename Container::iterator it; |
---|
2054 | for (it = _inv_map.equal_range(val).first; |
---|
2055 | it != _inv_map.equal_range(val).second; ++it) { |
---|
2056 | if (it->second == key) { |
---|
2057 | _inv_map.erase(it); |
---|
2058 | break; |
---|
2059 | } |
---|
2060 | } |
---|
2061 | Map::erase(key); |
---|
2062 | } |
---|
2063 | |
---|
2064 | /// \brief Erase more keys from the map and the inverse map. |
---|
2065 | /// |
---|
2066 | /// Erase more keys from the map and the inverse map. It is called by the |
---|
2067 | /// \c AlterationNotifier. |
---|
2068 | virtual void erase(const std::vector<Key>& keys) { |
---|
2069 | for (int i = 0; i < int(keys.size()); ++i) { |
---|
2070 | Value val = Map::operator[](keys[i]); |
---|
2071 | typename Container::iterator it; |
---|
2072 | for (it = _inv_map.equal_range(val).first; |
---|
2073 | it != _inv_map.equal_range(val).second; ++it) { |
---|
2074 | if (it->second == keys[i]) { |
---|
2075 | _inv_map.erase(it); |
---|
2076 | break; |
---|
2077 | } |
---|
2078 | } |
---|
2079 | } |
---|
2080 | Map::erase(keys); |
---|
2081 | } |
---|
2082 | |
---|
2083 | /// \brief Clear the keys from the map and the inverse map. |
---|
2084 | /// |
---|
2085 | /// Clear the keys from the map and the inverse map. It is called by the |
---|
2086 | /// \c AlterationNotifier. |
---|
2087 | virtual void clear() { |
---|
2088 | _inv_map.clear(); |
---|
2089 | Map::clear(); |
---|
2090 | } |
---|
2091 | |
---|
2092 | public: |
---|
2093 | |
---|
2094 | /// \brief The inverse map type. |
---|
2095 | /// |
---|
2096 | /// The inverse of this map. The subscript operator of the map |
---|
2097 | /// gives back the item that was last assigned to the value. |
---|
2098 | class InverseMap { |
---|
2099 | public: |
---|
2100 | /// \brief Constructor |
---|
2101 | /// |
---|
2102 | /// Constructor of the InverseMap. |
---|
2103 | explicit InverseMap(const CrossRefMap& inverted) |
---|
2104 | : _inverted(inverted) {} |
---|
2105 | |
---|
2106 | /// The value type of the InverseMap. |
---|
2107 | typedef typename CrossRefMap::Key Value; |
---|
2108 | /// The key type of the InverseMap. |
---|
2109 | typedef typename CrossRefMap::Value Key; |
---|
2110 | |
---|
2111 | /// \brief Subscript operator. |
---|
2112 | /// |
---|
2113 | /// Subscript operator. It gives back an item |
---|
2114 | /// that is assigned to the given value or \c INVALID |
---|
2115 | /// if no such item exists. |
---|
2116 | Value operator[](const Key& key) const { |
---|
2117 | return _inverted(key); |
---|
2118 | } |
---|
2119 | |
---|
2120 | private: |
---|
2121 | const CrossRefMap& _inverted; |
---|
2122 | }; |
---|
2123 | |
---|
2124 | /// \brief It gives back the read-only inverse map. |
---|
2125 | /// |
---|
2126 | /// It gives back the read-only inverse map. |
---|
2127 | InverseMap inverse() const { |
---|
2128 | return InverseMap(*this); |
---|
2129 | } |
---|
2130 | |
---|
2131 | }; |
---|
2132 | |
---|
2133 | /// \brief Provides continuous and unique id for the |
---|
2134 | /// items of a graph. |
---|
2135 | /// |
---|
2136 | /// RangeIdMap provides a unique and continuous |
---|
2137 | /// id for each item of a given type (\c Node, \c Arc or |
---|
2138 | /// \c Edge) in a graph. This id is |
---|
2139 | /// - \b unique: different items get different ids, |
---|
2140 | /// - \b continuous: the range of the ids is the set of integers |
---|
2141 | /// between 0 and \c n-1, where \c n is the number of the items of |
---|
2142 | /// this type (\c Node, \c Arc or \c Edge). |
---|
2143 | /// - So, the ids can change when deleting an item of the same type. |
---|
2144 | /// |
---|
2145 | /// Thus this id is not (necessarily) the same as what can get using |
---|
2146 | /// the \c id() function of the graph or \ref IdMap. |
---|
2147 | /// This map can be inverted with its member class \c InverseMap, |
---|
2148 | /// or with the \c operator()() member. |
---|
2149 | /// |
---|
2150 | /// \tparam GR The graph type. |
---|
2151 | /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
---|
2152 | /// \c GR::Edge). |
---|
2153 | /// |
---|
2154 | /// \see IdMap |
---|
2155 | template <typename GR, typename K> |
---|
2156 | class RangeIdMap |
---|
2157 | : protected ItemSetTraits<GR, K>::template Map<int>::Type { |
---|
2158 | |
---|
2159 | typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
---|
2160 | |
---|
2161 | public: |
---|
2162 | /// The graph type of RangeIdMap. |
---|
2163 | typedef GR Graph; |
---|
2164 | typedef GR Digraph; |
---|
2165 | /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
---|
2166 | typedef K Item; |
---|
2167 | /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
---|
2168 | typedef K Key; |
---|
2169 | /// The value type of RangeIdMap. |
---|
2170 | typedef int Value; |
---|
2171 | |
---|
2172 | /// \brief Constructor. |
---|
2173 | /// |
---|
2174 | /// Constructor. |
---|
2175 | explicit RangeIdMap(const Graph& gr) : Map(gr) { |
---|
2176 | Item it; |
---|
2177 | const typename Map::Notifier* nf = Map::notifier(); |
---|
2178 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2179 | Map::set(it, _inv_map.size()); |
---|
2180 | _inv_map.push_back(it); |
---|
2181 | } |
---|
2182 | } |
---|
2183 | |
---|
2184 | protected: |
---|
2185 | |
---|
2186 | /// \brief Adds a new key to the map. |
---|
2187 | /// |
---|
2188 | /// Add a new key to the map. It is called by the |
---|
2189 | /// \c AlterationNotifier. |
---|
2190 | virtual void add(const Item& item) { |
---|
2191 | Map::add(item); |
---|
2192 | Map::set(item, _inv_map.size()); |
---|
2193 | _inv_map.push_back(item); |
---|
2194 | } |
---|
2195 | |
---|
2196 | /// \brief Add more new keys to the map. |
---|
2197 | /// |
---|
2198 | /// Add more new keys to the map. It is called by the |
---|
2199 | /// \c AlterationNotifier. |
---|
2200 | virtual void add(const std::vector<Item>& items) { |
---|
2201 | Map::add(items); |
---|
2202 | for (int i = 0; i < int(items.size()); ++i) { |
---|
2203 | Map::set(items[i], _inv_map.size()); |
---|
2204 | _inv_map.push_back(items[i]); |
---|
2205 | } |
---|
2206 | } |
---|
2207 | |
---|
2208 | /// \brief Erase the key from the map. |
---|
2209 | /// |
---|
2210 | /// Erase the key from the map. It is called by the |
---|
2211 | /// \c AlterationNotifier. |
---|
2212 | virtual void erase(const Item& item) { |
---|
2213 | Map::set(_inv_map.back(), Map::operator[](item)); |
---|
2214 | _inv_map[Map::operator[](item)] = _inv_map.back(); |
---|
2215 | _inv_map.pop_back(); |
---|
2216 | Map::erase(item); |
---|
2217 | } |
---|
2218 | |
---|
2219 | /// \brief Erase more keys from the map. |
---|
2220 | /// |
---|
2221 | /// Erase more keys from the map. It is called by the |
---|
2222 | /// \c AlterationNotifier. |
---|
2223 | virtual void erase(const std::vector<Item>& items) { |
---|
2224 | for (int i = 0; i < int(items.size()); ++i) { |
---|
2225 | Map::set(_inv_map.back(), Map::operator[](items[i])); |
---|
2226 | _inv_map[Map::operator[](items[i])] = _inv_map.back(); |
---|
2227 | _inv_map.pop_back(); |
---|
2228 | } |
---|
2229 | Map::erase(items); |
---|
2230 | } |
---|
2231 | |
---|
2232 | /// \brief Build the unique map. |
---|
2233 | /// |
---|
2234 | /// Build the unique map. It is called by the |
---|
2235 | /// \c AlterationNotifier. |
---|
2236 | virtual void build() { |
---|
2237 | Map::build(); |
---|
2238 | Item it; |
---|
2239 | const typename Map::Notifier* nf = Map::notifier(); |
---|
2240 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2241 | Map::set(it, _inv_map.size()); |
---|
2242 | _inv_map.push_back(it); |
---|
2243 | } |
---|
2244 | } |
---|
2245 | |
---|
2246 | /// \brief Clear the keys from the map. |
---|
2247 | /// |
---|
2248 | /// Clear the keys from the map. It is called by the |
---|
2249 | /// \c AlterationNotifier. |
---|
2250 | virtual void clear() { |
---|
2251 | _inv_map.clear(); |
---|
2252 | Map::clear(); |
---|
2253 | } |
---|
2254 | |
---|
2255 | public: |
---|
2256 | |
---|
2257 | /// \brief Returns the maximal value plus one. |
---|
2258 | /// |
---|
2259 | /// Returns the maximal value plus one in the map. |
---|
2260 | unsigned int size() const { |
---|
2261 | return _inv_map.size(); |
---|
2262 | } |
---|
2263 | |
---|
2264 | /// \brief Swaps the position of the two items in the map. |
---|
2265 | /// |
---|
2266 | /// Swaps the position of the two items in the map. |
---|
2267 | void swap(const Item& p, const Item& q) { |
---|
2268 | int pi = Map::operator[](p); |
---|
2269 | int qi = Map::operator[](q); |
---|
2270 | Map::set(p, qi); |
---|
2271 | _inv_map[qi] = p; |
---|
2272 | Map::set(q, pi); |
---|
2273 | _inv_map[pi] = q; |
---|
2274 | } |
---|
2275 | |
---|
2276 | /// \brief Gives back the \e RangeId of the item |
---|
2277 | /// |
---|
2278 | /// Gives back the \e RangeId of the item. |
---|
2279 | int operator[](const Item& item) const { |
---|
2280 | return Map::operator[](item); |
---|
2281 | } |
---|
2282 | |
---|
2283 | /// \brief Gives back the item belonging to a \e RangeId |
---|
2284 | /// |
---|
2285 | /// Gives back the item belonging to a \e RangeId. |
---|
2286 | Item operator()(int id) const { |
---|
2287 | return _inv_map[id]; |
---|
2288 | } |
---|
2289 | |
---|
2290 | private: |
---|
2291 | |
---|
2292 | typedef std::vector<Item> Container; |
---|
2293 | Container _inv_map; |
---|
2294 | |
---|
2295 | public: |
---|
2296 | |
---|
2297 | /// \brief The inverse map type of RangeIdMap. |
---|
2298 | /// |
---|
2299 | /// The inverse map type of RangeIdMap. |
---|
2300 | class InverseMap { |
---|
2301 | public: |
---|
2302 | /// \brief Constructor |
---|
2303 | /// |
---|
2304 | /// Constructor of the InverseMap. |
---|
2305 | explicit InverseMap(const RangeIdMap& inverted) |
---|
2306 | : _inverted(inverted) {} |
---|
2307 | |
---|
2308 | |
---|
2309 | /// The value type of the InverseMap. |
---|
2310 | typedef typename RangeIdMap::Key Value; |
---|
2311 | /// The key type of the InverseMap. |
---|
2312 | typedef typename RangeIdMap::Value Key; |
---|
2313 | |
---|
2314 | /// \brief Subscript operator. |
---|
2315 | /// |
---|
2316 | /// Subscript operator. It gives back the item |
---|
2317 | /// that the descriptor currently belongs to. |
---|
2318 | Value operator[](const Key& key) const { |
---|
2319 | return _inverted(key); |
---|
2320 | } |
---|
2321 | |
---|
2322 | /// \brief Size of the map. |
---|
2323 | /// |
---|
2324 | /// Returns the size of the map. |
---|
2325 | unsigned int size() const { |
---|
2326 | return _inverted.size(); |
---|
2327 | } |
---|
2328 | |
---|
2329 | private: |
---|
2330 | const RangeIdMap& _inverted; |
---|
2331 | }; |
---|
2332 | |
---|
2333 | /// \brief Gives back the inverse of the map. |
---|
2334 | /// |
---|
2335 | /// Gives back the inverse of the map. |
---|
2336 | const InverseMap inverse() const { |
---|
2337 | return InverseMap(*this); |
---|
2338 | } |
---|
2339 | }; |
---|
2340 | |
---|
2341 | /// \brief Map of the source nodes of arcs in a digraph. |
---|
2342 | /// |
---|
2343 | /// SourceMap provides access for the source node of each arc in a digraph, |
---|
2344 | /// which is returned by the \c source() function of the digraph. |
---|
2345 | /// \tparam GR The digraph type. |
---|
2346 | /// \see TargetMap |
---|
2347 | template <typename GR> |
---|
2348 | class SourceMap { |
---|
2349 | public: |
---|
2350 | |
---|
2351 | ///\e |
---|
2352 | typedef typename GR::Arc Key; |
---|
2353 | ///\e |
---|
2354 | typedef typename GR::Node Value; |
---|
2355 | |
---|
2356 | /// \brief Constructor |
---|
2357 | /// |
---|
2358 | /// Constructor. |
---|
2359 | /// \param digraph The digraph that the map belongs to. |
---|
2360 | explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
---|
2361 | |
---|
2362 | /// \brief Returns the source node of the given arc. |
---|
2363 | /// |
---|
2364 | /// Returns the source node of the given arc. |
---|
2365 | Value operator[](const Key& arc) const { |
---|
2366 | return _graph.source(arc); |
---|
2367 | } |
---|
2368 | |
---|
2369 | private: |
---|
2370 | const GR& _graph; |
---|
2371 | }; |
---|
2372 | |
---|
2373 | /// \brief Returns a \c SourceMap class. |
---|
2374 | /// |
---|
2375 | /// This function just returns an \c SourceMap class. |
---|
2376 | /// \relates SourceMap |
---|
2377 | template <typename GR> |
---|
2378 | inline SourceMap<GR> sourceMap(const GR& graph) { |
---|
2379 | return SourceMap<GR>(graph); |
---|
2380 | } |
---|
2381 | |
---|
2382 | /// \brief Map of the target nodes of arcs in a digraph. |
---|
2383 | /// |
---|
2384 | /// TargetMap provides access for the target node of each arc in a digraph, |
---|
2385 | /// which is returned by the \c target() function of the digraph. |
---|
2386 | /// \tparam GR The digraph type. |
---|
2387 | /// \see SourceMap |
---|
2388 | template <typename GR> |
---|
2389 | class TargetMap { |
---|
2390 | public: |
---|
2391 | |
---|
2392 | ///\e |
---|
2393 | typedef typename GR::Arc Key; |
---|
2394 | ///\e |
---|
2395 | typedef typename GR::Node Value; |
---|
2396 | |
---|
2397 | /// \brief Constructor |
---|
2398 | /// |
---|
2399 | /// Constructor. |
---|
2400 | /// \param digraph The digraph that the map belongs to. |
---|
2401 | explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
---|
2402 | |
---|
2403 | /// \brief Returns the target node of the given arc. |
---|
2404 | /// |
---|
2405 | /// Returns the target node of the given arc. |
---|
2406 | Value operator[](const Key& e) const { |
---|
2407 | return _graph.target(e); |
---|
2408 | } |
---|
2409 | |
---|
2410 | private: |
---|
2411 | const GR& _graph; |
---|
2412 | }; |
---|
2413 | |
---|
2414 | /// \brief Returns a \c TargetMap class. |
---|
2415 | /// |
---|
2416 | /// This function just returns a \c TargetMap class. |
---|
2417 | /// \relates TargetMap |
---|
2418 | template <typename GR> |
---|
2419 | inline TargetMap<GR> targetMap(const GR& graph) { |
---|
2420 | return TargetMap<GR>(graph); |
---|
2421 | } |
---|
2422 | |
---|
2423 | /// \brief Map of the "forward" directed arc view of edges in a graph. |
---|
2424 | /// |
---|
2425 | /// ForwardMap provides access for the "forward" directed arc view of |
---|
2426 | /// each edge in a graph, which is returned by the \c direct() function |
---|
2427 | /// of the graph with \c true parameter. |
---|
2428 | /// \tparam GR The graph type. |
---|
2429 | /// \see BackwardMap |
---|
2430 | template <typename GR> |
---|
2431 | class ForwardMap { |
---|
2432 | public: |
---|
2433 | |
---|
2434 | typedef typename GR::Arc Value; |
---|
2435 | typedef typename GR::Edge Key; |
---|
2436 | |
---|
2437 | /// \brief Constructor |
---|
2438 | /// |
---|
2439 | /// Constructor. |
---|
2440 | /// \param graph The graph that the map belongs to. |
---|
2441 | explicit ForwardMap(const GR& graph) : _graph(graph) {} |
---|
2442 | |
---|
2443 | /// \brief Returns the "forward" directed arc view of the given edge. |
---|
2444 | /// |
---|
2445 | /// Returns the "forward" directed arc view of the given edge. |
---|
2446 | Value operator[](const Key& key) const { |
---|
2447 | return _graph.direct(key, true); |
---|
2448 | } |
---|
2449 | |
---|
2450 | private: |
---|
2451 | const GR& _graph; |
---|
2452 | }; |
---|
2453 | |
---|
2454 | /// \brief Returns a \c ForwardMap class. |
---|
2455 | /// |
---|
2456 | /// This function just returns an \c ForwardMap class. |
---|
2457 | /// \relates ForwardMap |
---|
2458 | template <typename GR> |
---|
2459 | inline ForwardMap<GR> forwardMap(const GR& graph) { |
---|
2460 | return ForwardMap<GR>(graph); |
---|
2461 | } |
---|
2462 | |
---|
2463 | /// \brief Map of the "backward" directed arc view of edges in a graph. |
---|
2464 | /// |
---|
2465 | /// BackwardMap provides access for the "backward" directed arc view of |
---|
2466 | /// each edge in a graph, which is returned by the \c direct() function |
---|
2467 | /// of the graph with \c false parameter. |
---|
2468 | /// \tparam GR The graph type. |
---|
2469 | /// \see ForwardMap |
---|
2470 | template <typename GR> |
---|
2471 | class BackwardMap { |
---|
2472 | public: |
---|
2473 | |
---|
2474 | typedef typename GR::Arc Value; |
---|
2475 | typedef typename GR::Edge Key; |
---|
2476 | |
---|
2477 | /// \brief Constructor |
---|
2478 | /// |
---|
2479 | /// Constructor. |
---|
2480 | /// \param graph The graph that the map belongs to. |
---|
2481 | explicit BackwardMap(const GR& graph) : _graph(graph) {} |
---|
2482 | |
---|
2483 | /// \brief Returns the "backward" directed arc view of the given edge. |
---|
2484 | /// |
---|
2485 | /// Returns the "backward" directed arc view of the given edge. |
---|
2486 | Value operator[](const Key& key) const { |
---|
2487 | return _graph.direct(key, false); |
---|
2488 | } |
---|
2489 | |
---|
2490 | private: |
---|
2491 | const GR& _graph; |
---|
2492 | }; |
---|
2493 | |
---|
2494 | /// \brief Returns a \c BackwardMap class |
---|
2495 | |
---|
2496 | /// This function just returns a \c BackwardMap class. |
---|
2497 | /// \relates BackwardMap |
---|
2498 | template <typename GR> |
---|
2499 | inline BackwardMap<GR> backwardMap(const GR& graph) { |
---|
2500 | return BackwardMap<GR>(graph); |
---|
2501 | } |
---|
2502 | |
---|
2503 | /// \brief Map of the in-degrees of nodes in a digraph. |
---|
2504 | /// |
---|
2505 | /// This map returns the in-degree of a node. Once it is constructed, |
---|
2506 | /// the degrees are stored in a standard \c NodeMap, so each query is done |
---|
2507 | /// in constant time. On the other hand, the values are updated automatically |
---|
2508 | /// whenever the digraph changes. |
---|
2509 | /// |
---|
2510 | /// \warning Besides \c addNode() and \c addArc(), a digraph structure |
---|
2511 | /// may provide alternative ways to modify the digraph. |
---|
2512 | /// The correct behavior of InDegMap is not guarantied if these additional |
---|
2513 | /// features are used. For example the functions |
---|
2514 | /// \ref ListDigraph::changeSource() "changeSource()", |
---|
2515 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
---|
2516 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
---|
2517 | /// of \ref ListDigraph will \e not update the degree values correctly. |
---|
2518 | /// |
---|
2519 | /// \sa OutDegMap |
---|
2520 | template <typename GR> |
---|
2521 | class InDegMap |
---|
2522 | : protected ItemSetTraits<GR, typename GR::Arc> |
---|
2523 | ::ItemNotifier::ObserverBase { |
---|
2524 | |
---|
2525 | public: |
---|
2526 | |
---|
2527 | /// The graph type of InDegMap |
---|
2528 | typedef GR Graph; |
---|
2529 | typedef GR Digraph; |
---|
2530 | /// The key type |
---|
2531 | typedef typename Digraph::Node Key; |
---|
2532 | /// The value type |
---|
2533 | typedef int Value; |
---|
2534 | |
---|
2535 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
---|
2536 | ::ItemNotifier::ObserverBase Parent; |
---|
2537 | |
---|
2538 | private: |
---|
2539 | |
---|
2540 | class AutoNodeMap |
---|
2541 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
---|
2542 | public: |
---|
2543 | |
---|
2544 | typedef typename ItemSetTraits<Digraph, Key>:: |
---|
2545 | template Map<int>::Type Parent; |
---|
2546 | |
---|
2547 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
---|
2548 | |
---|
2549 | virtual void add(const Key& key) { |
---|
2550 | Parent::add(key); |
---|
2551 | Parent::set(key, 0); |
---|
2552 | } |
---|
2553 | |
---|
2554 | virtual void add(const std::vector<Key>& keys) { |
---|
2555 | Parent::add(keys); |
---|
2556 | for (int i = 0; i < int(keys.size()); ++i) { |
---|
2557 | Parent::set(keys[i], 0); |
---|
2558 | } |
---|
2559 | } |
---|
2560 | |
---|
2561 | virtual void build() { |
---|
2562 | Parent::build(); |
---|
2563 | Key it; |
---|
2564 | typename Parent::Notifier* nf = Parent::notifier(); |
---|
2565 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2566 | Parent::set(it, 0); |
---|
2567 | } |
---|
2568 | } |
---|
2569 | }; |
---|
2570 | |
---|
2571 | public: |
---|
2572 | |
---|
2573 | /// \brief Constructor. |
---|
2574 | /// |
---|
2575 | /// Constructor for creating an in-degree map. |
---|
2576 | explicit InDegMap(const Digraph& graph) |
---|
2577 | : _digraph(graph), _deg(graph) { |
---|
2578 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
---|
2579 | |
---|
2580 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
---|
2581 | _deg[it] = countInArcs(_digraph, it); |
---|
2582 | } |
---|
2583 | } |
---|
2584 | |
---|
2585 | /// \brief Gives back the in-degree of a Node. |
---|
2586 | /// |
---|
2587 | /// Gives back the in-degree of a Node. |
---|
2588 | int operator[](const Key& key) const { |
---|
2589 | return _deg[key]; |
---|
2590 | } |
---|
2591 | |
---|
2592 | protected: |
---|
2593 | |
---|
2594 | typedef typename Digraph::Arc Arc; |
---|
2595 | |
---|
2596 | virtual void add(const Arc& arc) { |
---|
2597 | ++_deg[_digraph.target(arc)]; |
---|
2598 | } |
---|
2599 | |
---|
2600 | virtual void add(const std::vector<Arc>& arcs) { |
---|
2601 | for (int i = 0; i < int(arcs.size()); ++i) { |
---|
2602 | ++_deg[_digraph.target(arcs[i])]; |
---|
2603 | } |
---|
2604 | } |
---|
2605 | |
---|
2606 | virtual void erase(const Arc& arc) { |
---|
2607 | --_deg[_digraph.target(arc)]; |
---|
2608 | } |
---|
2609 | |
---|
2610 | virtual void erase(const std::vector<Arc>& arcs) { |
---|
2611 | for (int i = 0; i < int(arcs.size()); ++i) { |
---|
2612 | --_deg[_digraph.target(arcs[i])]; |
---|
2613 | } |
---|
2614 | } |
---|
2615 | |
---|
2616 | virtual void build() { |
---|
2617 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
---|
2618 | _deg[it] = countInArcs(_digraph, it); |
---|
2619 | } |
---|
2620 | } |
---|
2621 | |
---|
2622 | virtual void clear() { |
---|
2623 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
---|
2624 | _deg[it] = 0; |
---|
2625 | } |
---|
2626 | } |
---|
2627 | private: |
---|
2628 | |
---|
2629 | const Digraph& _digraph; |
---|
2630 | AutoNodeMap _deg; |
---|
2631 | }; |
---|
2632 | |
---|
2633 | /// \brief Map of the out-degrees of nodes in a digraph. |
---|
2634 | /// |
---|
2635 | /// This map returns the out-degree of a node. Once it is constructed, |
---|
2636 | /// the degrees are stored in a standard \c NodeMap, so each query is done |
---|
2637 | /// in constant time. On the other hand, the values are updated automatically |
---|
2638 | /// whenever the digraph changes. |
---|
2639 | /// |
---|
2640 | /// \warning Besides \c addNode() and \c addArc(), a digraph structure |
---|
2641 | /// may provide alternative ways to modify the digraph. |
---|
2642 | /// The correct behavior of OutDegMap is not guarantied if these additional |
---|
2643 | /// features are used. For example the functions |
---|
2644 | /// \ref ListDigraph::changeSource() "changeSource()", |
---|
2645 | /// \ref ListDigraph::changeTarget() "changeTarget()" and |
---|
2646 | /// \ref ListDigraph::reverseArc() "reverseArc()" |
---|
2647 | /// of \ref ListDigraph will \e not update the degree values correctly. |
---|
2648 | /// |
---|
2649 | /// \sa InDegMap |
---|
2650 | template <typename GR> |
---|
2651 | class OutDegMap |
---|
2652 | : protected ItemSetTraits<GR, typename GR::Arc> |
---|
2653 | ::ItemNotifier::ObserverBase { |
---|
2654 | |
---|
2655 | public: |
---|
2656 | |
---|
2657 | /// The graph type of OutDegMap |
---|
2658 | typedef GR Graph; |
---|
2659 | typedef GR Digraph; |
---|
2660 | /// The key type |
---|
2661 | typedef typename Digraph::Node Key; |
---|
2662 | /// The value type |
---|
2663 | typedef int Value; |
---|
2664 | |
---|
2665 | typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
---|
2666 | ::ItemNotifier::ObserverBase Parent; |
---|
2667 | |
---|
2668 | private: |
---|
2669 | |
---|
2670 | class AutoNodeMap |
---|
2671 | : public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
---|
2672 | public: |
---|
2673 | |
---|
2674 | typedef typename ItemSetTraits<Digraph, Key>:: |
---|
2675 | template Map<int>::Type Parent; |
---|
2676 | |
---|
2677 | AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
---|
2678 | |
---|
2679 | virtual void add(const Key& key) { |
---|
2680 | Parent::add(key); |
---|
2681 | Parent::set(key, 0); |
---|
2682 | } |
---|
2683 | virtual void add(const std::vector<Key>& keys) { |
---|
2684 | Parent::add(keys); |
---|
2685 | for (int i = 0; i < int(keys.size()); ++i) { |
---|
2686 | Parent::set(keys[i], 0); |
---|
2687 | } |
---|
2688 | } |
---|
2689 | virtual void build() { |
---|
2690 | Parent::build(); |
---|
2691 | Key it; |
---|
2692 | typename Parent::Notifier* nf = Parent::notifier(); |
---|
2693 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2694 | Parent::set(it, 0); |
---|
2695 | } |
---|
2696 | } |
---|
2697 | }; |
---|
2698 | |
---|
2699 | public: |
---|
2700 | |
---|
2701 | /// \brief Constructor. |
---|
2702 | /// |
---|
2703 | /// Constructor for creating an out-degree map. |
---|
2704 | explicit OutDegMap(const Digraph& graph) |
---|
2705 | : _digraph(graph), _deg(graph) { |
---|
2706 | Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
---|
2707 | |
---|
2708 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
---|
2709 | _deg[it] = countOutArcs(_digraph, it); |
---|
2710 | } |
---|
2711 | } |
---|
2712 | |
---|
2713 | /// \brief Gives back the out-degree of a Node. |
---|
2714 | /// |
---|
2715 | /// Gives back the out-degree of a Node. |
---|
2716 | int operator[](const Key& key) const { |
---|
2717 | return _deg[key]; |
---|
2718 | } |
---|
2719 | |
---|
2720 | protected: |
---|
2721 | |
---|
2722 | typedef typename Digraph::Arc Arc; |
---|
2723 | |
---|
2724 | virtual void add(const Arc& arc) { |
---|
2725 | ++_deg[_digraph.source(arc)]; |
---|
2726 | } |
---|
2727 | |
---|
2728 | virtual void add(const std::vector<Arc>& arcs) { |
---|
2729 | for (int i = 0; i < int(arcs.size()); ++i) { |
---|
2730 | ++_deg[_digraph.source(arcs[i])]; |
---|
2731 | } |
---|
2732 | } |
---|
2733 | |
---|
2734 | virtual void erase(const Arc& arc) { |
---|
2735 | --_deg[_digraph.source(arc)]; |
---|
2736 | } |
---|
2737 | |
---|
2738 | virtual void erase(const std::vector<Arc>& arcs) { |
---|
2739 | for (int i = 0; i < int(arcs.size()); ++i) { |
---|
2740 | --_deg[_digraph.source(arcs[i])]; |
---|
2741 | } |
---|
2742 | } |
---|
2743 | |
---|
2744 | virtual void build() { |
---|
2745 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
---|
2746 | _deg[it] = countOutArcs(_digraph, it); |
---|
2747 | } |
---|
2748 | } |
---|
2749 | |
---|
2750 | virtual void clear() { |
---|
2751 | for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
---|
2752 | _deg[it] = 0; |
---|
2753 | } |
---|
2754 | } |
---|
2755 | private: |
---|
2756 | |
---|
2757 | const Digraph& _digraph; |
---|
2758 | AutoNodeMap _deg; |
---|
2759 | }; |
---|
2760 | |
---|
2761 | /// \brief Potential difference map |
---|
2762 | /// |
---|
2763 | /// PotentialDifferenceMap returns the difference between the potentials of |
---|
2764 | /// the source and target nodes of each arc in a digraph, i.e. it returns |
---|
2765 | /// \code |
---|
2766 | /// potential[gr.target(arc)] - potential[gr.source(arc)]. |
---|
2767 | /// \endcode |
---|
2768 | /// \tparam GR The digraph type. |
---|
2769 | /// \tparam POT A node map storing the potentials. |
---|
2770 | template <typename GR, typename POT> |
---|
2771 | class PotentialDifferenceMap { |
---|
2772 | public: |
---|
2773 | /// Key type |
---|
2774 | typedef typename GR::Arc Key; |
---|
2775 | /// Value type |
---|
2776 | typedef typename POT::Value Value; |
---|
2777 | |
---|
2778 | /// \brief Constructor |
---|
2779 | /// |
---|
2780 | /// Contructor of the map. |
---|
2781 | explicit PotentialDifferenceMap(const GR& gr, |
---|
2782 | const POT& potential) |
---|
2783 | : _digraph(gr), _potential(potential) {} |
---|
2784 | |
---|
2785 | /// \brief Returns the potential difference for the given arc. |
---|
2786 | /// |
---|
2787 | /// Returns the potential difference for the given arc, i.e. |
---|
2788 | /// \code |
---|
2789 | /// potential[gr.target(arc)] - potential[gr.source(arc)]. |
---|
2790 | /// \endcode |
---|
2791 | Value operator[](const Key& arc) const { |
---|
2792 | return _potential[_digraph.target(arc)] - |
---|
2793 | _potential[_digraph.source(arc)]; |
---|
2794 | } |
---|
2795 | |
---|
2796 | private: |
---|
2797 | const GR& _digraph; |
---|
2798 | const POT& _potential; |
---|
2799 | }; |
---|
2800 | |
---|
2801 | /// \brief Returns a PotentialDifferenceMap. |
---|
2802 | /// |
---|
2803 | /// This function just returns a PotentialDifferenceMap. |
---|
2804 | /// \relates PotentialDifferenceMap |
---|
2805 | template <typename GR, typename POT> |
---|
2806 | PotentialDifferenceMap<GR, POT> |
---|
2807 | potentialDifferenceMap(const GR& gr, const POT& potential) { |
---|
2808 | return PotentialDifferenceMap<GR, POT>(gr, potential); |
---|
2809 | } |
---|
2810 | |
---|
2811 | /// @} |
---|
2812 | } |
---|
2813 | |
---|
2814 | #endif // LEMON_MAPS_H |
---|